Convergence of quantum and classical communications - Département Communications et Electronique Access content directly
Theses Year : 2022

Convergence of quantum and classical communications

Convergence des communications quantiques et classiques

Abstract

Quantum key distribution (QKD) protocols harness fundamental quantum properties of the light to construct communication channels sensitive to eavesdropping. In order to develop the technology at large scale, one of the main challenges to overcome is the deployment cost of such systems. A significant step towards reducing deployment costs would be to use the existing optical fiber infrastructure to perform QKD, since this would relax the need to use dark (and expensive !) fiber. However this also means we must insure QKD protocols can coexist with classical communications, which can be challenging as quantum states are very sensitive to perturbations. Here, we focus particularly on continuous-variable (CV) QKD because their natural proximity to classical coherent communication systems indicates that they are good candidates for coexistence over the same fiber. Assuming CV-QKD is destined to be incorporated in classical communication links, an interesting question is whether the coexistence with classical channels will necessarily be detrimental to the CV-QKD protocol. We show that in some cases, coexistence can actually provide an advantage to the CV-QKD protocol. In a first project, we experimentally demonstrate that a classical channel can be used as a pilot signal for the quantum channel. Thus, the need for pilot-tones, mandatory in a typical CV-QKD protocol, can be relaxed. In a second project, we show that the noise generated by classical channels can be used to ”hide” the quantum signal. The quantum communication therefore can become covert thanks to the classical channels. Covert QKD protocols are interesting because they provide extreme security guarantees. We investigate the necessary conditions for covert CV-QKD as well as scenarios for its deployment in a practical setting
Les protocoles de distribution de clé quantique (QKD) permettent de construire des canaux de communications sensibles à l’espionnage grâce aux propriétés quantiques fondamentales de la lumière. L’un des principaux défis à surpasser pour déployer de tels protocoles à grande échelle est le coût de déploiement de la technologie. Une solution attrayante en ce sens serait d’exploiter l’infrastructure de fibre optique déjà existante pour exécuter mettre en oeuvre de tels protocoles. Cela implique cependant de faire coexister des signaux quantiques avec des signaux telecoms classiques, ce qui peut être un défi de part la sensibilité des états quantiques aux perturbations. Ici, nous nous intéressons plus particulièrement aux protocoles de distribution de clé quantique à variables continues (CV-QKD), car leur proximité avec les communications cohérentes classiques indiquent qu’ils sont de bons candidats pour coexister sur une même fibre. En partant du principe que les protocoles CV-QKD sont destinés, à terme, à être déployés de manière conjointe avec des protocoles de communication classique, la question qui se pose est la suivante. Cette coexistence avec des signaux classiques est-elle forcément un désavantage pour la CV-QKD ? Nous montrons qu’en construisant de façon conjointe des protocoles de communication quantique et classique, alors la coexistence peut présenter des avantages exploitables pour la CV-QKD. Dans un premier travail, nous démontrons expérimentalement que le signal classique peut servir de signal pilote au signal quantique, ce qui permet notamment de s’affranchir de signaux pilotes auxiliaires généralement nécessaires en CV-QKD. Dans un second travail, nous montrons que le bruit généré par des canaux classiques peut servir à dissimuler le signal quantique. La communication quantique peut alors être réalisée de façon indétectable, ou « covert », ce qui, combiné à un échange de clé par QKD permet d’envisager des garanties de sécurité extrêmement élevées. Nous analysons les conditions nécessaires, à la faisabilité du déploiement covert de la CV-QKD.
Fichier principal
Vignette du fichier
102526_AYMERIC_2022_archivage.pdf (4.7 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03919212 , version 1 (02-01-2023)

Identifiers

  • HAL Id : tel-03919212 , version 1

Cite

Raphaël Aymeric. Convergence of quantum and classical communications. Networking and Internet Architecture [cs.NI]. Institut Polytechnique de Paris, 2022. English. ⟨NNT : 2022IPPAT033⟩. ⟨tel-03919212⟩
188 View
130 Download

Share

Gmail Facebook X LinkedIn More