Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory - Institut d'Optique Graduate School Accéder directement au contenu
Article Dans Une Revue Physical Review Letters Année : 2014

Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory

Résumé

We experimentally demonstrate that a non-classical state prepared in an atomic memory can be efficiently transferred to a single mode of free-propagating light. By retrieving on demand a single excitation from a cold atomic gas, we realize an efficient source of single photons prepared in a pure, fully controlled quantum state. We characterize this source using two detection methods, one based on photon-counting analysis, and the second using homodyne tomography to reconstruct the density matrix and Wigner function of the state. The latter technique allows us to completely determine the mode of the retrieved photon in its fine phase and amplitude details, and demonstrate its non-classical field statistics by observing a negative Wigner function. We measure a photon retrieval efficiency up to 82% and an atomic memory coherence time of 900 ns. This setup is very well suited to study interactions between atomic excitations, and to use them in order to create and manipulate more sophisticated quantum states of light with a high degree of experimental control.
Fichier principal
Vignette du fichier
writeread_v6.pdf (506.61 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00951366 , version 1 (24-02-2014)

Identifiants

Citer

Erwan Bimbard, Rajiv Boddeda, Nicolas Vitrant, Andrey Grankin, Valentina Parigi, et al.. Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory. Physical Review Letters, 2014, 112 (3), pp.033601. ⟨10.1103/PhysRevLett.112.033601⟩. ⟨hal-00951366⟩
238 Consultations
376 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More