Bad smells in reviewers' reports? Text-mining the MDPI Open Peer Review Corpus - Gestion des Données Access content directly
Preprints, Working Papers, ... (Preprint) Year : 2023

Bad smells in reviewers' reports? Text-mining the MDPI Open Peer Review Corpus

Abstract

Malpractice affecting the reviewing process is detrimental to science. We introduce methods to reveal evidence of peer review manipulation, such as template usage, citation manipulations or botched and meaningless reviewer reports. We apply and evaluate these methods on a corpus of reports.
Fichier principal
Vignette du fichier
WCRI2024-MDPI.pdf (125.99 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
licence : CC BY - Attribution

Dates and versions

hal-04311568 , version 1 (28-11-2023)

Licence

Attribution

Identifiers

  • HAL Id : hal-04311568 , version 1

Cite

Gilles Hubert, Guillaume Cabanac, Cyril Labbé. Bad smells in reviewers' reports? Text-mining the MDPI Open Peer Review Corpus. 2023. ⟨hal-04311568⟩
75 View
37 Download

Share

Gmail Facebook X LinkedIn More