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Introduction

Comprehending the nature of the transition from the microscopic quantum world
to the classical macroscopic world is still a great challenge in physics. At a single-
particle level, quantum mechanics offers a successful description of the microscopic
world [Dehmelt (1990); Haroche and Raimond (2006)]. At the macroscopic level,
one can accurately describe phenomena using global variables while disregarding the
underlying microscopic structure [Reif (1965); Landau and Lifshitz (1976)]. At the
intermediate, so-called mesoscopic scale, a transition occurs where the situation is
more complex, since the system cannot be considered macroscopic while the particle
number starts to be large (typically a few tens to hundreds of particles), rendering
the microscopic treatment hardly tractable in the most general case. The main dif-
ficulty resides in solving the equations of quantum mechanics for large numbers of
interacting particles, due to the exponential growth with the particle number of the
needs in computational resources. As an example, no classical computer can do ab
initio predictions for the dynamics of systems containing more than ' 30 two-level
particles subject to long-range interactions [Aspuru-Guzik and Walther (2012)]. One
envisioned solution is it to engineer a mesoscopic quantum system that we can control
and manipulate in the laboratory, thus producing a quantum simulator [Cirac and
Zoller (2012)]. This foreseeing idea of R. Feynman [Feynman (1982)] was the start-
ing point of the field of quantum engineering, which is now also motivated by the
perspectives offered by the quantum processing of information [Nielsen and Chuang
(2000)] and by the usefulness of some quantum states for precision measurements
(quantum metrology) [Wineland et al. (1992)], for instance.

Today, an exceptional level of mastery has been reached for the manipulation and
control of two-level systems (called “qubits” in the language of quantum information)
encoded on individual quantum objects, which led to the awarding of the 2012 Nobel
Prize in physics to D. Wineland and S. Haroche [Wineland (2013); Haroche (2013)].
Currently, different types of qubits are being actively studied as shown in Figure 1.
Some of them, such as atoms, ions, photons [Bloch, Dalibard, and Nascimbene (2012);
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2 Introduction

Figure 1: Examples of artificial quantum systems. a, In atomic and molecular
physics, qubits can be encoded on neutral atoms (from the group of F. Gerbier at lkb,
Paris), ions (from the group of P. Zoller at uibk, Innsbruck) or photons (from the ESA
website) for instance. b, In condensed matter physics, one can manufacture two-level sys-
tems such as NV-centers (from the group of C. van de Walle at UCSB, Santa Barbara),
quantum dots [Reitzenstein and Forchel (2010)] or superconducting qubits (from the group
of J. M. Martinis at UCSB, Santa Barbara). Due to their quantum properties, those objects
are sometimes called “artificial atoms”.

Blatt and Roos (2012); Aspuru-Guzik and Walther (2012)] are used in the field of
atomic and molecular physics. Others are being manufactured, such as quantum dots,
superconducting qubits and NV centers [Houck, Tureci, and Koch (2012)], which are
essentially two-level systems (“artificial atoms”) that show quantum properties. All
those platforms show great promise for quantum simulation and quantum informa-
tion applications [Georgescu, Ashhab, and Nori (2014)], and scientists are currently
working on increasing the number of interacting qubits in their systems [Ladd et al.
(2010)]. To date, with the successful creation of 14-qubit entangled states [Monz
et al. (2011)], the trapped ions community is often considered as the most advanced
towards this goal. That number begins to be interesting in testing quantum sim-
ulations that can barely be done with classical computers [Jurcevic et al. (2014);
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Richerme et al. (2014)]. However, every community is facing technical challenges in
scaling up the number of qubits due to the limitations inherent to every system.

Fortunately, the different available systems are subject to different limitations, so
that a complementary approach is possible. The wide variety of existing platforms
leads to a broad range of fundamental properties and experimental implementations.
Hybrid approaches [Xiang et al. (2013)] take advantage of the broad diversity of avail-
able systems, by combining their advantages while hopefully compensating for their
weaknesses in order to create a robust and scalable quantum system [Sørensen et al.
(2004); Andre et al. (2006); Rabl et al. (2006); Imamoğlu (2009); Marcos et al. (2010);
Jessen et al. (2014)]. In atomic and molecular physics for example, photons or neu-
tral atoms can be well isolated from their environment, thus showing low decoherence
over long durations. However, their weak interactions render their manipulation and
control slow and experimentally demanding. On the other hand, nanofabricated sys-
tems (superconducting qubits or quantum dots for instance) benefit from relatively
easy and fast manipulation [Devoret and Martinis (2004)]. One possible architecture
for a quantum simulator could combine an ensemble of nanofabricated qubits used
as a fast quantum processor with an ensemble of atomic qubits serving as a good
quantum memory.

This thesis describes my work on two different systems that are being developed
towards these goals, one located at the Joint Quantum Institute (JQI) in Maryland,
and the other located at the Institut d’Optique (IOGS) in Palaiseau.

• Figure 2a shows the current envisioning of the system under construction at JQI
[Hoffman et al. (2011)], on which I worked from September 2011 to February
2013. The project aims at building a hybrid system of neutral atom spins cou-
pled to superconducting qubits. Laser-cooled rubidium atoms will be trapped
a few microns away from a superconducting circuit that resonates at the hy-
perfine frequency of the rubidium atoms, allowing magnetic coupling between
the atoms and the superconductor. As this will be done in a dilution refrig-
erator environment, there are major technical constraints, in particular on the
heating induced by light losses. The rubidium atoms will therefore be trapped
and transported in the evanescent field of an ultrathin tapered optical fiber,
a technique recently demonstrated in the group of A. Rauschenbeutel [Vetsch
et al. (2010)].

• Figure 2b shows the system at the Institut d’Optique, where I worked starting
from February 2013. This project was specially designed for applications in



4 Introduction

Figure 2: The two systems at JQI and IOGS. a, Current envisioning of the hybrid
system in construction at JQI. Neutral rubidium atoms trapped around an ultrathin optical
fiber are placed a few microns away from a superconducting qubit, allowing magnetic cou-
pling between the two quantum objects. b, Single rubidium atoms are trapped in different
sites of an array of dipole traps. The atoms are excited to Rydberg states, to allow large
couplings between them.

quantum information and quantum simulation with Rydberg atoms [Saffman,
Walker, and Mølmer (2010)]. Here, we use neutral atoms trapped in arrays of
dipole traps, that we excite to highly interacting Rydberg states, so as to achieve
strong interactions and thus fast operation times between neutral atoms. While
this system is not, strictly speaking, a hybrid system, the approach is similar as
one combines the large coherence times of neutral ground state atoms, with the
large interactions between Rydberg atoms. This field has excited an increasing
interest from the theoretical [Jaksch et al. (2000); Lukin et al. (2001)] and
experimental [Comparat and Pillet (2010)] points of view.

The first part of this thesis describes the work I did at the JQI. When I joined the
group, there was no expertise on fiber tapering. My work, jointly with J. E. Hoffman,
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consisted in the construction of a fiber puller apparatus, and the production and char-
acterization of our tapered optical fibers. After an introductory Chapter presenting
the necessary background on fibers (see Chapter 1), I will detail in Chapter 2 the
construction of our fiber puller apparatus. The characterization of our nanofibers,
showing transmissions as high as 99.95%, is discussed in Chapter 3. Finally, we
studied the propagation of higher-order modes in the fiber, where we obtain high
levels of transmission, that offer new degrees of freedom and potentialities for atom
trapping [Sagué, Baade, and Rauschenbeutel (2008)]. Those results are presented in
Chapter 4.

The second part of my thesis focuses on the work I did at the IOGS, jointly
with H. Labuhn and D. Barredo. During my thesis, we performed experiments on
small arrays of two and three interacting atoms allowing full characterization of the
interatomic Rydberg interactions present in our system. This part starts by an intro-
duction to the necessary background on Rydberg atoms (see Chapter 5). Following
the work by L. Béguin [Béguin (2013)], we briefly recall the principles of our setup
in Chapter 6, and we detail our recent additions to this setup (improvement of the
laser stability, addition of a SLM to increase the number of atoms, implementation of
addressability in our arrays). We then study the effect of anisotropic van der Waals
interactions on the excitation dynamics of two-atom and three-atom systems (see
Chapter 7). In Chapter 8, we use the resonant dipole-dipole interactions to simulate
spin dynamics in a two-atom and three-atom chain. We finally demonstrate our abil-
ity to control resonant dipole-dipole interactions by electrically tuning a two-atom
system to a Förster resonance (see Chapter 9).

The following articles have been published in the context of this thesis:

• Hoffman, J. E., Ravets, S., Grover, J. A., Solano, P., Kordell, P. R., Wong-
Campos, J. D., Orozco, L. A., and Rolston, S. L., “Ultrahigh transmission
optical nanofibers,” AIP Advances 4, 067124 (2014).

