A Fine-Grained Dynamic Partitioning Against Cache-Based Timing Attacks via Cache Locking
Abstract
Cache-based timing side-channel attacks are prevalent and correspond to a security threat for both high-end and embedded processors. In this paper, we propose and implement a fine-grained dynamic partitioning countermeasure relying on a hardware-software collaboration. The proposed approach extends the RISC-V Instruction Set Architecture (ISA) with lock and unlock instructions to allow a program to explicitly lock cache lines in the data cache memory, ensuring constant-time accesses. Experimental results show that the proposed solution defeats contention-based cache side-channel attacks such as PRIME+PROBE and leads to a low area overhead (<3%), a low impact on binary code size (<0.3%) and a low impact on miss rate (<2%).
Fichier principal
2024___ISVLSI___A_Fine_Grained_Dynamic_Partitioning_Against_Cache_based_Timing_Attacks_via_Cache_Locking-2.pdf (565.72 Ko)
Télécharger le fichier
Origin | Files produced by the author(s) |
---|