T. H. Maiman, Stimulated optical radiation in ruby, Nature, vol.187, p.493, 1960.

F. Brech and L. Cross, Optical microemission stimulated by a ruby maser, Appl. Spectrosc, vol.16, p.59, 1962.

R. E. Honig and J. R. Woolston, Laser induced emission of electrons, ions, and neutral atoms from solid surfaces, Appl. Phys. Lett, vol.2, pp.138-139, 1963.

R. C. Rosan, M. K. Healy, and W. F. Mcnary, Spectroscopic ultramicroanalysis with a laser, Science, vol.142, pp.236-237, 1963.

J. R. Nall and J. W. Lathrop, Photolithographic fabrication techniques for transistors which are an integral part of a printed circuit, IEEE Trans. Electron. Dev, vol.5, p.117, 1958.

J. C. Miller, Laser Ablation: Principles and Applications, vol.26, 1994.

, A contribution to the theory of the microscope and the nature of microscopic vision, Proceedings of the Bristol Naturalists' Society, vol.1, pp.200-261, 1876.

L. Rayleigh, Investigations in optics, with special reference to the spectroscope, Philos. Mag, vol.8, pp.261-274, 1879.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du et al., Machining of sub-micron holes using a femtosecond laser at 800 nm, Opt. Commun, vol.114, pp.106-110, 1995.

S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Lieberman et al., Nanostructuring with spatially localized femtosecond laser pulses, Opt. Lett, vol.24, pp.914-916, 1999.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Optics at critical intensity: applications to nanomorphing, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.5856-5861, 2004.

Y. V. White, X. Li, Z. Sikorski, L. M. Davis, and W. Hofmeister, Single-pulse ultrafast-laser machining of high aspect nanoholes at the surface of SiO 2, Opt. Express, vol.16, pp.14413-14420, 2008.

M. K. Bhuyan, F. Courvoisier, and P. A. Lacourt, High aspect ratio nanochannel machining using single shot femtosecond Bessel beams, Appl. Phys. Lett, vol.97, p.8110, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00517173

P. Simon and J. Ihlemann, Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulse, Appl. Phys. A Mater. Sci. Process, vol.63, pp.505-508, 1996.

J. B. Pelka, R. Sobierajski, and D. Klinger, Damage in solids irradiated by a single shot of XUV free-electron laser: irreversible changes investigated using X-ray microdiffraction, atomic force microscopy and Nomarski optical microscopy, Radiat. Phys. Chem, vol.78, pp.46-52, 2009.

K. Sakaue, H. Motoyama, and R. Hayashi, Surface processing of PMMA and metal nano-particle resist by sub-micrometer focusing of coherent extreme ultraviolet high-order harmonics pulses, Opt. Lett, vol.45, pp.2926-2929, 2020.

A. Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy, J. Appl. Phys, vol.97, p.104319, 2005.

Y. N. Kulchin, O. B. Vitrik, and A. A. Kuchmizhak, Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe, Opt. Lett, vol.38, pp.1452-1454, 2013.

D. S. Ivanov, A. I. Kuznetsov, and V. P. Lipp, Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment, Appl. Phys. A Mater. Sci. Process, vol.111, pp.675-687, 2013.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, Laser micro/nano patterning of hydrophobic surface by contact particle lens array, Appl. Surf. Sci, vol.258, pp.774-779, 2011.

J. H. Klein-wiele and P. Simon, Sub-wavelength pattern generation by laser direct writing via repeated irradiation, Opt. Express, vol.21, pp.626-630, 2013.

M. Garcia-lechuga, D. Puerto, Y. Fuentes-edfuf, J. Solis, and J. Siegel, Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures, ACS Photonics, vol.3, pp.1961-1967, 2016.

C. S. Nathala, A. Ajami, and A. A. Ionin, Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium, Opt. Express, vol.23, pp.5915-5929, 2015.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett, vol.73, pp.1673-1675, 1998.

A. Papadopoulos, E. Skoulas, and A. Mimidis, Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring, Adv. Mater, vol.31, p.1901123, 2019.

A. Y. Vorobyev and C. Guo, Femtosecond laser nanostructuring of metals, Opt. Express, vol.14, pp.2164-2169, 2006.

Y. Shimotsuma, P. G. Kazansky, L. Qiu, and K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses, Phys. Rev. Lett, vol.91, p.247405, 2003.

