Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae

Abstract : The functions of caveolae, the characteristic plasma membrane invaginations, remain debated. Their abundance in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by osmotic swelling or by uniaxial stretching results in a rapid disappearance of caveolae, in a reduced caveolin/Cavin1 interaction, and in an increase of free caveolins at the plasma membrane. Tether-pulling force measurements in cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin-and ATP-independent cell response that buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin-and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that quickly accommodates sudden and acute mechanical stresses.
Type de document :
Article dans une revue
Cell, Elsevier, 2011, 144 (3), pp.402-413. 〈10.1016/j.cell.2010.12.031〉
Liste complète des métadonnées

Contributeur : Pierre Nassoy <>
Soumis le : jeudi 9 mai 2013 - 10:43:11
Dernière modification le : mardi 16 janvier 2018 - 17:56:01




Bidisha Sinha, Darius Koester, Richard Ruez, Pauline Gonnord, Michele Bastiani, et al.. Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae. Cell, Elsevier, 2011, 144 (3), pp.402-413. 〈10.1016/j.cell.2010.12.031〉. 〈hal-00821331〉



Consultations de la notice