Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera - Institut d'Optique Graduate School
Journal Articles Optics Letters Year : 2014

Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera

Abstract

Full-field optical coherence microscopy is an established optical technology based on low-coherence interference microscopy for high-resolution imaging of semitransparent samples. In this Letter, we demonstrate an extension of the technique using a visible to short-wavelength infrared camera and a halogen lamp to image in three distinct bands centered at 635, 870, and 1170 nm. Reflective microscope objectives are employed to minimize chromatic aberrations of the imaging system operating over a spectral range extending from 530 to 1700 nm. Constant 1.9-μm axial resolution (measured in air) is achieved in each of the three bands. A dynamic dispersion compensation system is set up to preserve the axial resolution when the imaging depth is varied. The images can be analyzed in the conventional RGB color channels representation to generate three-dimensional images with enhanced contrast. The capability of the system is illustrated by imaging different samples.
Fichier principal
Vignette du fichier
Optics_Letters_2014_Three_band._.pdf (341.33 Ko) Télécharger le fichier
Origin Explicit agreement for this submission
Loading...

Dates and versions

hal-00956323 , version 1 (07-03-2014)

Identifiers

Cite

Antoine Federici, Arnaud Dubois. Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera. Optics Letters, 2014, 39 (6), pp.1374-1377. ⟨10.1364/OL.39.001374⟩. ⟨hal-00956323⟩
113 View
275 Download

Altmetric

Share

More