• Ravets, S., Hoffman, J. E., Kordell, P. R., Wong-Campos, J. D., Rolston, S. L.,
and Orozco, L. A., “Intermodal energy transfer in a tapered optical fiber: opti-
mizing transmission,” J. Opt. Soc. Am. A 30, 2361 (2013).

• Ravets, S., Hoffman, J. E., Orozco, L. A., Rolston, S. L., Beadie, G., and
Fatemi, F. K., “A low-loss photonic silica nanofiber for higher-order modes,”
Opt. Express 21, 18325 (2013).

• Nogrette, F., Labuhn, H., Ravets, S., Barredo, D., Béguin L., Vernier, A., La-
haye, T., and Browaeys, A., “Single-Atom Trapping in Holographic 2D Arrays
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of Microtraps with Arbitrary Geometries,” Phys. Rev. X 4, 021034 (2014).

• Labuhn, H., Ravets. S., Barredo, D., Béguin L., Nogrette, F., Lahaye, T. and
Browaeys, A., “Single-atom addressing in microtraps for quantum-state engi-
neering using Rydberg atoms,” Phys. Rev. A 90, 023415 (2014).

• Barredo, D., Ravets. S., Labuhn, H., Béguin L., Vernier, A., Nogrette, F., La-
haye, T., and Browaeys, A. “Demonstration of a Strong Rydberg Blockade in
Three-Atom Systems with Anisotropic Interactions,” Phys. Rev. Lett. 112,
183002 (2014).

• Barredo, D., Labuhn, H., Ravets. S., Lahaye, T., Browaeys, A. and Adams, C. S.,
“Coherent Excitation Transfer in a “Spin Chain” of Three Rydberg Atoms,”
arXiv:1408.1055 (2014).

• Ravets. S., Labuhn, H., Barredo, D., Béguin, L., Lahaye, T., and Browaeys, A.
“Coherent dipole-dipole coupling between two single Rydberg atoms at an electri-
cally-tuned Förster resonance,” Nat. Phys. 10, 914 (2014).
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Chapter 1

Optical trapping of atoms around
nanofibers

Contents
1.1 Experimental constraints imposed by the system . . . . 10

1.2 Trapping atoms around nanofibers . . . . . . . . . . . . . 12

1.2.1 Optical nanofibers . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Intensity profile . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Trapping potential . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.4 Nanofiber trapping for a quantum hybrid system . . . . . . 15

1.3 Outline of the first part . . . . . . . . . . . . . . . . . . . . 16

The first part of this thesis concentrates on the experiments I performed at the
university of Maryland in the context of the development of a particular quantum
hybrid system [Hoffman et al. (2011)]. Hybrid systems have attracted a lot of interest
over the last few years, and several approaches for achieving this goal of combining
two different types of quantum systems are under study [Wallquist et al. (2009)].
One promising avenue is to interface a quantum memory from atomic, molecular and
optical physics with a fast quantum processor from solid-state physics [Tian et al.
(2004); Sørensen et al. (2004); Rabl et al. (2006)].

Along these lines, our approach focuses on interfacing a few individual neutral
atoms with superconducting qubits by means of a direct magnetic coupling between
the two systems [Sørensen et al. (2004); Verdú et al. (2009); Hoffman et al. (2011);
Bernon et al. (2013)]. Trapping a few individual atoms a few micrometers away from

9
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Figure 1.1: Original envisioning of the quantum hybrid system (adapted from
[Hoffman et al. (2011)]). A few individual atoms are placed a few micrometers away
from a superconducting qubit. The setup requires a trapping technique that allow a tight
confinement of the atoms and does not illuminate the superconductor.

the superconducting surface, thus requires a good control over the atomic positions
with respect to the superconducting qubit (see the original envisioning of the hybrid
system in Figure 1.1). This can be accomplished using tight optical dipole traps of
volume ∼ 1 μm3 with high oscillation frequencies ∼ 100 kHz [Grimm, Weidemüller,
and Ovchinnikov (2000)], a feature hardly achievable with magnetic traps. Moreover,
because we want to use the magnetic coupling between the atoms and the supercon-
ducting qubit (which is sensitive to magnetic fields due to its superconductivity), we
prefer to avoid the presence of any extra sources of magnetic fields near the super-
conducting surface. As a consequence, we have chosen to optically trap the atoms
above the superconducting surface, using the optical dipole force created by shining
far-detuned lasers on the atoms. Optical dipole forces have been used in diverse
experimental systems to trap and manipulate particles [Grimm, Weidemüller, and
Ovchinnikov (2000)]. However for our purpose, the presence of a 10 mK-temperature
surface close to the atoms imposes stringent experimental constraints.

1.1 Experimental constraints imposed by the

system

The typical temperature needed to operate a superconducting qubit is ∼ 10 mK. In
practice, we use a Triton 200 Cryofree dilution refrigerator from Oxford Instruments
at 12 mK. This raises the challenge of trapping the atoms a few microns away from the
superconducting surface placed inside the dilution refrigerator, in a mK-temperature
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Figure 1.2: Testing the sensitivity of a superconducting resonator to light. a,
Image of the microwave resonator used in this experiment. The niobium resonator is made
of an inductor and a capacitor that are coupled to a microwave transmission line [Kim et al.
(2011)]. Dark regions show the sapphire substrate. b, Response of the circuit to light.
When shining light of wavelength 780 nm on the resonator, its resonance frequency, as well
as its quality factor, are significantly modified for laser powers as low as a few nW.

environment [Jessen et al. (2014)]. The two main constraints are:

• The cooling power in the final stage of the dilution refrigerator (where we want
to trap the atoms) is ∼ 200 µW. However, laser cooling and laser trapping
of atoms typically require tens to hundreds of milliwatts of laser power. Any
photon hitting the cold surfaces due to clipping or scattering will generate heat
in the dilution fridge, on top of the intrinsic damage to the superconductivity.
As a consequence, one has to ensure that the heat generated by those photons
is small enough to still be able to operate the cryostat at 12 mK.

• Superconducting circuits are extremely sensitive to light [Barends et al. (2011);
Córcoles et al. (2011)]. As a matter of fact, superconducting nanowires are now
used as single-photon detectors [Eisaman et al. (2011)], where the absorption
of a single-photon causes a small region of the nanowire to go normal, allow-
ing its detection. On our project, K. Voigt (a graduate student in the group)
and J. Hertzberg (a postdoctoral researcher in the group), illustrated the ex-
treme sensitivity of a superconducting resonator (see Figure 1.2a) by shining
light at a wavelength 780 nm directly into it with a beam that covers its entire
surface. The black curve in Figure 1.2b plots the transmission of a microwave
field through the superconducting LC circuit as a function of the microwave fre-
quency, showing the resonance of the superconducting circuit. When increasing
the laser power, the resonance frequency shifts and the quality factor of the res-
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onator decreases. They measured that a laser power as low as a few nW is
enough to significantly change the resonance frequency (by a few tens of kHz)
and the quality factor of the resonator.

As a consequence, we need to use an atom trapping technique that minimizes the
diffusion and losses of photons. For that purpose, the JQI group decided to implement
a technique demonstrated in 2010 in the group of A. Rauschenbeutel [Vetsch et al.
(2010)], that uses the evanescent field guided around an optical nanofiber to trap
the atoms [Balykin et al. (2004); Le Kien, Balykin, and Hakuta (2004); Vetsch et al.
(2010); Goban et al. (2012)]. This technique allows trapping the atoms with precise
positioning, while maintaining the light strongly confined, minimizing the scattering.

1.2 Trapping atoms around nanofibers

The trapping technique is based on the optical dipole force created by shining far-
detuned light on the atoms [Grimm, Weidemüller, and Ovchinnikov (2000)]. The
dipole potential generated by the light for an ideal two-level atom is given, in the
rotating wave approximation, by:

U(r) =
3πc2

2ω3
0

Γ

∆
I(r) , (1.1)

where ∆ is the frequency detuning from the atomic transition of frequency ω0, Γ is
the spontaneous decay rate of the excited state and I(r) is the light intensity. For
red-detuned light (∆< 0), the potential minimum is found at the beam intensity
maximum. On the other hand, blue-detuned light (∆> 0) repels the atoms toward
the light intensity minima. These properties are widely used to create optical dipole
traps for atoms. It has been shown that strongly focused lasers allow trapping in-
dividual atoms [Schlosser et al. (2001); Sortais et al. (2007)]. Strong focusing leads
to high intensities, limiting the laser power needed to trap individual atoms. As a
consequence, trapping atoms in microscopic traps, that have a size comparable to
the wavelength of the light used for trapping, allows producing traps with a few mil-
likelvin depth using laser powers as low as a few tens of milliwatts (see Section 1.2.3).
This is a major advantage in view of trapping atoms in the 10 mK stage of a dilution
fridge.
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1.2.1 Optical nanofibers

Optical nanofibers are optical fibers having a radius that is smaller than the wave-
length of the propagating light. Like standard optical fibers, nanofibers are waveg-
uides where the light is guided by total internal refraction at the interface between
two media of different indices. Because the diameter of a nanofiber is smaller than
the wavelength, part of the light propagates outside the waveguide, in the form of
an evanescent wave. Nanofibers offer an interesting platform to interface atoms with
light, allowing trapping of atoms in the vicinity of the fiber surface. The standard
trapping scheme uses a two-color trap [Le Kien, Balykin, and Hakuta (2004); Vetsch
et al. (2010)]. For 87Rb for example, we combine a 730 nm beam (blue detuned from
the D lines of 87Rb) with a 1064 nm beam (red-detuned from the D lines of 87Rb) to
create a trapping potential for the atoms.

