Cubical Type Theory: a constructive interpretation of the univalence axiom - INRIA - Institut National de Recherche en Informatique et en Automatique Access content directly
Preprints, Working Papers, ... Year : 2016

Cubical Type Theory: a constructive interpretation of the univalence axiom

Abstract

This paper presents a type theory in which it is possible to directly manipulate n-dimensional cubes (points, lines, squares, cubes, etc.) based on an interpretation of dependent type theory in a cubical set model. This enables new ways to reason about identity types, for instance, function extensionality is directly provable in the system. Further, Voevodsky's univalence axiom is provable in this system. We also explain an extension with some higher inductive types like the circle and propositional truncation. Finally we provide semantics for this cubical type theory in a constructive meta-theory.
Fichier principal
Vignette du fichier
cubicaltt.pdf (672.48 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01378906 , version 1 (11-10-2016)
hal-01378906 , version 2 (17-04-2018)

Identifiers

  • HAL Id : hal-01378906 , version 1

Cite

Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg. Cubical Type Theory: a constructive interpretation of the univalence axiom. 2016. ⟨hal-01378906v1⟩
1477 View
1946 Download

Share

Gmail Facebook X LinkedIn More