Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space

Abstract : Proving the unconditional security of quantum key distribution (QKD) is a highly challenging task as one needs to determine the most efficient attack compatible with experimental data. This task is even more demanding for continuous-variable QKD as the Hilbert space where the protocol is described is infinite dimensional. A possible strategy to address this problem is to make an extensive use of the symmetries of the protocol. In this paper, we investigate a rotation symmetry in phase space that is particularly relevant to continuous-variable QKD, and explore the way towards a new quantum de Finetti theorem that would exploit this symmetry and provide a powerful tool to assess the security of continuous-variable protocols. As a first step, a single-party asymptotic version of this quantum de Finetti theorem in phase space is derived.
Type de document :
Article dans une revue
New Journal of Physics, Institute of Physics: Open Access Journals, 2009, 11, pp.115009. 〈10.1088/1367-2630/11/11/115009〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal-iogs.archives-ouvertes.fr/hal-00554926
Contributeur : Philippe Grangier <>
Soumis le : jeudi 31 mars 2016 - 16:34:45
Dernière modification le : jeudi 11 janvier 2018 - 06:26:09
Document(s) archivé(s) le : vendredi 1 juillet 2016 - 14:13:16

Fichier

00554926.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Anthony Leverrier, E. Karpov, Philippe Grangier, Nicolas Cerf. Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space. New Journal of Physics, Institute of Physics: Open Access Journals, 2009, 11, pp.115009. 〈10.1088/1367-2630/11/11/115009〉. 〈hal-00554926〉

Partager

Métriques

Consultations de la notice

224

Téléchargements de fichiers

37