1.2.2 Intensity profile

The calculated intensity profile inside and outside a nanofiber with a 180 nm radius is
shown in Figure 1.3a, where the surface of the fiber is represented by the black circle.
The trapping fields are linearly polarized, as represented by the red and blue arrows in
Figure 1.3a. Outside the fiber, we observe the evanescent field formed by the trapping
beams. Using a linear polarization for the trapping beam breaks the cylindrical
symmetry in the system, and the evanescent field shows two maxima at the positions
where the transverse part of the electric field is orthogonal to the fiber surface. The
evanescent field is maximum at the fiber surface, and then decays exponentially for
larger distances. One can show [Kien et al. (2004)] that the characteristic decay
length for the intensity outside the fiber is:

Λ =
1√

β2 − k2
0

. (1.2)

Here, k0 is the free-space wavevector and β is the propagation constant1 of the field
along the fiber axis z:

[
E(r, t)

H(r, t)

]
=

[
E(r, φ)

H(r, φ)

]
exp[i(βz − ωt)] , (1.3)

where E and H denote the electric and magnetic fields for a cylindrically symmetric
waveguide. We observe that 1064 nm and 730 nm beams have different decay lengths,

1In general, the propagation constant can be written β=neffk0, where neff is the effective refrac-
tive index seen by the light as it is guided by the fiber.
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Figure 1.3: Trapping atoms around nanofibers (adapted from [Hoffman (2014)]).
a, Calculated intensity profile around a 360 nm nanofiber for horizontally polarized light of
wavelength 1064 nm (left), and vertically polarized light of wavelength 730 nm (right). b,
Trapping potentials obtained for 7.5 mW of blue-detuned light and 4.5 mW of red-detuned
light. The red curve shows the attractive potential created by the red-detuned light. The
blue curve is the repulsive potential created by the blue-detuned light. The green curve
represents the attractive van der Waals forces created by the dielectric surface of the fiber
on an atom. The resulting trapping potential is shown in black. c, Two-color trapping
scheme using a nanofiber. The inset shows the red-detuned and blue-detuned light around
the nanofiber.
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which will allow creating a potential minimum for the atoms, as we now explain.

1.2.3 Trapping potential

By summing the attractive potential created by the red-detuned beam, the repul-
sive potential created by the blue-detuned beam and the attractive van der Waals
potential created by the nanofiber itself2, we obtain the trapping potential shown in
Figure 1.3b (black curve). In total, we observe that using 12 mW of trapping power,
we create a trap with a depth of a few mK and located a few hundreds of nanometers
away from the fiber surface.

Figure. 1.3c shows the experimental setup for trapping atoms around nanofibers
used by E. Vetsch et al. in [Vetsch et al. (2010)]. The linearly polarized red-
detuned and blue-detuned beams are launched into the nanofiber, thus creating an
attractive and a repulsive potential for the atoms. The group of A. Rauschenbeutel
has shown that the use of orthogonal linear polarizations provides two positions on
either side of the fiber where the red-detuned light intensity and the blue-detuned
light are simultaneously maximum and minimum respectively. This allows confining
azimuthally the atoms around the fiber. Finally, by retro-reflecting the red-detuned
laser beam inside the fiber, one creates a red-detuned standing wave around the
nanofiber. This allows confining the atoms along the fiber axis in two different 1D
lattices located on either side of the fiber (see inset in Figure 1.3c).

1.2.4 Nanofiber trapping for a quantum hybrid system

Adapting this trapping technique to our system presents four main advantages:

• The trapping light is tightly confined around the nanofiber, in the form of an
evanescent wave. This tight confinement leads to large intensities so that a
moderate laser power (∼ 10 mW) is necessary to trap the atoms.

• The nanofiber can also be used to send resonant probe light on the atoms (light
of wavelength 780 nm in the case of rubidium), with no need for an extra optical
path in the cryostat.

• The nanofiber acts as a waveguide which allows the photons to remain tightly
confined over the full length of the nanofiber, that can reach a few centimeters

2For the van der Waals potential, we consider the potential created by an infinite dielectric on a
ground state atom [Courtois, Courty, and Mertz (1996); Landragin et al. (1996)].
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(see Chapter 2). This contrasts with Gaussian beams that diverge as they
propagate in free space.

• Nanofibers can show extremely low losses, as we will demonstrate in Chapter 3.
This leads to low light scattering, allowing for a low heat load in the cryostat
and very little light shining onto the superconducting circuit.

All those advantages make nanofiber traps an ideal platform for trapping atoms in a
dilution fridge, a few micrometers away from the superconducting surface.

1.3 Outline of the first part

The next three Chapters describe the fabrication and characterization of the nanofibers.
Chapter 2 focuses on the construction of the pulling apparatus I built with J. E. Hoff-
man to manufacture our own nanofibers. Particular attention is paid to the proce-
dures to follow in order to obtain ultra-high transmission nanofibers. Chapter 3 shows
our work to identify the measured residual sources of losses. A modal analysis of our
transmission signals using spectrograms allows us to find experimental conditions
where the residual losses are only attributed to slight non-adiabaticities in the chosen
fiber profile, and not to other technical limitations of our apparatus. The obtained
transmissions, in excess of 0.9995±0.0002, agree well with calculations. In Chapter 4,
we measure the transmission of higher-order modes through our nanofibers. Using
a special type of fibers (reduced-cladding fibers), we show that we can achieve more
than 97% transmission of the first family of modes.

Note: The results I obtained during my stay at the Joint Quantum Institute are de-
scribed at length in the three papers [Hoffman et al. (2014); Ravets et al. (2013a,b)].
As a consequence, in this part, each Chapter consists of a short introduction to the
results detailed in the attached papers.
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Over the last twenty years, the light-guiding properties of optical nanofibers have
excited a lot of interest in different fields of physics and engineering [Brambilla (2010);
Morrissey et al. (2013)]. The tight confinement of light inside nanofibers as well as its
guidance in the form of an evanescent wave have been used for various applications.
For example, the high-intensities obtained in nanofibers have led to the observa-
tion of non-linear effects like supercontinuum generation [Leon-Saval et al. (2004)].
Nanofibers can also be interfaced with their surrounding environment by means of
evanescent coupling, allowing their use as optical sensors [Chen et al. (2013); Mor-
rissey et al. (2013)] and their integration to existing fiber network for applications
in quantum information science [Kimble (2008)]. All those applications benefit from
high transmission nanofibers, through a reduction of scattered light and laser power

17
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Figure 2.1: Image of a tapered fiber. The Figure consists of an horizontally compressed
stack of 100 optical microscope images (see the difference between the horizontal and vertical
scales). Note that the optical fiber is a glass cylinder that acts as a cylindrical lens. The
observed dark and bright regions are due to this lensing effect. In order to be able to resolve
the fiber over its entire length using an optical microscope, we have pulled it down to a
waist of 5 µm, with a few mm length. The taper geometry is linear, with a tapering angle
Ω = 2 mrad.

requirements [Tong et al. (2003)]. To obtain high transmissions, some care has to
be taken in the manufacturing process of the nanofibers. This is precisely what I
focused on during my stay at the Joint Quantum Institute. In this Chapter, we con-
centrate on the construction of the pulling apparatus I built with J. E. Hoffman to
manufacture our own nanofibers. We summarize the procedure detailed in [Hoffman
et al. (2014)]. Particular attention is paid to the important cleaning and alignment
steps to follow in order to obtain ultra-high transmission nanofibers.

2.1 Heat-and-pull apparatus

We produce optical nanofibers by heating a standard, 125 µm diameter, optical fiber
while pulling it on both extremities [Bilodeau et al. (1987); Birks and Li (1992); Bures
and Ghosh (1999); Brambilla, Finazzi, and Richardson (2004)]. Following the work
of the group of A. Rauschenbeutel [Warken (2007)], we use an oxyhydrogen flame
at stoichiometric combination to bring a ∼ 0.75 mm fiber portion to a temperature
that exceeds its softening point (' 1860 K). Two high-precision computer-controlled
motors pull on the fiber ends at a typical velocity of 0.1 mm/s. To produce a fiber of
chosen geometry, we calculate the trajectories of the motors using an algorithm that
relies on conservation of volume. Using this so-called “heat-and-pull” method, we
produce tapered optical fibers that are composed of two conical tapers that connect
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the standard optical fiber to a uniform waist (see microscope image in Figure 2.1).
The uniform waist can reach diameters of a few hundreds of nanometers, producing
a nanofiber with a length that can vary between a few mm to 10 cm. This method
for manufacturing nanofibers has several advantages:

• We have full control over the shape of the nanofiber, and obtain nanofibers
that are uniform over their entire length, which is not necessarily the case
for nanofibers produced with other methods using fusion splicers or chemical
etchants [Brambilla (2010)].

