Elastic Scattering Time of Matter-Waves in Disordered Potentials
Abstract
We report on an extensive study of the elastic scattering time τs of matter-waves in optical disordered potentials. Using direct experimental measurements, numerical simulations and comparison with first-order Born approximation based on the knowledge of the disorder properties, we explore the behavior of τs over more than three orders of magnitude, spanning from the weak to the strong scattering regime. We study in detail the location of the crossover and, as a main result, we reveal the strong influence of the disorder statistics, especially on the relevance of the widely used Ioffe-Regel-like criterion kls ∼ 1. While it is found to be relevant for Gaussian-distributed disordered potentials, we observe significant deviations for laser speckle disorders that are commonly used with ultracold atoms. Our results are crucial for connecting experimental investigation of complex transport phenomena, such as Anderson localization, to microscopic theories.
Origin | Files produced by the author(s) |
---|
Loading...