Y. Liao, Y. Cheng, and C. Liu, Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration, Lab Chip, vol.13, pp.1626-1631, 2013.

P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier et al., Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring, vol.2, pp.230-244, 2016.
URL : https://hal.archives-ouvertes.fr/ujm-01346653

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, Ultrafast laser nanostructuring of photopolymers: a decade of advances, Phys. Rep, vol.533, pp.1-31, 2013.

C. Doñate-buendía, M. Fernández-alonso, J. Lancis, and G. Mínguez-vega, Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing, Photonics Res, vol.7, pp.1249-1257, 2019.

N. Shen, D. Datta, C. B. Schaffer, P. Leduc, D. E. Ingber et al., Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanoscissor, Mol. Cell. Biomech, vol.2, pp.17-25, 2005.

C. T. Brown, D. J. Stevenson, and X. Tsampoula, Enhanced operation of femtosecond lasers and applications in cell transfection, J. Biophotonics, vol.3, pp.183-199, 2008.

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-tudoran et al., Control of ionization processes in high band gap materials via tailored femtosecond pulses, Opt. Express, vol.15, pp.17855-17862, 2007.

D. Bäuerle, Laser Processing and Chemistry, 2011.

R. Weber, T. Graf, and P. Berger, Heat accumulation during pulsed laser materials processing, Opt. Express, vol.22, pp.11312-11324, 2014.

R. L. Harzic, N. Huot, and E. Audouard, Comparison of heataffected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy, Appl. Phys. Lett, vol.80, pp.3886-3888, 2002.

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, Nanostructuring of thin gold films by femtosecond lasers, Appl. Phys. A Mater. Sci. Process, vol.94, pp.221-230, 2009.

Y. P. Meshcheryakov and N. M. Bulgakova, Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation, Appl. Phys. A Mater. Sci. Process, vol.82, pp.363-368, 2006.

Q. Li, D. Grojo, A. P. Alloncle, B. Chichkov, and P. Delaporte, Digital laser micro-and nanoprinting, Nanophotonics, vol.8, pp.27-44, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02323057

T. E. Itina, On nanoparticle formation by laser ablation in liquids, J. Phys. Chem. C, vol.115, pp.5044-5048, 2010.
URL : https://hal.archives-ouvertes.fr/ujm-00629037

H. Zeng, X. W. Du, and S. C. Singh, Nanomaterials via laser ablation/irradiation in liquid: a review, Adv. Funct. Mater, vol.22, pp.1333-1353, 2012.

D. Zhang, B. Gökce, and S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications, Chem. Rev, vol.117, pp.3990-4103, 2017.

M. Garcia-lechuga, O. Utéza, N. Sanner, and D. Grojo, Evidencing the nonlinearity independence of resolution in femtosecond laser ablation, Opt. Lett, vol.45, pp.952-955, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02490044

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. Campbell, Laser processing of sapphire with picosecond and sub-picosecond pulses, Appl. Surf. Sci, vol.120, pp.65-80, 1997.

A. Ródenas, M. Gu, and G. Corrielli, Three-dimensional femtosecond laser nanolithography of crystals, Nat. Photonics, vol.13, pp.105-109, 2019.

D. E. Grady, The spall strength of condensed matter, J. Mech. Phys. Solids, vol.36, pp.353-384, 1988.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues, Appl. Phys. B Laser Opt, vol.81, pp.1015-1047, 2005.

J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett, vol.85, pp.3966-3968, 2000.

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, 3D wire mesh photonic crystals, Phys. Rev. Lett, vol.76, pp.2480-2482, 1996.

V. G. Veselago, The electrodynamics of substances with simultaneously negative and ?, Sov. Phys. Usp, vol.10, pp.509-514, 1968.

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu et al., A Supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance, Adv. Mater, vol.29, p.1602721, 2017.

K. Mishchik, Y. Petit, E. Brasselet, A. Royon, T. Cardinal et al., Patterning linear and nonlinear optical properties of photosensitive glasses by femtosecond structured light, Opt. Lett, vol.40, pp.201-204, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01104961

R. Stoian and J. Colombier, Advances in ultrafast nanostructuring

I. , F. Casas, and W. Kautek, Subwavelength nanostructuring of gold films by apertureless scanning probe lithography assisted by a femtosecond fiber laser oscillator, Nanomaterials, vol.8, p.536, 2018.

