Rabi interferometry and sensitive measurement of the Casimir-Polder force with ultracold gases
Abstract
We show that Rabi oscillations of a degenerate fermionic or bosonic gas trapped in a double-well potential can be exploited for the interferometric measurement of external forces at micrometer length scales. The Rabi interferometer is less sensitive but easier to implement than the Mach-Zehnder, since it does not require dynamical beam-splitting or recombination processes. As an application we propose a measurement of the Casimir-Polder force acting between the atoms and a dielectric surface. We find that even if the interferometer is fed with a coherent state of relatively small number of atoms, and in the presence of realistic experimental noise, the force might be measured with a sensitivity sufficient to discriminate between thermal and zero-temperature regimes of the Casimir-Polder potential. Higher sensitivities can be reached with bosonic spin squeezed states
Domains
Optics [physics.optics]Origin | Publisher files allowed on an open archive |
---|
Loading...