Investigation of the separate optical nonlinear contributions of the core and cladding materials of silicon photonics slotted waveguides (Poster) - Institut d'Optique Graduate School
Conference Papers Year : 2014

Investigation of the separate optical nonlinear contributions of the core and cladding materials of silicon photonics slotted waveguides (Poster)

Weiwei Zhang
  • Function : Author
  • PersonId : 1010210
Nicolas Dubreuil
Eric Cassan

Abstract

nonlinear properties of slotted silicon photonic waveguides filled with third-order nonlinear materials (NM, DDMEBT polymer) are quantitatively studied by separately calculating the effective nonlinearity susceptibilities associated to the silicon and cladding material, respectively. Optimization of the silicon slotted waveguide geometry is performed and focused on the optimization of optical power confinement in the high FOMTPA cladding material and of Aeff(NM)/Aeff(Si). The simulated nonlinear wave evolution results show the importance of properly choosing the silicon rail and slot widths in order to minimize the influence of the two-absorption process and associated free carrier effects (free carrier absorption, free carrier refraction).
No file

Dates and versions

hal-01685600 , version 1 (16-01-2018)

Identifiers

Cite

Weiwei Zhang, Samuel Serna, Nicolas Dubreuil, Eric Cassan. Investigation of the separate optical nonlinear contributions of the core and cladding materials of silicon photonics slotted waveguides (Poster). SPIE Photonics Europe, Nonlinear Optics and Its Applications VIII; and Quantum Optics III, Apr 2014, Brussels, Belgium. pp.91361I ⟨10.1117/12.2051886⟩. ⟨hal-01685600⟩
80 View
0 Download

Altmetric

Share

More