F. Korte, S. Nolte, and B. N. Chichkov, Far-field and near-field material processing with femtosecond laser pulses, Appl. Phys. A Mater. Sci. Process, vol.69, pp.7-11, 1999.

X. Sedao, T. J. Derrien, G. R. Romer, B. Pathiraj, and A. J. , Large area laser surface micro/ nanopatterning by contact microsphere lens arrays, Appl. Phys. A Mater. Sci. Process, vol.111, pp.701-709, 2013.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses, Appl. Phys. Lett, vol.82, pp.2758-2760, 2003.

G. M. Burrow and T. K. Gaylord, Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures, Micromachines, vol.2, pp.221-257, 2011.

E. Betzig and J. K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction Limit, Science, vol.257, pp.189-195, 1992.

M. Terakawa, S. Takeda, and Y. Tanakaa, Enhanced localized near field and scattered far field for surface nanophotonics applications, Prog. Quant. Electr, vol.36, pp.194-271, 2012.

K. Piglmayer, R. Denk, and D. Bäuerle, Laser-induced surface patterning by means of microspheres, Appl. Phys. Lett, vol.80, pp.4693-4695, 2002.

D. Brodoceanu, L. Lanström, and D. Bäuerle, Laser-induced nanopatterning of silicon with colloidal monolayers, Appl. Phys. A, vol.86, pp.313-314, 2007.

N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obaraa, Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate, Appl. Phys. Lett, vol.90, p.123106, 2007.

F. Hubenthal, R. Morarescu, L. Englert, L. Haag, T. Baumert et al., Parallel generation of nanochannels in fused silica with a single femtosecond laser pulse: exploiting the optical near fields of triangular nanoparticles, Appl. Phys. Lett, vol.95, p.63101, 2009.

E. Mcleod and C. Arnold, Subwavelength direct-write nanopatterning using optically trapped microspheres, Nat. Nanotechnol, vol.3, pp.413-417, 2008.

Z. Wang, W. Guo, and L. Li, Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope, Nat. Commun, vol.2, p.218, 2011.

S. Lecler, S. Perrin, A. Leong-hoi, and P. Montgomery, Photonic jet lens, Sci. Rep, vol.9, p.4725, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02391266

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg et al., Optical field enhancement effects in laser-assisted particle removal, Appl. Phys. A Mater. Sci. Process, vol.72, pp.41-44, 2001.

K. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infraredfemtosecond laser pulses, Appl. Phys. Lett, vol.79, pp.1228-1230, 2001.

Z. Z. Li, L. Wang, and H. Fan, far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment, Light Sci. Appl, vol.9, p.41, 2020.

J. F. Young, J. S. Preston, H. M. Van-driel, and J. E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass, Phys. Rev. B, vol.27, pp.1155-1172, 1983.

J. Bonse and S. Gräf, Maxwell meets Marangoni-a review of theories on laser-induced periodic surface structures, Laser Photonics Rev, 2020.

M. Birnbaum, Semiconductor surface damage produced by ruby lasers, J. Appl. Phys, vol.36, pp.3688-3689, 1965.

R. Buividas, M. Mikutis, and S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances, Prog. Quant. Electr, vol.38, pp.119-156, 2014.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van-driel, Laserinduced periodic surface structure. I. Theory, Phys. Rev. B, vol.27, pp.1141-1154, 1983.

J. Bonse, A. Rosenfeld, and J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecondlaser pulses, J. Appl. Phys, vol.106, p.104910, 2009.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, Selforganized pattern formation upon femtosecond laser ablation by circularly polarized light, Appl. Surf. Sci, vol.252, pp.4702-4706, 2006.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, The laser polarization as control parameter in the formation of laser-induced periodic surface structures: comparison of numerical and experimental results, Appl. Surf. Sci, vol.257, pp.5465-5469, 2011.

M. Castro, R. Cuerno, L. Vázquez, and R. Gago, Self-organized ordering of nanostructures produced by ion-beam sputtering, Phys. Rev. Lett, vol.94, p.16102, 2005.