• The tapered sections connect the nanofiber to a standard optical fiber, which
eases its manipulation since we benefit from all the technologies developed for
optical fibers in telecommunication.

• The tapers act as mode couplers for the nanofiber, which transfer the light form
the 125 µm diameter fiber to the nanofiber and reciprocally. By careful design
of adiabatic tapers, one can reach ultrahigh transmissions as we demonstrated
experimentally (see transmission signal in Figure 3.3b).

2.2 Pulling algorithm

This Section summarizes the main ingredients of the pulling model and the pulling
algorithm.

2.2.1 Fixed flame and constant pulling velocity

We first suppose that the flame is fixed and that we pull the fiber on both extremities
at a constant velocity vp. At t= 0, the fiber radius is R. The flame uniformly softens
a cylindrical fiber portion, with a height equal to L0. After a time dt, we assume that
the softened portion of glass has been elongated and forms a new cylinder, of radius
R + dR and height L0 + dz=L0 + vpdt. Conservation of volume gives [Birks and Li
(1992)]:

πR2L0 = π(R + dR)2(L0 + dz) . (2.1)

Solving the differential equation leads to:

R(z) =R0 exp

(
− z

2L0

)
. (2.2)
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For a fixed flame and a constant pulling velocity vp, we obtain a tapered fiber with
exponential taper profiles and a waist of length L0. However, for our application we
need more control on the taper profile:

• We need control over the length of the waist (in the current envisioning of
the setup, Lw' 10 cm). Reaching the desired size of the waist with a fixed
flame would require to use a flame that is more than 10 cm long, leading to
instabilities.

• The tapers have to be short enough in order to fit in the cryostat. To produce
tapered fibers with a nanofiber waist, we need to reduce the fiber radius by a
factor of ' 250, leading to exponential tapers that are too long. As a conse-
quence, we need to have some control on the taper geometry in order to create
shorter tapers.

2.2.2 Sweeping the flame

We control the taper geometry by moving the flame while pulling the fiber, as de-
scribed by F. Warken in [Warken (2007)]. We divide the pull into different steps n,
during which the flame moves at a velocity vf,n over a distance Ln, while the fiber is
being pulled at both extremities with velocities ±vp,n/2 (where vp,n/2<vf,n to ensure
that the flame can sweep a portion of the fiber). At each step, the points of the fiber
that are fully swept by the flame are evenly heated, which effectively varies the size
of flame and allows us to get some control over the taper geometry [Birks and Li
(1992)]. Assuming a linear profile of the velocities inside the flame, the velocity v(z)

of a point of the fiber of coordinate z, which is located inside the flame at time t
reads:

v(z) =
dz

dt
=
vp,n

L0

(
z − L0

2
− vf,nt

)
, (2.3)

where vp,n is the pulling velocity at step n. Solving this equation of motion, we obtain
the time needed for the flame to fully sweep a point:

t0,n =
L0

vp,n

ln

(
2vf,n + vp,n

2vf,n − vp,n

)
. (2.4)

Equation 2.2 gives the relation between the waist radius at step n, Rw,n, and the
waist radius at the previous step, Rw,n−1 after a heating time t0,n:

Rw,n =Rw,n−1 exp

(
−t0,nvf,n

2L0

)
. (2.5)
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Pulling algorithm

We calculate the pulling parameters vf,n, vp,n and Ln iteratively, starting from the
target fiber waist radius Rw until reaching the initial radius R0. In practice, we fix
the flame velocity to vf,n≡ vf = 2.1 mm/s for the entirety of the pull. At step n,
the waist radius Rw,n+1 is imposed by the chosen geometry. Using Equation 2.4 and
Equation 2.5, we obtain the pulling velocity vp,n. The remaining parameter we need
to calculate is the sweeping distance of the flame Ln. Using conservation of volume,
we relate the length of the waist at step n− 1, Lw,n−1, to the length of the waist at
step n, Lw,n:

R2
w,n−1Lw,n−1 =R2

w,nLw,n +R2
w,n−1

(
vf −

vp,n

2

)
t0,n . (2.6)

Finally, producing a waist of size Lw,n at step n requires a sweeping distance Ln that
is given by:

(Ln − vft0,n)
(
vf +

vp,n

2

)
= vfLw,n . (2.7)

Once those parameters are calculated, we can pull tapered fibers with a chosen taper
geometry and a chosen size of waist. Note that we do not move the flame in practice,
but we encode its motion into the one of the motors.

2.3 Important pre-pull steps

The procedure to obtain ultrahigh transmission tapered nanofibers involves a series
of cleaning and alignment steps:

• We pay particular attention to the pre-pull cleanliness of the fiber. Indeed,
any remaining particulate from buffer removal, solvent evaporation or any dust
on the surface of the fiber will burn during the pull and greatly diminish the
transmission. We use our in situ optical microscope to image the fiber prior
to the pull and ensure that there is not any visible particulate on the surface
within the resolution of the optical microscope.

• Once the fiber is cleaned, we position it on the pulling motors. Using our in
situ optical microscope, we verify that the fiber is properly tensioned, and we
carefully align it with respect to the center of the flame. The alignment is
precise to a few microns over the full length of the fiber (a few cm).
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2.4 Characterization of our tapered optical fibers

We characterize our nanofibers using different diagnostics:

• We first validate the accuracy of our simulation of the expected fiber profile
using an in situ optical microscope. We image an optical microfiber over its
entire length1, and compare the obtained profile to the calculated one. The
root mean square of the relative difference between the two profiles is smaller
than 2%, showing the accuracy of our algorithm and pulling apparatus for large
radii.

• We use a scanning electron microscope to measure the nanofiber profile below
a micrometer and verify that our nanofibers truly achieve the desired diameter.
For an expected diameter of 500 nm, we measured a diameter of 536± 12 nm,
where the error is systematic.

• We measure the transmission of light of wavelength 780 nm through the fiber
during the pulling process (see transmission signal in Figure 3.3b). We obtain
single-mode transmissions of 99.95±0.02%, which represents a loss from taper-
ing of 2.6× 10−5 dB/mm when normalized to the entire stretch. The measured
losses present an improvement of two orders of magnitude when compared to
work reported elsewhere [Brambilla (2010)].

• Transferred to a high vacuum environment, our nanofibers of typical radius
equal to 250 nm, can withstand the application of 400 mW of laser power at a
wavelength of 760 nm. This level of power is well above the one needed for our
experiments.

Applying our pulling procedure, we have shown that we can produce tapered optical
nanofibers with a 0.9995 transmission. For a typical trapping power of 30 mW, this
represents a loss of 15 µW inside the dilution refrigerator. The next Chapter shows
our work to understand the origin of the residual sources of losses.

1Here, we pulled the fiber to a final radius of a few micrometers, so as to remain above the
resolution of our optical microscope.
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We present a procedure for reproducibly fabricating ultrahigh transmission optical
nanofibers (530 nm diameter and 84 mm stretch) with single-mode transmissions
of 99.95 ± 0.02%, which represents a loss from tapering of 2.6 × 10−5 dB/mm
when normalized to the entire stretch. When controllably launching the next family
of higher-order modes on a fiber with 195 mm stretch, we achieve a transmission of
97.8 ± 2.8%, which has a loss from tapering of 5.0 × 10−4 dB/mm when normalized
to the entire stretch. Our pulling and transfer procedures allow us to fabricate optical
nanofibers that transmit more than 400 mW in high vacuum conditions. These results,
published as parameters in our previous work, present an improvement of two orders
of magnitude less loss for the fundamental mode and an increase in transmission of
more than 300% for higher-order modes, when following the protocols detailed in this
paper. We extract from the transmission during the pull, the only reported spectrogram
of a fundamental mode launch that does not include excitation to asymmetric modes;
in stark contrast to a pull in which our cleaning protocol is not followed. These
results depend critically on the pre-pull cleanliness and when properly following our
pulling protocols are in excellent agreement with simulations. C© 2014 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4879799]

I. INTRODUCTION

Optical nanofibers have seen widespread use in science and engineering applications in the
last thirty years.1, 2 The tight confinement of the evanescent field around the optical nanofiber,3

unique light geometries provided by the fiber modes,4–6 low loss, and promise of improved atom-
light interaction7–11 have led to increased interest in the physics community. Optical micro- or
nanofibers are used for sensing and detection,12, 13 and coupling light to resonators,12, 14–18 NV
centers,19 or photonic crystals.20–22 Optical nanofiber fabricated systems can be connected to an
existing fiber network to provide applications in quantum information science.23 The development
of atom traps around optical nanofibers affords new avenues of research4, 8, 10 including loss-limited
hybrid quantum systems. These applications can benefit from high transmission nanofibers through
a reduction in unwanted stray light fields produced from non adiabatic mode excitation and reduced
laser power requirements. Here we present the tools and procedures necessary to create ultrahigh
transmission nanofibers.

