Impact of the transport of magnetospheric electrons on the composition of the Triton atmosphere - Université de Bordeaux Accéder directement au contenu
Article Dans Une Revue Astronomy and Astrophysics - A&A Année : 2024

Impact of the transport of magnetospheric electrons on the composition of the Triton atmosphere

Résumé

Context: Due to its inclined orbit and the complex geometry of the magnetic field of Neptune, Triton experiences a highly variable magnetic environment. As precipitation of magnetospheric electrons is thought to have a large impact on the Triton atmosphere, a better understanding of the interaction between its atmosphere and the magnetosphere of Neptune is important. Aims: We aim to couple a model of the Triton atmosphere with an electron transport model to compute the impact of a varying electron precipitation on the atmospheric composition. Methods: We coupled a recent photochemical model of the Triton atmosphere with the electron transport model TRANSPlanets. The inputs of this code were determined from Voyager 2 observations and previous studies. The main inputs were the electron precipitation flux, the orbital scaling factor, and the magnetic field strength. The electron-impact ionization and electron-impact dissociation rates computed by TRANSPlanets were then used in the photochemical model. We also analyzed the model uncertainties. Results: The coupling of the two models enabled us to find an electron density profile, as well as N 2 and N number densities, that are consistent with the Voyager 2 observations. We found that photoionization and electron-impact ionization are of the same order, in contrast to the results of previous photochemical models. However, we emphasize that this result depends on the hypotheses we used to determine the input variables of TRANSPlanets. Our model would greatly benefit from new measurements of the magnetic environment of Triton, as well as of the electron fluxes in the Neptune magnetosphere.
Fichier principal
Vignette du fichier
Benne2024.pdf (22.15 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04659943 , version 1 (23-07-2024)

Identifiants

Citer

B. Benne, B. Benmahi, Michel Dobrijevic, Thibaut Cavalié, Jean-Christophe Loison, et al.. Impact of the transport of magnetospheric electrons on the composition of the Triton atmosphere. Astronomy and Astrophysics - A&A, 2024, 686, pp.A22. ⟨10.1051/0004-6361/202346699⟩. ⟨hal-04659943⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More