Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory

Abstract : We experimentally demonstrate that a non-classical state prepared in an atomic memory can be efficiently transferred to a single mode of free-propagating light. By retrieving on demand a single excitation from a cold atomic gas, we realize an efficient source of single photons prepared in a pure, fully controlled quantum state. We characterize this source using two detection methods, one based on photon-counting analysis, and the second using homodyne tomography to reconstruct the density matrix and Wigner function of the state. The latter technique allows us to completely determine the mode of the retrieved photon in its fine phase and amplitude details, and demonstrate its non-classical field statistics by observing a negative Wigner function. We measure a photon retrieval efficiency up to 82% and an atomic memory coherence time of 900 ns. This setup is very well suited to study interactions between atomic excitations, and to use them in order to create and manipulate more sophisticated quantum states of light with a high degree of experimental control.
Type de document :
Article dans une revue
Physical Review Letters, American Physical Society, 2014, 112 (3), pp.033601. 〈10.1103/PhysRevLett.112.033601〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal-iogs.archives-ouvertes.fr/hal-00951366
Contributeur : Alexei Ourjoumtsev <>
Soumis le : lundi 24 février 2014 - 16:04:00
Dernière modification le : lundi 19 février 2018 - 16:52:25
Document(s) archivé(s) le : samedi 24 mai 2014 - 11:41:11

Fichiers

writeread_v6.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Erwan Bimbard, Rajiv Boddeda, Nicolas Vitrant, Andrey Grankin, Valentina Parigi, et al.. Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory. Physical Review Letters, American Physical Society, 2014, 112 (3), pp.033601. 〈10.1103/PhysRevLett.112.033601〉. 〈hal-00951366〉

Partager

Métriques

Consultations de la notice

336

Téléchargements de fichiers

183