Previous work has focused on the post-pull environmental controls in humidity and air purity;24

here we focus on the critical pre-pull steps necessary to achieve an ultrahigh transmission before
handling the known environmental effects. Following the protocols and procedures we have produced
fibers with 99.95% transmission when launching the fundamental mode. We have also launched

aCorresponding author: rolston@umd.edu
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higher-order modes,25, 26 where we achieve transmissions of greater than 97% for the first family
of excited modes. This level of transmission has required a thorough optimization of the pulling
algorithm and of the cleaning procedure. Here, we explicitly explain our technique and our apparatus
that produces fibers that we will use in a series of experiments in quantum hybrid systems.27, 28

Our pulling technique, using a well-known methodology,1 requires two pulling motors and
a stationary oxyhydrogen heat source. The flame brushing method allows us to reliably produce
optical nanofibers with controllable taper geometries and a uniform waist. The waist can vary in
length from 1 to 100 mm, and we can achieve radii as small as hundreds of nanometers.29–33 Rather
than sweep the flame back and forth over the fiber, we keep the flame stationary; this action prevents
the creation of small air currents, which could lead to nonuniformities on the fiber waist and is
equivalent to transforming to the rest frame of the flame. This transformation is applicable to other
pulling techniques as well, so there would be no need to scan a heat source.

Other common techniques for optical nanofiber production include micro-furnaces, fusion
splicers, chemical etchants, and CO2 lasers.34–39 Chemical etching generally produces lower trans-
mission than other heat and pull methods and offers less control over the shape of the taper and the
length of the waist. A CO2 laser produces high-transmission optical nanofibers but the final diameter
is limited by the power and focus of the laser. Here we present, to best of our knowledge, the highest
recorded transmission optical nanofibers, with a loss of 2.6 × 10−5 dB/mm on the fundamental
mode,1, 40 with controllable taper geometries and long fiber waists which are suitable for the space
and optical constraints of cryogenic environments.28

The paper is organized as follows: Section II discusses the experimental setup. In Sec. III
we describe the necessary steps for a typical pull, detailing the cleaning and alignment process.
Sec. IV examines the quality of the produced fibers by measuring their transmission and comparing
our results to other reported measurements. In Sec. V we report the transmission of more than
400 mW through the nanofiber under high vacuum conditions. Sec. VI presents our conclusions.
Appendices A and B detail procedures and controls.

II. EXPERIMENTAL SETUP

This sections describes the details of the experimental setup. Our work follows the originally
Mainz and currently Vienna group.32 A more detailed discussion of the algorithm and experimental
verification can be found in Appendix A.

A. The fiber-pulling apparatus

The fiber-puller apparatus (see. Fig. 1 and Table I) consists of a heat source that brings the
glass to a temperature greater than its softening point (1585◦ C for fused silica41) and two motors
that pull the fiber from both ends. We use two computer-controlled motors, Newport XML 210
(fiber motors), mounted to a precision-ground granite slab with dimensions 12′′ × 48′′ × 4′′, flat to
3.81 µm on average. The granite slab serves two purposes: it is a damping weight and a flat surface.
The weight of the granite slab, exceeding 100 kg, damps the recoil from the fiber motors as they
change direction at the end of every pull step. Without a flat surface the motors will not work to
specification, leading to parasitic effects on the nanofiber: the pitch or yaw of the motor can vary
the distance between the fiber and the flame, changing the effective size of the flame and pulling
the fiber in various directions (negating any pre-pull alignment). The motors are mounted to the
granite by L-bracket adapters designed to not deform the motors from the the granite surface. We
then mount the granite to an optical breadboard on three points so that surface imperfections of the
optical table do not distort the granite slab.

The fiber motors, have 210 mm of motion, with a minimum incremental motion of 0.01 µm and
an on-axis accuracy of 3 ± 1.5 µm (1 in Fig. 1). The resolution of the motors is much smaller than
any other length scale in our system, making the motors suitable for pulling. The fiber motors are
controlled with a Newport XPS controller, which allows us to implement trajectories with a constant
acceleration, resulting in jerkless motion during each step of the pull.
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FIG. 1. a) A schematic of the fiber pulling setup (view from above). b) A photograph of the pulling apparatus with prominent
pieces numbered as in Table I. 1) Fiber motors. 2) Granite slab. 3) Optical breadboard. 4) Adapter plates. 5) L brackets.
6) XYZ fiber alignment flexure stages. 7) Fiber holders. 8) Adjustment screws. 9) Flow meters. 10) Filters. 11) Valves.
12) Pipes. 13) Filter. 14) Nozzle. 15) (a) Illumination system, (b) Optical microscope, and (c) CCD. 16) Flame positioning
stepper motor. 17) 2 MP USB microscope positioned orthogonally to the fiber. The entire apparatus is inside a cleanroom
rated to ISO Class 100.

Attached to each XML 210 (1 in Fig. 1) are Newport 466A flexure stages (6 in Fig. 1), each
with a Newport 466A-710 fiber clamp on top (7 in Fig. 1). We position the v-grooves of the fiber
clamp on each stage at the minimum separation allowed by the parameters of a given pull, which is
typically 3 cm. Separating the fiber clamps at the minimum distance minimizes the fiber sag during
the pull. The v-grooves of the fiber clamps on the left and right fiber motors must be aligned within
micrometers to achieve a high transmission. We align the v-grooves using Newport DS-4F (8 in
Fig. 1) and AJS100-0.5 (8 in Fig. 1) micrometers, attached to the flexure stages to allow for three
axis translation. To perform the alignment we use an in situ optical microscope (15(a)-(c) in Fig. 1).

The optical microscope includes a Mitutoyo M Plan APO 10X infinity-corrected objective and a
Point Grey Flea2G CCD camera (15(a)-(c) in Fig. 1). The Flea2G has 2448×2048, 3.45×3.45 µm2

pixels. With the inclusion of the long working distance microscope objective each pixel corresponds
to 0.345×0.345 µm2 in the image. The microscope is illuminated by a Köhler illumination system
composed of a thermal light source, two condenser lenses, and two apertures.
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TABLE I. List of equipment parts for the pulling apparatus with numbers corresponding to Fig. 1.

Item Part Description

1 Newport XML 210 Computer-controlled high precision motor
2 Granite slab 12′′ × 48′′ × 4′′, Flat to 3.81 µm

3 Newport VH3660W 3′ × 5′ workstation
4 Adapter Plate Adapts metric XML 210 to 466A
5 L brackets Adapts XML 210 to granite
6 Newport 466A Compact XYZ fiber alignment flexure stages
7 Newport 466A-710 Double arm bare fiber holder double V-grooves
8 Newport DS-4F High precision adjuster, 8.0 mm coarse, 0.3 mm fine travel
8 Newport AJS100-0.5 High precision small knob adjustment screw, 12.7 mm travel
9 Omega FMA 5400/5500 Flow meters
10 Swagelok SS-4F-7 Particulate filter, 7 micron pore size
11 Swagelok SS-4P4T Valve to close the flow of gas
12 Swagelok SS-FM4SL4SL4-12 Stainless steel flexible tubing
13 GLFPF3000VMM4 “Mini Gaskleen filter” from Pall, removal rating: ≥ 0.003 µm
14 Stainless Steel Custom flame nozzle 29, 228 µm holes in a 1 × 2 mm2 array
15 Optical microscope Microscope objective, CCD, and illumination system
15a Illumintation System Kohler illumination system
15b Mitutoyo M Plan APO 10X Microscope objective, 0.28 NA, working distance 33.5 mm
15c Flea2G CCD camera 2448 × 2048 pixels, 3.45 × 3.45 µm2 pixels
16 Thorlabs DRV014 50 mm Trapezoidal Stepper Motor Drive
17 USB microscope 200x, 2 MP USB microscope
18 Platinum wire Platinum catalyst to ignite flame
19 Clean room ISO class 100 cleanroom

We use an oxyhydrogen flame as a heat source to thin the fibers, in a stoichiometric mixture
of hydrogen and oxygen to ensure that water vapor is the only byproduct. Stainless steel gas lines
introduce the hydrogen (red) and oxygen (green) to two Omega FMA 5400/5500 flow meters (9 in
Fig. 1). The flow rates are set to 30 mL/min and 60 mL/min for oxygen and hydrogen respectively.

