Anisotropic Thermal Magnetoresistance for an Active Control of Radiative Heat Transfer - Institut d'Optique Graduate School Access content directly
Journal Articles ACS photonics Year : 2018

Anisotropic Thermal Magnetoresistance for an Active Control of Radiative Heat Transfer

Abstract

We predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb spherical particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic field of 5 T, which is many orders of magnitude larger than its spintronic analogue in electronic devices. This thermomagnetic effect could find broad applications in the fields of ultrafast thermal management as well as magnetic and thermal remote sensing.

Dates and versions

hal-01690492 , version 1 (23-01-2018)

Identifiers

Cite

Ricardo Abraham Ekeroth, Philippe Ben-Abdallah, Juan Carlos Cuevas, Antonio García-Martín. Anisotropic Thermal Magnetoresistance for an Active Control of Radiative Heat Transfer. ACS photonics, 2018, ⟨10.1021/acsphotonics.7b01223⟩. ⟨hal-01690492⟩
116 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More