Broad working bandwidth and " endlessly " single-mode guidance within hybrid silicon photonics
Abstract
The successes of nonlinear photonics and hybrid silicon photonics with a growing variety of functional materials entail ever-enlarging bandwidths. It is best exemplified by parametric comb frequency generation. Such operation challenges the dielectric channel waveguide as the basis for guidance, because of the adverse advent of higher order modes at short wavelengths. Surprisingly, the popular mechanism of endlessly single-mode guidance [Opt. Lett. 22, 961 (1997).] operating in photonic crystal fibers has not been transposed within silicon photonics yet. We outline here the strategy and potential of this approach within planar and hybrid silicon photonics, whereby in-plane and vertical confinement are shown to be amenable to near-single-mode behavior in the typical silicon band, i.e., λ 1.1 μm to ~5 μm.
Domains
Optics [physics.optics]Origin | Files produced by the author(s) |
---|
Loading...