Directly after the flow meters is a coarse particle filter (10 in Fig. 1), followed by a valve for
safety (11 in Fig. 1). We mix the gases in a tee after a flexible stainless steel tube (12 in Fig. 1).
The gas mixture is finely filtered with a high quality 3 nm filter (13 in Fig. 1). Finally the hydrogen-
oxygen mixture exits through a custom-made nozzle (14 in Fig. 1). The nozzle is composed of
two parts and is constructed out of stainless steel. The first part is a 6.5 mm diameter plate with a
3.175 mm thickness. The plate has a 1 × 2 mm2 array of 29, 228 µm holes. The long axis of the
holes is perpendicular to the fiber axis. The second part of the nozzle is an adapter in which the
first plate is pressure fit into the gas line. The outer diameter is 9.5 mm and is counter sunk 3.4 mm
with an inner diameter of 6.35 mm. This piece connects to 6.35 mm outer diameter tubing that then
connects to stainless steel gas line with a Swagelok connector. The adapter was heated, allowing it
to expand, so that the plate would slide into the countersunk inner diameter. The design diameter
serves as a flame arrestor, while still allowing for the gas flow to be in the laminar regime.

We ignite the flame using a resistively-heated platinum wire as a catalyst. This process is clean
and prevents the deposition of any particulate on the fiber from the ignition process. The nozzle is
clamped to a Thorlabs DRV014 motor (16 in Fig. 1), the flame motor, that translates the flame in
front of the fiber for the duration of the pulling process. The flame motor introduces and removes
the heat source and during the pull we fix the horizontal distance between the nozzle and the front
edge of the fiber at 0.5 mm, as depicted in Fig. 1. We have found experimentally that a distance of
0.4-0.6 mm provides the proper heat distribution from our flame. Working outside this range for our
flow rates significantly reduces the reproducibility of the fabrication process. If the flow rates were
to change, the optimal working distance between the nozzle and fiber would need to be modified
and it would be necessary to remeasure the effective width of the flame (see Sec. A 2).

The entire pulling apparatus is inside a cleanroom initially specified as ISO Class 100. If any fiber
buffer remains or dust lands on the fiber at any time the transmission will degrade (see Appendix B).
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FIG. 2. The experimental setup to monitor the transmission when launching the fundamental mode.

B. Transmission monitoring setup

Figure 2 shows the transmission monitoring setup for the fundamental mode. Using a 780 nm
Vortex laser, we launch light into a fiber and split the light with a 50/50 in-fiber beam splitter. In
one output of the beam splitter we record the laser power using a Thorlabs DET36A photodetector.
The other output is connected to a FC connectorized fiber that we fusion splice to Fibercore
SM800 fiber. We then place the SM800 fiber in the fiber puller and record the intensity of light
through the fiber at the output of the fiber puller using another DET36A for the duration of the
pull. We record data on a DPO7054 Tektroniks oscilloscope in high resolution mode set to collect
107 samples. We normalize the signal through the fiber puller to the laser drift throughout the
pull.

When launching higher-order modes, a superposition of the LP11 family of modes, we do not
use the in-fiber beam splitter. Instead, we use a pick-off to track the laser drift and then free-space
couple light into an SM1500 fiber from Fibercore with an initial cladding diameter of 50 µm.

We generate the LP11 family superposition by launching a Gaussian beam from a New Focus
Vortex laser through a phase plate.42, 43 One side of the phase plate writes a π phase shift on half of
the beam. This generates a two-lobed mode that approximates the TEM01 free space optical mode.
The TEM01 free space optical mode is then coupled into an SM1500 fiber and excites a superposition
of the TE01, TM01, and HE21 modes. There is less than one percent fundamental mode corruption,
which we take into consideration when calculating the transmission.

III. THE PULLING PROCESS

The setup for an ultrahigh transmission pull involves a series of cleaning and alignment steps.
We outline this procedure in this section.

A. Cleaning procedure

Obtaining a high transmission through an optical nanofiber requires a detailed analysis of the
pre-pull cleanliness of the fiber. If any particulate remains from the fiber buffer or if dust arrives on
the fiber before being introduced to the flame, the particulate will burn and greatly diminish the final
transmission, see Appendix B. Furthermore, evaporate from solvents can decrease transmission.

Our cleaning procedure starts by mechanically removing the protective plastic buffer to expose
the glass of the fiber to the flame. Then we use isopropyl alcohol on lens tissue to remove larger
particulate. A few wipes of acetone44 are then applied with class 10a cleanroom wipes from Ted
Pella, in order to dissolve smaller remnants of the buffer. A final cleaning with methanol using class
10a cleanroom wipes removes any evaporate left from the previous solvents. After, we carefully lay
the fiber into the grooves of the fiber clamps on the pulling apparatus and image the entire length
of cleaned fiber using the optical microscope. If there is any visible dust, particulate, or evaporate,
within the 2 µm resolution of the optical microscope, we start the cleaning procedure over. If the
fiber is clean, we proceed to align it.
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a) b)

250 µm 250 µm

FIG. 3. Images of the section of fiber held directly next to the left (a) and right (b) fiber clamps respectively. The two images
are separated by 3 cm.

B. Alignment procedure

The alignment procedure begins by properly tensioning the fiber. We tension the fiber by moving
the fiber motors apart in 200 µm increments until the fiber slides through the fiber clamps, which
typically takes 800 µm of total displacement. This allows the fiber to reach a uniform tension.
However, early measurements showed the fiber to be overtensioned: introducing the fiber to the
flame will yield immediate thinning, even if the motors are stationary. As a result, we then untension
the fiber in 20 µm increments until the fiber buckles. We observe the buckling process (the fiber
bending inwards and then straightening under the inward force from the motors) with a 2 MP USB
digital microscope mounted orthogonally to the flame above the center of the fiber, see 17 in Fig. 1.

The buckling process results in no loss in transmission and no thinning visible through the
optical microscope upon introducing the fiber to the flame within the microscope’s resolution of ±2
µm.

Once the fiber is properly tensioned, we align the fiber such that the sections of fiber directly
next to the left fiber clamp and right fiber clamp are equidistant from the optical microscope and
at the same height. We translate each section of fiber in front of the optical microscope using the
fiber motors, see Fig. 1, and align the height and focus of each fiber section using the micrometers
attached to the flexure stage until both images overlap. If we see a sag in the fiber caused by the
buckling we carefully retention the fiber in 5 µm steps until the fiber is straight as in Fig. 3. The
microscope objective has a 3 µm depth of field, so by matching the diameter of the lensed light from
the cladding and core we ensure the v-grooves of the fiber clamps on each motor are equidistant from
the camera, and therefore the nozzle of the flame. This alignment is on the order of micrometers
over a length of centimeters. Once the images overlap, see Fig. 3, the fiber is ready to be pulled.

IV. RESULTS

Here we discuss the results obtained from following the procedures outlined in the previous
sections. We present details on the transmissions achieved by following cleaning and alignment
procedures. Finally, we detail methods to aid in understanding the entire modal evolution during the
fiber pull as a final check on the quality of the nanofibers we produce.

A. Transmission

Figure 4(a) shows the transmission as a function of time during the pull for an optical nanofiber
with a 2 mrad angle taper to a radius of 6 µm and exponential profile to reach a final waist radius of
250 nm, with a fiber waist length of 5 mm. We achieve a transmission of 99.95 ± 0.02%, or a loss
of 2.6 × 10−5 dB/mm. The error listed in the transmission is the standard deviation. We see from
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FIG. 5. Propagation loss as a function of optical nanofiber radius as compiled in Ref. 1 edited to include our results for
optical nanofiber loss in dB/mm. The smaller, solid gray and black squares, circles, and triangles, represent previous results.
The solid red circle represents our result for loss launching the fundamental mode. The open red circle scales the fundamental
mode result to the effective radius to compare results with equivalent V numbers at 1550 nm. The solid blue square represents
our loss when launching the higher-order modes. Similarly the open blue square scales the result to the effective radius.

The final transmission is determined by taking the mean of the data after the pull ends, delineated
by the red line in Fig. 4, and dividing by the value of the normalized signal at the beginning of the
pull, which we must determine. We take a cumulative average of the transmission from the beginning
of the pull until just before any higher order modes are excited, see Sec. IV B. Using this we see that
the transmission steadies at 99.95 %. We find this a fair method because there is no detectable loss
over this range and no beating between modes (Appendix B) in the signal since we have yet to excite
any higher order modes, and by checking the cumulative average we show that the transmission
listed is steady and a lower bound.

Previous work has focused on telecom light at 1550 nm. In Fig. 5 we plot the propagation loss
as a function of optical nanofiber radius for different pulling techniques as compiled in Ref. 1 and
references therein. We extend the axes to overlay our results. Figure 5 shows that the lowest loss
for previous work on the fundamental mode is on the order of 10−3 dB/mm at 1550 nm, with final
radii of between 440-600 nm. Our result for the fundamental mode has a loss of 2.6 × 10−5 dB/mm
when the loss is taken over the entire 84 mm stretch. If the loss is only attributed to the 5 mm waist
this becomes 4.34 × 10−4 dB/mm. These results mark an improvement of two orders of magnitude
over previous work.1, 45, 46 For higher-order mode pulls using SM1500 fiber with an initial diameter
of 50 µm, the taper angle was 0.4 mrad until a radius of 6 µm and then had an exponential profile
until reaching a uniform waist radius of 280 nm. Here we achieved a loss of 5 × 10−4 dB/mm, when
taken over the entire stretch, which represents less loss than the previous results for fundamental
mode launches.

