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Rabi interferometry and sensitive measurement of the Casimir-Polder force with ultracold gases
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We show that Rabi oscillations of a degenerate fermionic or bosonic gas trapped in a double-well potential
can be exploited for the interferometric measurement of external forces at micrometer length scales. The Rabi
interferometer is less sensitive but easier to implement than the Mach-Zehnder, since it does not require dynamical
beam-splitting or recombination processes. As an application we propose a measurement of the Casimir-Polder
force acting between the atoms and a dielectric surface. We find that even if the interferometer is fed with a
coherent state of relatively small number of atoms, and in the presence of realistic experimental noise, the force
might be measured with a sensitivity sufficient to discriminate between thermal and zero-temperature regimes of
the Casimir-Polder potential. Higher sensitivities can be reached with bosonic spin squeezed states.
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I. INTRODUCTION

Interferometers with trapped ultracold atoms are valuable
tools for the precise measurement of external forces [1]. An
important achievement would be the realization of the double-
well Mach-Zehnder interferometer (MZI) [2]. Its creation
requires two 50:50 beam splitters implemented by a dynamical
manipulation of the interwell barrier [2–5]. The phase shift is
accumulated during the interaction of atoms with an external
potential in the absence of interwell coupling. On the contrary,
it is interesting and experimentally relevant to search for
alternative interferometric schemes which could be easier to
realize and therefore potentially more stable than the MZI.
In this article we propose a different protocol: a double-well
Rabi interferometer (RI). This can be implemented using either
degenerate spin-polarized fermions or noninteracting Bose-
Einstein condensates (BECs). The RI is less sensitive than
the MZI but does not require any splitting or recombination
processes and is potentially suitable for the estimation of
forces decaying rapidly with distance. Moreover, in analogy
to the MZI, but differently from previous proposals for the
measurement of weak forces, the RI can reach a sub-shot-
noise phase sensitivity using spin squeezed states recently
created with a BEC [6]. In the scheme presented here,
atoms tunnel between the two wells while acquiring a phase
shift. The relative number of particles among the two wells
undergoes Rabi oscillations analogous to those experienced
by a collection of two-level atoms in a quasiresonant field [7].
The measurement of population imbalance as a function of
time permits inference of the value of the external force
as it affects both the amplitude and the frequency of Rabi
oscillations. In particular, once fed with a fermionic or bosonic
spin coherent state, the interferometer allows for accurate
measurement of the Casimir-Polder force between the atomic
sample and a surface [8]. Measurements of this force have
already been performed with atoms [9] and, also, BECs
[10–12]. The thermal regime of the Casimir-Polder potential
has been measured at temperatures ranging from 300 to 600 K
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in [10]. In this article we show that the RI might allow us
to distinguish between the thermal and the zero-temperature
regimes of the Casimir-Polder force also in the presence of
typical experimental noise.

II. THE RABI INTERFEROMETER

We consider a degenerate gas of N noninteracting atoms
confined in a double-well potential along x1 and in a harmonic
transverse trap along �x⊥ = (x2,x3). Taking into account only
the lowest and the first excited state of the double-well
potential, we introduce the operators âr/l,�n⊥ together with
the corresponding wave functions ψr/l(x1). These operators
annihilate a particle in the right or left well occupying a
harmonic trap state labeled by indices �n⊥ = (n2,n3). Under
proper choice of commutation relations, the Hamiltonian,
either for ultracold bosons (which populate only �n⊥ = 0) or
for ultracold fermions (distributed over N lowest states of the
trap [13]), reads

Ĥ = −EJ Ĵx + δĴz. (1)

Here, EJ is the tunneling energy and δ is the relative energy
shift due to interaction with a position-dependent external
potential V (x1) [14]. The operators Ĵx , Ĵy , and Ĵz form a
closed algebra of angular momentum [15].