V. I. , Kuramoto-Sivashinsky equation for modulation of surface relief of molten layer and formation of surface periodic microstructures under pulsed laser irradiation of solids, Laser Phys, vol.21, pp.222-228, 2011.

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B, vol.237, pp.37-72, 1952.

G. D. Tsibidis, E. Skoulas, A. Papadopoulos, and E. Stratakis, Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers, Phys. Rev. B, vol.94, p.81305, 2016.

E. L. Gurevich, Y. Levy, S. V. Gurevich, and N. M. Bulgakova, Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser pulses on gold, Phys. Rev. B, vol.95, p.54305, 2017.

B. Öktem, I. Pavlov, and S. Ilday, Nonlinear laser lithography for indefinitely large area nanostructuring with femtosecond pulses, Nat. Photonics, vol.7, p.897, 2013.

I. Prigogine, Time, structure, and fluctuations, Science, vol.201, pp.777-785, 1978.

C. Brosseau and D. Bicout, Entropy production in multiple scattering of light by a spatially random medium, Phys. Rev. E, vol.50, p.4997, 1994.

I. Gnilitskyi, T. J. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek et al., High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity, Sci. Rep, vol.7, p.8485, 2017.

W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation, Appl. Phys. A Mater. Sci. Process, vol.115, pp.1451-1455, 2014.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser, ACS Nano, vol.3, p.4062, 2009.

L. Wang, X. W. Cao, and M. I. Abid, Nano-ablation of silica by plasmonic surface wave at low fluence, Opt. Lett, vol.42, pp.4446-4449, 2017.

J. L. Déziel, J. Dumont, D. Gagnon, L. J. Dubé, S. H. Messaddeq et al., Toward the formation of crossed laserinduced periodic surface structures, J. Opt, vol.17, p.75405, 2015.

A. Abou-saleh, E. T. Karim, and C. Maurice, Spallationinduced roughness promoting high spatial frequency nanostructure formation on Cr, Appl. Phys. Mater. Sci. Process, vol.124, p.308, 2018.
URL : https://hal.archives-ouvertes.fr/emse-02007596

R. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J. P. Colombier, Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves, Nanophotonics, vol.8, pp.459-465, 2019.
URL : https://hal.archives-ouvertes.fr/ujm-02003580

A. Rudenko, A. Abu-saleh, F. Pigeon, F. Garrelie, R. Stoian et al., High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited surfaces, Acta Mater, vol.194, pp.93-105, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02903177

A. M. Bonch-bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, Surface electromagnetic waves in optics, Opt. Eng, vol.31, pp.718-730, 1992.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, A microscopic view of the electromagnetic properties of sub-? metallic surfaces, Surf. Sci. Rep, vol.64, pp.453-469, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00570334

A. Y. Nikitin, S. G. Rodrigo, F. J. Garca-vidal, and L. Martn-moreno, In the diffraction shadow: norton waves versus surface plasmon polaritons in the optical region, New J. Phys, vol.11, p.123020, 2009.

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng et al., Coherence in ultrafast laser-induced periodic surface structures, Phys. Rev. B, vol.92, p.174109, 2015.
URL : https://hal.archives-ouvertes.fr/ujm-01260778

X. Sedao, A. Abou-saleh, and A. Rudenko, Self-arranged periodic nanovoids by ultrafast laser-induced near-field enhancement, ACS Photonics, vol.5, pp.1418-1426, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01814030

X. Sedao, M. V. Shugaev, and C. Wu, Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification, ACS Nano, vol.10, pp.6995-7007, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01567081

A. Abou-saleh, A. Rudenko, S. Reynaud, F. Pigeon, F. Garrelie et al., Sub-100 nm 2D nanopatterning on a large scale by ultrafast laser energy regulation, Nanoscale, vol.12, pp.6609-6616, 2020.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, Ultrafast processes for bulk modification of transparent materials, MRS Bull, vol.31, pp.620-625, 2006.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications, Prog. Mater. Sci, vol.76, pp.154-228, 2016.

