Photonic crystal patterning of luminescent sol-gel films for light extraction
Abstract
Structured luminescent thin films are investigated in the context of improved light extraction of phosphors for solid-state-lighting applications. Thin films composed of a sol-gel titania matrix doped with europium chelates are studied as a model system. These films, patterned with a square photonic lattice by soft nanoimprint lithography, are characterized by angle-resolved fluorescence. Modeling of this simple technique is shown to fit well the experimental data, revealing in great detail the guided modes of the film and their extraction parameters. An eightfold extraction enhancement factor of the film emission is measured. To further improve the extraction efficiency, we investigate the role of an additional low-index mesoporous silica underlayer through its influence on the guided modes of different polarizations and their interactions with the photonic crystal. Results obtained on model systems open the way towards the optimization of light-emitting devices, using a strategy of dielectric microstructure engineering using the sol-gel process.
Origin | Files produced by the author(s) |
---|