The goal of the Rabi interferometer is to estimate δ with
the highest possible sensitivity. We consider the measurement
of the population imbalance between the two modes, which
corresponds to eigenvalues of the operator Ĵz. Using the
evolution operator generated by (1),

Û (t) = e−iαĴy eiωtĴx eiαĴy , (2)

we obtain

Ĵz(t,δ) = sin α cos α(cos ωt − 1)Ĵx − (cos α sin ωt)Ĵy

+ (cos2 α cos ωt + sin2 α)Ĵz, (3)

where cos α = EJ /h̄ω, sin α = δ/h̄ω, and ω =
√
E2

J + δ2/h̄ is
the detuned Rabi frequency.

The estimation protocol consists of measuring the popu-
lation imbalance at k times, {n} = {n(t1), . . . ,n(tk)}, where
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each n(ti) is averaged over m independent repetitions, and
n(ti) = 1

m

∑m
j=1 nj (ti), where nj (ti) is the result of a single

measurement. The value of δ is estimated from a least squares
fit of the theoretical curve 〈Ĵz(t,δ)〉, where the average value is
calculated with the input state of the interferometer. If m � 1,
the error of the estimated δ can be determined using the central
limit theorem. The conditional probability for measuring a
value n(ti) tends to

p(n(ti)|δ) = 1√
2π�Ĵz(ti ,δ)/

√
m

e
− [n(ti )−〈Ĵz (ti ,δ)〉]2

2�2 Ĵz (ti ,δ)/m ,

where �2Ĵz(ti ,δ) = 〈Ĵz(ti ,δ)2〉 − 〈Ĵz(ti ,δ)〉2. Since measure-
ments at different times are independent, the joint conditional
probability of detecting {n} reads p({n}|δ) = ∏k

i=1 p[n(ti)|δ].
To derive the sensitivity of the fit, we notice that the least
squares formula

∂

∂δ

(
k∑

i=1

[n(ti) − 〈Ĵz(ti ,δ)〉]2

2�2Ĵz(ti ,δ)

)
= 0

coincides with maximization of the probability p({n}|δ) with
respect to δ, that is, ∂

∂δ
p({n}|δ) = 0. The value of δ obtained in

this way is called the maximum likelihood estimator (MLE),
and the corresponding error is given by the Cramer-Rao lower
bound [16]:

�2δ =
(∫

d{n}
[

∂
∂δ

p({n}|δ)
]2

p({n}|δ)

)−1

= 1∑k
i=1

1
�2δ(ti )

, (4)

where

�2δ(ti) = �2Ĵz(ti ,δ)

m
[

∂
∂δ

〈Ĵz(ti ,δ)〉]2 . (5)

Since the conditions for the fit and for the MLE coincide, we
conclude that the sensitivity of the former is given by Eqs. (4)
and (5).

We now calculate the sensitivity using a coherent spin state
(CSS) [17] as input of the RI. This state corresponds to a
Poissonian distribution of particles among the two wells. For
fermions, it is given by |CSS〉F = ∏

�n⊥
1√
2
(â†

r,�n⊥ + â
†
l,�n⊥ )|0〉,

where |0〉 is the vacuum and the product runs over the first N

excited states along the (x2,x3) directions, while for bosons
|CSS〉B = 1√

N!
[ 1√

2
(â†

r,0 + â
†
l,0)]N |0〉. The CSS is an eigenstate

of Ĵx , with the eigenvalue equal to 1
2N , while 〈Ĵy,z〉 = 0 and

〈Ĵ 2
y,z〉 = 1

4N . The exact expression for the sensitivity at time
ti is calculated with the help of Eqs. (3) and (5):

�δ(ti) = EJ

√[
cos(ωti) + δ2

E2
J

]2 + (
1 + δ2

E2
J

)
sin2(ωti)

√
mN

∣∣E2
J −δ2

h̄2ω2 [cos(ωti) − 1] − δ2ti
h̄2ω

sin(ωti)
∣∣ .