R. Stoian, Volume photoinscription of glasses: threedimensional micro-and nanostructuring with ultrashort laser pulses, Appl. Phys. A, vol.126, p.438, 2020.
URL : https://hal.archives-ouvertes.fr/ujm-02624455

E. N. Glezer and E. Mazur, Ultrafast-laser driven microexplosions in transparent materials, Appl. Phys. Lett, vol.71, pp.882-884, 1997.

S. Juodkazis, K. Nishimura, and S. Tanaka, Laser-induced microexplosion in the bulk of a sapphire crystal: evidence of Mb pressures, Phys. Rev. Lett, vol.96, p.166101, 2006.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode et al., Evidence of superdense aluminium synthesized by ultrafast microexplosion, Nat. Commun, vol.2, p.445, 2011.

M. K. Bhuyan, M. Somayaji, A. Mermillod-blondin, F. Bourquard, J. P. Colombier et al., Ultrafast laser nanostructuring in bulk silica, a "slow" microexplosion, Optica, vol.4, pp.951-958, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01578041

L. Rapp, R. Meyer, and R. Giust, High aspect ratio microexplosions in the bulk of sapphire generated by femtosecond Bessel beams, Sci. Rep, vol.6, p.34286, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02134468

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin et al., Ultrafast nanoporous silica formation driven by femtosecond laser irradiation, Laser Photonics Rev, vol.7, pp.953-962, 2007.

L. Bressel, D. De-ligny, E. G. Gamaly, A. V. Rode, and S. Juodkazis, Observation of O 2 inside voids formed in GeO 2 glass by tightly-focused fs-laser pulses, Opt. Mater. Express, vol.1, pp.1150-1157, 2011.

K. Mishchik, C. D'amico, and P. K. Velpula, Ultrafast laser induced electronic and structural modifications in bulk fused silica, J. Appl. Phys, vol.213, p.133502, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00869169

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett, vol.21, pp.1729-1731, 1996.

R. Taylor, H. Hnatovsky, and E. Simova, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass, Laser Photonics Rev, vol.2, pp.26-46, 2008.

R. Buschlinger, S. Nolte, and U. Peschel, Self-organized pattern formation in laser-induced multiphoton ionization, Phys. Rev. B, vol.89, p.184306, 2014.

A. Rudenko, J. P. Colombier, and T. E. Itina, From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser, Phys. Rev. B, vol.93, p.75427, 2016.
URL : https://hal.archives-ouvertes.fr/ujm-01344280

R. Rudenko, J. P. Colombier, and S. Höhm, Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin, Sci. Rep, vol.7, p.12306, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01616533

G. Cheng, A. Rudenko, C. D'amico, T. E. Itina, J. P. Colombier et al., Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation, Appl. Phys. Lett, vol.110, p.261901, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01845207

R. Stoian, M. K. Bhuyan, A. Rudenko, J. P. Colombier, and G. Cheng, High-resolution material structuring using ultrafast laser non-diffractive beams, Adv. Phys. X, vol.4, p.1659180, 2019.
URL : https://hal.archives-ouvertes.fr/ujm-02292919

R. Stoian and J. Colombier, Advances in ultrafast nanostructuring

A. Royon, K. Bourhis, and M. Bellec, Silver clusters embedded in glass as a perennial high capacity optical recording medium, Adv. Mater, vol.22, pp.5282-5286, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00672097

N. Crespo-monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud et al., Reversible and irreversible laser microinscription on silver-containing mesoporous titania films, Adv. Mater, vol.22, pp.3166-3170, 2010.
URL : https://hal.archives-ouvertes.fr/ujm-00457685

S. Kanehira, J. Si, J. Qiu, F. Fujita, and K. Hirao, Periodic nanovoid structures via femtosecond laser irradiation, Nano Lett, vol.5, pp.1591-1595, 2005.

K. Kumar, K. K. Lee, J. Li, J. Nogami, N. P. Kherani et al., Quantized structuring of transparent films with femtosecond laser interference, Light Sci. Appl, vol.3, p.157, 2014.

A. Sommer, E. M. Bothschafter, and S. A. Sato, Attosecond nonlinear polarization and light-matter energy transfer in solids, Nature, vol.534, pp.86-90, 2016.

