Abstract : This paper presents a type theory in which it is possible to directly manipulate n-dimensional cubes (points, lines, squares, cubes, etc.) based on an interpretation of dependent type theory in a cubical set model. This enables new ways to reason about identity types, for instance, function extensionality is directly provable in the system. Further, Voevodsky's univalence axiom is provable in this system. We also explain an extension with some higher inductive types like the circle and propositional truncation. Finally we provide semantics for this cubical type theory in a constructive meta-theory.
https://hal.inria.fr/hal-01378906
Contributeur : Cyril Cohen
<>
Soumis le : mardi 17 avril 2018 - 13:45:31
Dernière modification le : mercredi 10 octobre 2018 - 10:08:55
Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg. Cubical Type Theory: a constructive interpretation of the univalence axiom. 21st International Conference on Types for Proofs and Programs, May 2015, Tallinn, Estonia. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, pp.262, 2018, 21st International Conference on Types for Proofs and Programs. 〈http://drops.dagstuhl.de/opus/volltexte/2018/8475〉. 〈10.4230/LIPIcs.TYPES.2015.5〉. 〈hal-01378906v2〉