It can be simplified under the assumptions δ2

E2
J

� 1 and ti �
t0 ≡ h̄2ω/δ2 (in Sec. III we show that these assumptions are
well satisfied for typical experimental parameters). Then ω 	
EJ /h̄, the relative population oscillates as

〈Ĵz(ti ,δ)〉 = N

2

δ

EJ

[
cos

(
EJ ti

h̄

)
− 1

]
,

and the sensitivity

�δ(ti) = 1√
mN

EJ∣∣ cos
(

EJ ti
h̄

) − 1
∣∣ (6)

scales at the shot-noise limit, �δ(ti) ∼ N− 1
2 . The smallest

error, �δmin = EJ /2
√

mN , is reached when EJ ti
h̄

= π (2j + 1)
with j ∈ N.

III. ESTIMATION OF THE CASIMIR-POLDER FORCE

In the RI, the external force perturbs the system while the
atoms tunnel through the barrier. Therefore, the interferometer
is best suited for measuring forces which decay on a scale of
typical interwell distances of a few micrometers. As a specific
application, in the following we examine the measurement
of the Casimir-Polder force with a bosonic RI. We consider
a BEC of N = 2500 87Rb atoms trapped in a double well,
with the following parameters [3]: the minima of the potential
are separated by l = 4.8 µm and the tunneling energy equals
EJ /h̄ = 52.3 s−1. A surface is positioned at a distance d of a
few micrometers from one of the wells (see the inset in Fig. 1
for a sketch of the experimental configuration). One possibility
would be to use a dielectric surface. In [10], the temperature
dependence of the Casimir-Polder force was measured over
the range 300 to 600 K, using a dielectric surface at distances
ranging from 7 to 11 µm from the cloud. Another option
would be to use a metallic plate. However, at distances of
a few micrometers from magnetically or optically trapped
atoms, the near-field magnetic noise originating from the
metallic surface leads to decoherence and losses in the cloud,
as observed in [18–20]. The underlying mechanism is the spin-
flip transitions induced by either thermal currents or technical
noise, creating oscillating magnetic fields [21]. Therefore, as
also suggested by the measurement of trap lifetime made

FIG. 1. (Color online) The detuning δ

h̄
calculated with Eq. (7)

[dashed (black) line] and the corresponding sensitivity from Eq. (4)
(error bars) of a fit to k = 10 equally spaced points in the first Rabi
period with m = 10 measurements at each time point. The uncertainty
includes the effect of residual atom-atom interactions and limited
resolution of the measurement of population imbalance (see text for
details). The input state is the classical spin coherent state. Also,
a detuning calculated with V th

CP(x1; d) for T = 300 K [solid (blue)
line] and T = 600 K [dotted (red) line] is plotted. Inset: the trap
configuration for measurement of the Casimir-Polder force.
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with a microfabricated silicon chip [12], a dielectric might
be preferable for the measurement of Casimir-Polder force
proposed here, since in this case a reduction in the condensate
lifetime was observed only when the surface was close enough
(<2 µm) to reduce the trap depth. As a final comment, we
note that, even when near-field magnetic noise is relevant, the
coherence time at distances of 5 µm from a metallic surface
can be of the order of 1 s [22], allowing for the observation a
few coherent Rabi oscillations (the typical Rabi period is about
100 ms). Moreover, as discussed here, the RI can operate at
a fixed optimal time within the first period, with no need for
multiple oscillations.

The bosonic RI also requires the suppression of interatomic
interactions (see Sec. IV for discussion of the impact of two-
body interactions on the sensitivity), which can be achieved
via magnetic or optical Feschbach resonances [23].

The Casimir-Polder force acts between the atoms and a
surface. The exact form of the potential, given in [8], depends
on the dielectric properties of the atoms and the plate, as well
as on the temperature T of the latter. If the thermal wavelength
λth = h̄c

kBT
of the photons emitted from the plate is much larger

than d (as it is for d 	 5 µm when T � 100 K [24]), the
Casimir-Polder potential is well approximated by

VCP(x1; d) = − 0.24 h̄ c α0(
x1 + 1

2 l + d
)4

ε0 − 1

ε0 + 1
.