P. Zalden, F. Quirin, and M. Schumacher, Femtosecond x-ray diffraction reveals a liquid-liquid phase transition in phasechange materials, Science, vol.364, pp.1062-1067, 2019.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si, Appl. Phys. Lett, vol.103, p.114104, 2013.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang et al., Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging, J. Appl. Phys, vol.115, p.143102, 2014.

K. Sokolowski-tintena, A. Barty, and S. Boutet, Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scattering, AIP Conf. Proc, vol.1278, p.373, 2010.

A. Aguilar, C. Mauclair, N. Faure, J. P. Colombier, and R. Stoian, In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback, Sci. Rep, vol.7, p.16509, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01652103

A. Abou-saleh, A. Rudenko, L. Douillard, F. Pigeon, F. Garrelie et al., Nanoscale imaging of ultrafast light coupling to self-organized nanostructures, ACS Photonics, vol.6, pp.2287-2294, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02309635

S. Khadir, D. Andrén, and P. C. Chaumet, Full optical characterization of single nanoparticles using quantitative phase imaging, Optica, vol.7, pp.243-248, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02508604

M. Sakakura, Y. Shimotsuma, N. Fukuda, and K. Miura, Transient strain distributions during femtosecond laserinduced deformation inside LiF and MgO single crystals, J. Appl. Phys, vol.118, p.23106, 2015.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, Timeresolved interferometry of femtosecond-laser induced processes under tight focusing and close-to optical breakdown inside borosilicate glass, Opt. Express, vol.19, pp.5725-5734, 2011.

M. Zimmermann, A. Tausendfreund, and S. Patzelt, In-process measuring procedure for sub-100 nm structures, J. Laser Appl, p.24042010, 2012.

R. Fang, A. Vorobyev, and C. Guo, Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals, Light Sci. Appl, vol.6, p.16256, 2017.

C. Mauclair, M. Zamfirescu, G. Cheng, J. P. Colombier, E. Audouard et al., Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes, Opt. Express, vol.20, pp.12997-13005, 2012.
URL : https://hal.archives-ouvertes.fr/ujm-00701394

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica, Appl. Phys. Lett, vol.102, p.54102, 2013.

S. Richter, A. Plech, and M. Steinert, On the fundamental structure of femtosecond laser-induced nanogratings, Laser Photonics Rev, vol.6, pp.787-792, 2012.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, The onset of ultrashort pulse-induced nanogratings, Laser Photonics Rev, vol.10, pp.327-334, 2016.

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, Temporal pulse tailoring in ultrafast laser manufacturing technologies, Laser Precision Microfabrication, vol.135, pp.121-144, 2010.

R. Stoian, J. P. Colombier, C. Mauclair, M. K. Bhuyan, P. K. Velpula et al., Spatial and temporal laser pulse design for material processing on ultrafast scales, Appl. Phys. A: Mater. Process, vol.114, pp.119-127, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-00911802

L. Jiang, P. Liu, and X. Yan, High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains, Opt. Lett, vol.37, pp.781-2783, 2012.

S. Hasegawa and Y. Hayasaki, Polarization distribution control of parallel femtosecond pulses with spatial light modulators, Opt. Express, vol.21, pp.12987-12995, 2013.

A. Jesacher and M. J. Booth, Parallel direct laser writing in three dimensions with spatially dependent aberration correction, Opt. Express, vol.18, pp.21090-21099, 2010.

A. Wang, L. Jiang, and X. Li, Nanoscale material redistribution induced by spatially modulated femtosecond laser pulses for flexible high-efficiency surface patterning, Opt. Express, vol.25, pp.31431-31442, 2017.

L. Jiang, X. S. Shi, X. Li, Y. P. Yuan, C. Wang et al., Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains, Opt. Express, vol.20, pp.21505-21511, 2012.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses, Phys. Chem. Chem. Phys, vol.13, pp.4155-4158, 2011.
URL : https://hal.archives-ouvertes.fr/ujm-00568509

F. Fraggelakis, E. Stratakis, and P. A. Loukakos, Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses, Appl. Surf. Sci, vol.444, pp.154-160, 2018.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, Controlling 2D laser nano structuring over large area with double femtosecond pulses, Appl. Surf. Sci, vol.470, pp.677-686, 2019.

H. Qiao, J. Yang, F. Wang, Y. Yang, and J. Sun, Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces, Opt. Express, vol.23, p.26617, 2015.