Since the V number is proportional to the fiber radius divided by the input wavelength we find
it fair to compare our results at a wavelength of 780 nm to the results in Fig. 5 at 1550 nm by
scaling our final radius by a factor of 2. The solid red circle and blue square in Fig. 5 represent
the actual radius of the pull while the open red circle and blue square are designed to scale our
results to equivalent V numbers for inputs at 1550 nm and represent an effective radius. This means
our effective final radius for the fundamental mode is 500 nm and for the higher modes 640 nm.
This ultra-high transmission is reproducible to better than 1% over time with the same fiber, when
following the cleaning and alignment procedure outlined in Sec. III.
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FIG. 6. Spectrogram of the transmission data from Fig. 4. The excited curves correspond to higher-order modes of the same
symmetry as the fundamental mode: EH11, HE12, and HE13.

Using a numerical Maxwell’s equations solver, FIMMPROP,47 we simulate the expected trans-
mission through a fiber with the same profile as in our pulls. We find the expected transmission
to be 99.97%,25 through a one − sided taper profile matching the 2 mrad pull depicted in Fig. 4,
which is consistent with our experimental result that measures the transmission through the entire
nanofiber. Furthermore, when launching the next family of modes through the fiber the FIMMPROP
simulations were well-matched to the achieved transmissions.26 This implies that we are not limited
by the pulling apparatus.

B. Spectrogram Analysis

We analyze the quality of the nanofiber using a spectrogram, a short-time Fourier transform of
the transmission data, also sometimes referred to as the Gabor Transform. The spectrogram allows
us to extract the entire modal evolution in the nanofiber during the pull. Each curve corresponds to
the evolving spatial beat frequency between the fundamental mode and excited modes propagating
in the fiber, while the contrast corresponds to the energy transferred from the fundamental mode.
Following this we can use theory and simulation to identify all modes that are excited during the
pull. A detailed description, with full theoretical background, can be found in Ref. 25.

Figure 6 is a spectrogram of the transmission data from Fig. 4. We see that for a successful
2 mrad pull with SM800 fiber we expect to observe a few higher order mode excitations. If modes
are excited that are asymmetric to the fundamental mode, we know the cylindrical symmetry of the
fiber was broken during the pulling process,25 which can aid in identifying and fixing the error in
the pulling apparatus.

It is worth noting that the modal excitation remains in the family of the same symmetry as the
fundamental mode. To the best of our knowledge, this is the first report of modal excitation that
remained purely in the symmetric family of modes. Previous work has seen asymmetric excitations
to the TE01, TM01, and HE21 modes.35, 48 In Appendix B, we demonstrate this is not the case for an
uncleaned fiber.
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V. POWER MEASUREMENTS

Once the pull is complete the fiber is transferred to a HV chamber beneath a HEPA filter.
Without keeping the fiber in a clean environment the transmission will degrade as dust accumulates
on the surface of the nanofiber waist and taper, which will cause the fiber to break under high powers
in vacuum due to heating.49

To prevent the leakage current from impinging on the nanofiber, we avoided direct line of sight
between the ion pump and the nanofiber by placing the ion pump on an elbow. Then between the
elbow and the ion pump we placed a grounding mesh to prevent the electric field from penetrating
past the mesh. With this arrangement a 250 nm radius nanofiber has withstood the application of
more than 400 ± 12 mW from a Ti:Sapphire laser at 760 nm in HV conditions.

VI. CONCLUSION

We provide the necessary procedures to clean, prepare, and pull an ultrahigh transmission
nanofiber in a reproducible way. The work is validated through microscopy, and we present the
transmission results of a standard 2 mrad pull yielding a transmission of 99.95 ± 0.02% or loss of
2.6 × 10−6 dB/mm, an improvement of two orders of magnitude for the fundamental mode. When
launching higher-order modes we have losses of 5 × 10−4 dB/mm. The transmission results are
in excellent agreement with transmission simulations, implying the limiting factor in transmission
comes from a lack of pre-pull cleanliness. We provide a detailed cleaning protocol, which greatly
improves the reproducibility for ultrahigh transmission fibers and produces the first recorded tapers
without asymmetric modal excitation. We provide evidence that the pre-pull cleanliness is critical
to achieving ultrahigh transmission nanofibers. These fibers can achieve efficient guidance with
short, controllable taper lengths and are usable for various atomic physics applications. During the
manuscript writing process we became aware of similar independent work.50

ACKNOWLEDGMENTS

Work supported by National Science Foundation of the USA through the Physics Frontier
Center at the Joint Quantum Institute, Army Research Office Atomtronics MURI, and S. R. thanks
the Fulbright Foundation for support. We acknowledge the support of the Maryland NanoCenter and
its NispLab. We would like to thank Fredrik Fatemi and Guy Beadie for their major contributions
to the higher-order mode studies and Prof. A. Rauschenbeutel for his support and interest in this
project.

APPENDIX A

We pull our fibers using a flame brushing technique.30–33 A section of fiber, less than a millimeter
in length, is brought to its softening point using a clean oxyhydrogen flame and then pulled by two
high-precision motors.

Our algorithm,51 based on the work of the originally Mainz and currently Vienna group,32

calculates the trajectories of the motors needed to produce a fiber with the desired final radius,
length of uniform waist, and taper geometry. The tapers are formed by a series of small sections that
are well approximated by lines, allowing us to form a linear taper with a given angle down to a radius
of 6 µm, which connects to an exponential that smoothly reduces to a submicron radius, typically
250 nm. The slope of the linear section generally varies between 0.3 and 5 mrad. Our algorithm
divides the pull into steps defined by their pulling velocity and the traveling length of the flame.
We recursively calculate the parameters, starting from the desired final radius, rw, until reaching the
initial radius, r0. The full details and code can be found at Ref. 44.

1. Motor Control

The model produces a velocity profile that is a square wave in time. Experimentally, we
approximate the square wave in three parts:
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1. A ramp up to vb,n ± v f,n/2
2. A constant pull velocity equal to vb,n ± v f,n/2
3. A ramp down in velocity to zero.

Where vb,n is the velocity of the flame in step n and v f,n is the velocity that the fiber motors move
apart. The addition of vb,n arises from the transformation to the rest frame of the flame. Typically,
vb,n is an order of magnitude greater than v f,n . When transforming to the rest frame of the flame,
both motors move in the direction the flame would have swept in that step. The motor whose pull
velocity is in the same direction as the flame motion will lead while the other motor will lag. We
have verified this sequence using the encoder of the motor that allows us to record the trajectory of
the motors and by looking at the output of a Michelson interferometer with one arm spanning the
two motorized stages.

2. Measurement of the flame width

One experimental parameter fundamental to the algorithm is the effective size of the flame, L0,
which corresponds to the zone of the fiber inside the flame that melts and thins during the pulling
process. The softening point for the fused silica used by Fibercore for the SM800 fiber occurs at
1585◦ C. The best way to evaluate this is to measure the impact of the flame on the fiber, since our
flame cannot be observed by eye.

Working with reproducible conditions requires that we fix the working distance between the
fiber and the nozzle. As a consequence, the fiber is always at the same spot inside the flame and
always sees the same distribution of temperature. We check the distance with a microscope before
each pull and fix it to 400 ± 50 µm.

We measure L0 by fixing the flame and letting both motors move apart at a constant velocity.
Conservation of volume leads to an exponential profile with a waist of length L0, and the radius
profile is given by :

rw = r0 exp

(
− thv f

2L0

)
, (A1)

where th is the heating time and r0 the unmodified radius of the fiber.
We use our imaging system (15 in Fig. 1) to measure the radius of the waist of the fiber for

different values of v f th , and fit ln (r0/rw) to extract L0.
The measurement consists of fixing the pulling velocity at 0.05 mm/s, varying the heating time

from 2 to 32 s, and then measuring the final radius of the waist. We limit ourselves to times less than
40 seconds to stay within the 2 µm resolution of our imaging system.

We characterize the size of the flame by plotting ln (r0/rw) as a function of v f th we obtain a fit
with a reduced χ2 of 1.07 that yields L0 = 0.753 ± 0.014 mm. This parameter should be checked
from time to time as the pulling apparatus is used since it can vary by a small amount.

Measuring the length of the waist or fitting the profiles of the taper to an exponential are less
accurate methods than the above procedure because Eq. (A1) assumes a uniform hot zone, L0. In
this measurement we keep the flame fixed, which means that our hot zone is not uniform. During
the actual pulling procedure we sweep, which creates an effective uniform hot zone. Here, the
section of fiber located at the central point of the flame is thinned the most, as a result it is more
accurate to measure the profile of the fiber after tapering and find the smallest radius to extract the
value of L0.