Here c 	 3 × 108 m/s is the speed of light and α0 = 47.3 ×
10−30 m3 is the static value of 87Rb atomic polarizability. We
have chosen a sapphire surface for the results given in Fig. 1,
for which ε0 = 9.4 is the static value of the dielectric function.
The potential shifts the energy minima by

δ =
∫

dx1[|ψr (x1)|2 − |ψl(x1)|2]VCP(x1; d), (7)

and the mode functions ψr/l(x1) are given by the symmetric
and antisymmetric combination of the ground and first excited
state of the double-well potential. When the plate is positioned
at d = 4 µm, then δ/h̄ = 4.4 s−1, δ2

E2
J

= 0.007, and t0 	 3 s.

The period of Rabi oscillations is ω = 120 ms and is much
shorter than t0. Therefore evaluation of the sensitivity using
the approximate Eq. (6) is well justified.

If the temperature of the plate is high (T >∼ 300 K), so
that the condition λth � d is not satisfied, the Casimir-Polder
interaction is described by

V th
CP(x1; d) = − kBT α0

4
(
x1 + l

2 + d
)3

ε0 − 1

ε0 + 1
,

and the detuning is calculated with Eq. (7) substituting for
VCP(x1; d) with V th

CP(x1; d).
Note that, in the low-T limit, the potential VCP is propor-

tional to h̄ and c and does not depend on the temperature of the
surface, contrary to V th

CP. Therefore, if the sensitivity of the RI
is sufficient to distinguish between these two limits, one can
discriminate between purely quantum and thermal effects. In
Fig. 1, we plot the values of δ/h̄, as a function of distance d,
calculated with VCP(x1; d) [dashed (black) line] and V th

CP(x1; d)
at T = 300 K [solid (blue) line] and at T = 600 K [dotted (red)
line]. The error bars around the dashed line give the uncertainty
�δ/h̄ of the RI fed by a CSS by fitting to k = 10 points at

times ti = 2πh̄
EJ

i
k

in the first Rabi period, each with m = 10
measurements. The sensitivity is calculated with Eqs. (4) and
(6), including a realistic estimate of the experimental noise, as
discussed in the next section.

IV. SOURCES OF NOISE

Spin-polarized fermions are natural candidates for the
implementation of the preceding interferometric scheme since
the particle-particle interaction is naturally suppressed by
the Pauli exclusion principle. Ultracold Fermi gases have
been used to observe macroscopic Bloch oscillations induced
by gravity in an optical lattice [26] or to perform Ramsey
interferometry through Bragg diffraction [27].

In the case of bosons, the value of the s-wave scattering
length can be strongly reduced by using Feshbach resonances.
The remaining residual interaction can be taken into account by
introducing an additional term ECĴ 2

z into Hamiltonian (1) and
calculating the first-order correction to the evolution operator
(2). We checked that when N EC

EJ
= 0.1 [25], the interactions

marginally spoil the sensitivity.
An important source of noise in the RI is given by the

limited resolution on the population imbalance measure-
ment. This can be taken into account by substituting the
ideal probability p(n|δ) with the convolution pres(n|δ) =∑

n′ P(n,n′)p(n′|δ), where P(n,n′) gives the probability of
measuring the population imbalance n′, given the true value n.
We take P(n,n′) = 1√

2πσres
exp [− (n−n′)2

2σ 2
res

], with a conservative
value σres = 40 (the population imbalance is measured with
a resolution of ±40 particles). Then �δ

δ
for the spin coherent

state with 2500 atoms increases by a factor of 2 over the level
of quantum noise. Yet the sensitivity is sufficient to precisely
distinguish between thermal and zero-temperature regimes of
the Casimir-Polder force, as shown in Fig. 1. This is one of the
main results of this article.

V. INTERFEROMETER WITH SQUEEZED INPUT STATES

So far, we have discussed the sensitivity of the RI with a
coherent input state. Here we show that, keeping the number
of atoms constant, a higher sensitivity can be reached with spin

squeezed states, having ξ 2 ≡ N
〈Ĵ 2

z 〉
〈Ĵx 〉2 < 1 [28]. The squeezing

parameter ξ 2 is equal to 1 for a CSS and decreases when
reducing the fluctuations of Ĵz while the coherence is kept
constant, 〈Ĵx〉 ∝ N . In Fig. 2 we show how the sensitivity (5)
improves by plotting �δ as a function of time for three different
squeezing parameters. At EJ

h̄
t = π we have �δ = ξ EJ

2
√

N
√

m

and the sensitivity scales as N− 1
2 for the CSS and approaches

N−1 in the limit of very strong squeezing. Figure 2 also
reveals that for strong squeezing, the value of �δ is small only
around the optimal point. Therefore it is reasonable to focus
the experimental effort around this point, instead of acquiring
data distributed over the whole Rabi period. This allows us to
decrease �δest by a factor which ranges from

