Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus - Biology of Genomes Access content directly
Journal Articles Genome Research Year : 2016

Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus

Nikolaos Vakirlis
  • Function : Author
  • PersonId : 983538
Alessandra Carbone
Ingrid Lafontaine

Abstract

Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements , and protein divergence into a single evolutionary framework.

Domains

Genetics
Fichier principal
Vignette du fichier
Vakirlis_2016_Reconstruction_of.pdf (1.44 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01331620 , version 1 (14-06-2016)

Licence

Identifiers

Cite

Nikolaos Vakirlis, Véronique Sarilar, Guénola Drillon, Aubin Fleiss, Nicolas Agier, et al.. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus. Genome Research, 2016, 26 (7), pp.918-932. ⟨10.1101/gr.204420.116⟩. ⟨hal-01331620⟩
681 View
189 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More