Multipass cells: 1D numerical model and investigation of spatio-spectral couplings at high nonlinearity - Archive ouverte HAL Access content directly
Journal Articles Journal of the Optical Society of America B Year : 2020

Multipass cells: 1D numerical model and investigation of spatio-spectral couplings at high nonlinearity

(1) , (2) , (3) , (1) , (3) , (1) , (1)
1
2
3
Florent Guichard
  • Function : Author
  • PersonId : 938240
Xavier Delen
Fabien Quere
  • Function : Author
  • PersonId : 855546
Marc Hanna
Patrick Georges

Abstract

Multipass cells (MPCs) are used nowadays as nonlinear tools to perform spectral broadening and temporal manipulation of laser pulses while maintaining a good spatial quality and spatio-spectral homogeneity. However, intensive 3D nonlinear spatio-temporal simulations are required to fully capture the physics associated with pulse propagation inside these systems. In addition, the limitations of such a scheme are still under investigation. In this study, we first establish a 1D model as a useful design tool to predict the temporal and spectral properties of the output pulse for nearly Gaussian beams, in a wide range of cavity configurations and nonlinearity levels. This model allows us to drastically reduce the computation time associated with MPC design. The validity of the 1D model is first checked by comparing it to 3D simulations. The results of the 1D model are then compared with experimental data collected from a near-concentric gas-filled multipass cell presenting a high level of nonlinearity, enabling the observation of wave breaking. In a second part, we experimentally characterize the spatio-spectral profile at the output of this experimental setup, both with an imaging spectrometer and with a complete 3D characterization method known as INSIGHT. The results show that gas-filled multipass cells can be used at peak power levels close to the critical power without inducing significant spatio-spectral couplings in intensity or phase.
Fichier principal
Vignette du fichier
JOSAB2020_1D_revised_final.pdf (1.52 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02566460 , version 1 (13-05-2020)

Identifiers

Cite

Nour Daher, Florent Guichard, Spencer W. Jolly, Xavier Delen, Fabien Quere, et al.. Multipass cells: 1D numerical model and investigation of spatio-spectral couplings at high nonlinearity. Journal of the Optical Society of America B, 2020, 37 (4), pp.993-999. ⟨10.1364/JOSAB.386049⟩. ⟨hal-02566460⟩
105 View
315 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More