√
k for a strong

squeezing limit to
√

8/3 for a coherent state. Squeezed states
can be created by adiabatically splitting an interacting BEC
trapped in a double-well potential, as recently experimentally
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FIG. 2. (Color online) The sensitivity
√

m�δ as a function of
time, in units of δ. Solid (black), dashed (red), and dotted (blue) lines
correspond to ξ 2 = 1.0, 0.5, and 0.017, respectively. The sensitivities
are optimal at EJ

h̄
t = π . Here, N = 2500 and δ2

E2
J

= 0.007.

demonstrated in [6], where a state with ξ 2 	 0.6 for N 	 2200
particles was prepared.

VI. COMPARISON WITH OTHER
INTERFEROMETRIC SETUPS

The possibility of using cold or degenerate atoms for the
measurement of forces at small distances has led to a number of
proposals and experiments [10,11,29–32]. In [10], the second
derivative of the Casimir-Polder potential was deduced from
the shift of the frequency of the collective oscillations of a
BEC in a trap put below a surface. We note that, differently
from [10], the RI provides the value of δ, which is related to
the first spatial derivative of the perturbing potential. On the
theoretical side, Refs. [29] propose to estimate the strength
of the interaction between the atoms and a surface using the
frequency shift of Bloch oscillations of a cold fermionic or
bosonic gas in a vertical optical lattice. An important aspect of
this proposal is the scaling of the sensitivity �δ ∼ t−1 with the
oscillation time t . The RI does not benefit from time scaling for
the typical experimental times. However, the phase estimation
with the RI has two important advantages with respect to
those proposals. First, the perturbing potential is deduced
from the measurement of the population imbalance, not from

the interference pattern of an atomic cloud released from the
optical lattice [29,30]. Counting atoms in dilute samples by
making use of resonant light beams is a promising technique
[5,6] and is expected to reach a very high signal-to-noise ratio.
Moreover, differently from the Bloch oscillation proposal,
the sensitivity of the RI can be quantum enhanced by the
use of proper particle-entangled states. As shown, the phase
sensitivity �δ ∼ N−β scales at the shot noise β = 1/2 for the
CSS and can be further increased to 1/2 < β � 1 for spin
squeezed states.

The MZI, in contrast, has two important advantages with
respect to the RI: the wells can be separated to be far apart
and the sensitivity scales with the inverse of time. Here we
compare the sensitivity of the RI and the MZI fed with the
CSS. When δ2

E2
J

� 1, the difference between the sensitivity of

the MZI and that of the RI grows in time [33]. The smallest
difference is �δ = π

2 �δMZI, obtained at the the first optimal
time (60 ms for δ/h̄ = 4.4 s−1 and EJ /h̄ = 52.3 s−1). On the
contrary, the implementation of the MZI, which is composed
of two balanced beam splitters, requires careful manipulation
of the double-well potential [4–6]. As a key advantage, the
realization of the RI does not require any coherent splitting
or recombination of the atomic cloud and might therefore be
easier to implement than the MZI.

VII. CONCLUSIONS

We have shown that a degenerate bosonic or fermionic gas
in a double-well potential can constitute a sensitive device for
measuring short-range interactions, such as the Casimir-Polder
force. We have demonstrated that, when the RI is fed with a
classical spin coherent state with a moderate number of atoms,
the Casimir-Polder force can be measured with a precision
sufficient to distinguish between its thermal and its quantum,
zero-temperature regime. Our predictions include possible
sources of noise, as imperfect detection and residual atomic
interaction, and optimization of the population imbalance
measurement.
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