Q. Liu, N. Zhang, J. Yang, H. Qiao, and C. Guo, Direct fabricating large-area nanotriangle structure arrays on tungsten surface by nonlinear lithography of two femtosecond laser beams, Opt. Express, vol.26, issue.9, pp.11718-11727, 2018.

G. Meng, L. Jiang, and X. Lia, Dual-scale nanoripple/ nanoparticle-covered microspikes on silicon by femtosecond double pulse train irradiation in water, Appl. Surf. Sci, vol.410, pp.22-28, 2017.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics, Appl. Surf. Sci, vol.374, pp.331-338, 2016.

Y. Shimotsuma, M. Sakakura, and P. G. Kazansky, Ultrafast manipulation of self-assembled form birefringence in glass, Adv. Mater, vol.22, pp.4039-4043, 2010.

T. Brixner, W. Pfeiffer, and F. Javier-garcía-de-abajo, Femtosecond shaping of transverse and longitudinal light polarization, Opt. Lett, vol.29, pp.2187-2189, 2004.

M. Aeschlimann, M. Bauer, and D. Bayer, Adaptive subwavelength control of nano-optical fields, Nature, vol.446, pp.301-304, 2007.

P. S. Salter and M. J. Booth, Adaptive optics in laser processing, Light Sci. Appl, vol.8, p.110, 2019.

N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard et al., Programmable focal spot shaping of amplified femtosecond laser pulses, Opt. Lett, vol.30, pp.1479-1781, 2005.
URL : https://hal.archives-ouvertes.fr/ujm-00118206

O. Martínez-matos, P. Vaveliuk, J. G. Izquierdo, and V. Loriot, Femtosecond spatial pulse shaping at the focal plane, Opt. Express, vol.21, pp.25010-25025, 2013.

A. F. Lasagni, S. Alamri, A. I. Aguilar-morales, F. Rö?ler, B. Voisiat et al., Biomimetic surface structuring using laser based interferometric methods, Appl. Sci, vol.8, p.1260, 2018.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure et al., Single shot high aspect ratio bulk nanostructuring of fused silica using chirp controlled ultrafast laser Bessel beams, Appl. Phys. Lett, vol.104, p.21107, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-00931776

J. Hamazaki, R. Morita, K. Chujo, K. Kobayashi, S. Tanda et al., Optical-vortex laser ablation, Opt. Express, vol.18, pp.2144-2151, 2010.

J. J. Nivas, F. Cardano, and Z. Song, Surface structuring with polarization-singular femtosecond laser beams generated by a q-plate, Sci. Rep, vol.7, p.42142, 2017.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Revealing local field structure of focused ultrashort pulses, Phys. Rev. Lett, vol.106, p.123901, 2011.

H. Zhang, C. Li, E. Bevillon, J. P. Colombier, G. Cheng et al., Ultrafast destructuring of laser-irradiated tungsten: thermal or nonthermal process, Phys. Rev. B, vol.94, p.224103, 2016.
URL : https://hal.archives-ouvertes.fr/ujm-01432490

, Optically Induced Nanostructures: Biomedical and Technical Applications, 2015.

V. P. Veiko and V. I. Konov, Fundamentals of Laserassisted Micro-and Nanotechnologies, Springer Series in Materials Science, 2014.

N. A. Vainos, Laser Growth and Processing of Photonic Devices, Series in Electronic and Optical Materials, 2012.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, Laser-induced periodic surface structures -a scientific evergreen, IEEE J. Sel. Top. Quant. Electron, vol.23, p.9000615, 2017.

, Laser-based nano fabrication and nano lithography, Nanomaterials, 2020.

F. A. Müller, C. Kunz, and S. Gräf, Bio-inspired functional surfaces based on laser-induced periodic surface structures, Materials, vol.9, p.476, 2016.

A. Y. Vorobyev and C. Guo, Colorizing metals with femtosecond laser pulses, Appl. Phys. Lett, vol.92, p.41914, 2008.

B. Dusser, Z. Sagan, and H. Soder, Controlled nanostructrures formation by ultra fast laser pulses for color marking, Opt. Express, vol.18, pp.2913-2924, 2010.
URL : https://hal.archives-ouvertes.fr/ujm-00501510

G. Zhang, G. Cheng, M. K. Bhuyan, C. D'amico, W. Zhao et al., Ultrafast Bessel laser beam writing of Bragg gratings waveguide and its application as temperature sensor, Photonics Res, vol.7, pp.806-814, 2019.

