Roto-translation Equivariant YOLO for Aerial Images - Morphologie mathématique (CMM) Access content directly
Conference Papers Year : 2023

Roto-translation Equivariant YOLO for Aerial Images

Abstract

This work introduces Eq-YOLO, an Equivariant One-Stage Object Detector based on YOLO-v8 incorporating group convolutions to handle rotational transformations. We show the interest of using equivariant-transforms to improve the detection performance on rotated data over the regular YOLO-v8 model while dividing the number of parameters to train by a factor greater than three.
Fichier principal
Vignette du fichier
NeurReps_2023_Review.pdf (1.19 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-04300007 , version 1 (22-11-2023)

Identifiers

  • HAL Id : hal-04300007 , version 1

Cite

Benjamin Maurel, Samy Blusseau, Santiago Velasco-Forero, Teodora Petrisor. Roto-translation Equivariant YOLO for Aerial Images. NeurIPS workshop on Symmetry and Geometry in Neural Representations, Dec 2023, New-Orleans, Louisiana, United States. ⟨hal-04300007⟩
134 View
105 Download

Share

Gmail Facebook X LinkedIn More