Hybridization of electromagnetic numerical methods through the G-matrix algorithm

Jean-Paul Hugonin 1 Mondher Besbes 1 Philippe Lalanne 1
1 Laboratoire Charles Fabry de l'Institut d'Optique / Naphel
LCFIO - Laboratoire Charles Fabry de l'Institut d'Optique
Abstract : For the sake of numerical performance, we hybridize two common approaches often used in electromagnetic computations, namely the finite-element method and the aperiodic Fourier modal method. To that end, we propose an extension of the classical S-matrix formalism to numerical situations, which requires handling different mathematical representations of the electromagnetic fields. As shown with a three dimensional example, the proposed G-matrix formalism is stable and allows for an enhanced performance in terms of numerical accuracy and efficiency.
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal-iogs.archives-ouvertes.fr/hal-00566654
Contributor : Christophe Sauvan <>
Submitted on : Thursday, April 5, 2012 - 3:15:59 PM
Last modification on : Wednesday, January 31, 2018 - 3:04:01 PM
Long-term archiving on : Tuesday, December 13, 2016 - 5:58:41 PM

File

00566654.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : hal-00566654, version 1

Collections

Citation

Jean-Paul Hugonin, Mondher Besbes, Philippe Lalanne. Hybridization of electromagnetic numerical methods through the G-matrix algorithm. Optics Letters, Optical Society of America, 2008, 33 (14), pp.1590-1592. ⟨hal-00566654⟩

Share

Metrics

Record views

298

Files downloads

240