J. Zhang, M. Gecevi?ius, M. Beresna, and P. G. Kazansky, Seemingly unlimited lifetime data storage in nanostructured glass, Phys. Rev. Lett, vol.112, p.33901, 2014.

B. Mcmillen, C. Athanasiou, and Y. Bellouard, Femtosecond laser direct-write waveplates based on stress-induced birefringence, Opt. Express, vol.24, pp.27239-27252, 2016.

L. Jiao, Z. Y. Chua, S. K. Moon, J. Song, G. Bi et al., Femtosecond laser produced hydrophobic hierarchical structures on additive manufacturing parts, Nanomaterials, vol.8, p.601, 2018.

E. P. Ivanova, J. Hasan, and H. K. Webb, Bactericidal activity of black silicon, Nat. Commun, vol.4, p.2838, 2013.

J. M. Guay, A. Lesina, and G. Cote, Laser-induced plasmonic colours on metals, Nat. Commun, vol.8, p.16095, 2017.

M. Martínez-calderon, J. J. Azkona, and N. Casquero, Tailoring diamond's optical properties via direct femtosecond laser nanostructuring, Sci. Rep, vol.8, p.14262, 2018.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. Mckinley et al., Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity, ACS Nano, vol.6, pp.3789-3799, 2012.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation, Appl. Phys. Lett, vol.74, pp.2322-2324, 1999.

C. Wu, C. H. Crouch, and L. Zhao, Near-unity below-band-gap absorption by microstructured silicon, Appl. Phys. Lett, vol.78, p.1850, 2001.

M. Aeschlimann, T. Brixner, and D. Differt, Perfect absorption in nanotextured thin films via Anderson-localized photon modes, Nat. Photonics, vol.9, pp.663-668, 2015.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses, Nanophotonics, vol.6, pp.743-763, 2017.

N. Sharma, N. Destouches, C. Florian, R. Serna, and J. Siegel, Tailoring metal-dielectric nanocomposite materials with ultrashort laser pulses for dichroic color control, Nanoscale, vol.11, pp.18779-18789, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02429843

R. Stoian and J. Colombier, Advances in ultrafast nanostructuring

L. Canioni, M. Bellec, A. Royon, B. Bousquet, and T. Cardinal, Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass, Opt. Lett, vol.33, pp.360-362, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00255908

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Chem. Res, vol.28, pp.988-994, 1936.

A. B. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc, vol.40, pp.546-551, 1944.

C. Florian, J. L. Déziel, S. V. Kirner, J. Siegel, and J. Bonse, The role of the laser-induced oxide layer in the formation of laserinduced periodic surface structures, Nanomaterials, vol.10, p.147, 2020.

C. Frischkorn and M. Wolf, Femtochemistry at metal surfaces: nonadiabatic reaction dynamics, Chem. Rev, vol.106, pp.4207-423, 2006.

Y. Lin, J. Han, and M. Cai, Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability, J. Mater. Chem, vol.6, pp.9049-9056, 2018.

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz et al., An alternative method for delivering exogenous material into developing zebrafish embryos, Biotechnol. Bioeng, vol.98, pp.1230-1241, 2007.

M. Pospiech, M. Emons, K. Kuetemeyer, A. Heisterkamp, and U. Morgner, Superresolved femtosecond laser nanosurgery of cells, Biomed. Opt. Express, vol.2, pp.264-271, 2011.

M. Martínez-calderon, M. Manso-silván, and A. Rodríguez, Surface micro-and nano-texturing of stainless steel by femtosecond laser for the control of cell migration, Sci. Rep, vol.6, p.36296, 2016.

U. K. Tirlapur and K. Kïg, Targeted transfection by femtosecond laser, Nature, vol.418, pp.290-291, 2002.

M. Antkowiak, M. Torres-mapa, D. Stevenson, K. Dholakia, and F. J. Gunn-moore, Femtosecond optical transfection of individual mammalian cells, Nat. Protoc, vol.8, pp.1216-1233, 2013.