Modal conversion with artificial materials for photonic-crystal waveguides
Abstract
We study adiabatic mode transformations in photonic-crystal integrated circuits composed of a triangular lattice of holes etched into a planar waveguide. The taper relies on the manufacture of holes with progressively-varying dimensions. The variation synthesizes an artificial material with a gradient effective index. Calculations performed with a three-dimensional exact electromagnetic theory yield high transmission over a wide frequency range. To evidence the practical interest of the approach, a mode transformer with a length as small as λ/2 is shown to provide a spectral-averaged transmission efficiency of 92% for tapering between a ridge waveguide and a photonic crystal waveguide with a one-row defect.
Domains
Optics [physics.optics]Origin | Publisher files allowed on an open archive |
---|