(Adversarial) Electromagnetic Disturbance in the Industry - Département Communications et Electronique Access content directly
Journal Articles IEEE Transactions on Computers Year : 2023

(Adversarial) Electromagnetic Disturbance in the Industry


Faults occur naturally and are responsible for reliability concerns. Faults are also an interesting tool for attackers to extract sensitive information from secure chips. In particular, non-invasive fault attacks have received a fair amount of attention. One easy way to perturb a chip without altering it is the so-called Electromagnetic Fault Injection (EMFI). Such attack has been studied in great depth, and nowadays, it is part and parcel of the state-of-the-art. Indeed, new capabilities have emerged where EM experimental benches are used to cryptanalyze chips. The progress of this "field" is fast, in terms of reproducibility, accuracy, and number of use-cases. However, there is too little awareness about such advances. In this paper, we aim to expose the true harmfulness of EMFI (including reproducibility) to enable reasonable security quotations. We also analyze protections (at hardware/firmware/system levels) in light of their efficiency. We characterize the specificity of EM fault injection compared to other injection means (laser, glitch, probing).
Fichier principal
Vignette du fichier
IEEE_TC22_FDTC21.pdf (5.31 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03874307 , version 1 (27-11-2022)



Arthur Beckers, Sylvain Guilley, Philippe Maurine, Colin O'Flynn, Stjepan Picek. (Adversarial) Electromagnetic Disturbance in the Industry. IEEE Transactions on Computers, 2023, 72 (2), pp.414-422. ⟨10.1109/TC.2022.3224373⟩. ⟨hal-03874307⟩
100 View
194 Download



Gmail Facebook X LinkedIn More