3. Microscopy validation

We validate the accuracy of our simulation of the expected fiber profile using both an in situ
optical microscope and a scanning electron microscope (SEM). Figure 7(a) shows the measured
(blue markers) and simulated profiles (red lines) of a fiber taper imaged optically. The taper profile
is designed to have three angles, 5, 2, and 3 mrad, that taper down to radii of 50, 35 and 25 µm,
respectively. An exponential profile smoothly links the radius of 25 µm down to the the final radius
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FIG. 7. Profile of a multiple-angled, linearly tapered fiber. (a) The blue dots are measurements taken using the optical
microscope and the red line represents the profile shape from the fiber tapering simulation. The pull was for a final radius
of 15 µm. The taper profile was designed to have three angles, 5, 2, 3 mrad, that taper down to radii of 50, 35 and 25 µm,
respectively. The error in each measurement is dominated by a systematic error of ±2.5 µm. (b) The relative difference
between the expected profile and the measured profile with an RMS value of 0.0187.

of 15 µm. The final radius is chosen to be well above the resolution of our optical microscope.
The length of the uniform waist is chosen to be 5 mm long. Figure 7(a) is a compilation of optical
microscope images taken of the entirety of the tapered fiber. An edge finding technique then measures
the profile of the fiber at different cuts. The error in the measured radius is dominated by a systematic
error of ±2.5 µm due to the finite resolution of the imaging system. We first use an image of the
unmodified fiber, which has a diameter of 125.1 µm, to determine the pixel to micron conversion.
The number of pixels measured for an unmodified fiber has an error of a few pixels as a result of
the resolution of the optical microscope. We then binarize the gray levels of the pixels and choose a
threshold such that the diameter of the unmodified fiber matches the pixel count from the previous
measurement. The edge finding technique itself has an error of about 0.5 pixels for a flat length of
fiber resulting from the binarization process. Figure 7(b) displays the relative difference between
the measured image radius and the simulated radius normalized to the expected radius. The largest
deviation is slightly larger than 2%, while the RMS value is 0.0187. This verifies the accuracy of
our algorithm and pulling apparatus for larger radius tapers.

We use a SEM to measure the nanofiber profile below a micrometer to verify that our nanofibers
truly achieve the desired diameter. Figure 8, shows a SEM image of a nanofiber, coated with
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FIG. 8. A SEM image taken in the NISP lab at UMD. We measure a radius of 536 ± 12 nm, the expected diameter of the
waist is 500 nm.

graphite, with an expected diameter of 500 nm, and a measured diameter of 536 ± 12 nm. The error
is systematic, coming from the scaling factor associated with the SEM calibration. We attribute this
small disagreement to thermal forces that push the fiber away from the nozzle at the end of the pull
when the fiber is thin. We could compensate for this in the algorithm by adjusting the effective hot
zone as the fiber tapers, but we have not found it necessary to do so.

APPENDIX B

Any particulate accumulation on the optical fiber before the pull begins will compromise the
quality of the optical nanofiber: it will degrade the transmission, excite higher order modes, change
the modal evolution, and scatter light. If any particulate accumulates on the fiber before the pull, the
maximum possible transmission for a given taper geometry will not be achieved. Using FIMMPROP,
as described in IV A, we have a sense of what this ideal transmission is for a given geometry, and if
our transmission deviates, it can generally be attributed to a lack of proper cleaning. If the nanofiber
environment is not clean or has a high humidity the transmission will decrease after a pull is
finished.24 Furthermore, if any dust accumulates on the nanofiber surface, it will not withstand high
powers under vacuum.

If the fiber is not properly cleaned before pulling, the final transmission can vary by a few
percent. Figure 9 displays the extreme case of mechanically stripping the buffer and not cleaning
the fiber at all before pulling. Here, the transmission is only 80.5% for a 2 mrad taper down to
rw = 250 nm, leading to more than a 19% loss in transmission when compared to a properly cleaned
fiber. The spectrogram in Fig. 9(b) shows excitation to excited asymmetric mode: TE01, TM01, and
HE21, identified by arrows, that were not present when the fiber was properly cleaned. It is further
interesting that there is more energy transferred to these asymmetric modes than any other modes.

Before every pull, we follow the cleaning procedure described in Sec. III A. After imaging the
fiber, we decide whether or not we should start the pull or restart the cleaning process. We restart

 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license. See: http://creativecommons.org/licenses/by/3.0/
Downloaded to IP:  129.2.90.214 On: Fri, 31 Oct 2014 14:41:56







067124-16 Hoffman et al. AIP Advances 4, 067124 (2014)

13 K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, Opt. Express 15, 5431 (2007).
14 G. Kakarantzas, T. A. Birks, and P. St. J. Russell, Opt. Lett. 27, 1013 (2002).
15 Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
16 M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. N. Chormaic, Review of Scientific Instruments 80, 053102

(2009).
17 S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
18 M. Fujiwara, T. Noda, A. Tanaka, K. Toubaru, H.-Q. Zhao, and S. Takeuchi, Opt. Express 20, 19545 (2012).
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We have seen in Chapter 1 that the total internal reflexion at the interface between
two media with different indices of refraction allows light to be guided in optical
fibers. A more detailed analysis of light propagation in optical fibers is given in
terms of electromagnetic modes that are obtained by solving Maxwell’s equations
in a cylindrical dielectric waveguide [Yariv (1990)]. In this Chapter, we analyze our
transmission signals in terms of modes so as to get more insight into light propagation
in our tapered optical fibers.

39
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3.1 Fiber used

For the experiments presented in this Chapter, we have used a 125 µm diameter
SM800 fiber from Fibercore. The fiber is composed of a core of index of refrac-
tion ncore = 1.45861, and a cladding of index of refraction ncladding = 1.45367 that is
surrounded by air. The manufacturer indicates that the fiber is single-mode for wave-
lengths that are greater than 792 nm. The numerical aperture (N.A.) of the fiber is
given by:

N.A.=
√
n2

core − n2
clad = 0.12 . (3.1)

The fiber is surrounded by air, and we model it by the following step-index structure:




n=ncore for 0≤ r <a ,
n=nclad for a≤ r≤R ,

n= 1.00029 for r >R ,

(3.2)

where a is the core radius, R is the fiber radius and r is the radius in cylindrical
coordinates.

3.2 Modes in an optical fiber

We review in this Section the basic properties of optical fibers without demonstration
(for the full derivation, see [Yariv (1990)]). Because of the cylindrical symmetry
around the z-axis, it is convenient to work in the cylindrical coordinate system. The
fields propagate along the z-axis, and we thus assume:

[
E(r, t)

H(r, t)

]
=

[
E(r, φ)

H(r, φ)

]
exp[i(βz − ωt)] , (3.3)

Solving Maxwell’s equations, one obtains a discrete set of solutions describing the
modes that are guided inside the core of the waveguide. The guided modes are
labeled by their mode family number l and their mode order m [Yariv (1990)]. The
amplitude of their electromagnetic field oscillates as a function of r inside the core
(where m is the number of field zeros), and decays exponentially outside. In general,
for l 6= 0, we observe that the fields show non-zero longitudinal components Ez and
Hz, which distinguishes them from transverse modes1. In this case, the guided modes

1Satisfying all the boundary conditions in a cylindrical waveguide introduces non-zero longitudi-
nal components for E and H.
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are called “hybrid modes”, and labeled HElm and EHlm. For l= 0, we obtain a family
of TE0m modes that are transverse electric (Ez = 0) and a family of TM0m modes
that are transverse magnetic (Hz = 0). One observes that for modes that are guided
inside the core, the propagation constants must satisfy:

nclad k0<βlm≤ncore k0 , (3.4)

where k0 is free-space wavevector. We define the effective index of refraction neff :

βlm =neff k0 , (3.5)

where neff depends on l and m. The effective index neff can be interpreted as the
index of refraction experienced by the mode as it propagates through the medium.
As a consequence, depending on the value of neff , we can identify several types of
modes:

• Core modes have most of their energy confined in the core, while a small portion
of their energy leaks into the cladding. Thus, as we have seen, nclad <neff ≤ncore.

• Solutions of Maxwell’s equation verifying 1<neff ≤nclad correspond to “cladding
modes”, that are guided by the cladding-to-air interface.

• Finally, neff = 1 corresponds to radiation modes that are radiated into the air
and that are thus not guided by the fiber.

The number of modes that are accepted inside the core depends on the size of the
core a, the wavelength of the light λ and the numerical aperture of the fiber. We
define the dimensionless parameter Vcore:

Vcore =
2π

λ
a N.A.=

2π

λ
a
√
n2

core − n2
clad . (3.6)

In the approximation Vcore� 1, one can show that the number of bound modes in
the core is ∝V 2

core/2. When Vcore≤ 2.405, the only bound mode that can propagate
inside the core is the HE11 mode: in this case, the fiber is single-mode, and the HE11

mode is called the fundamental mode. We also define the dimensionless parameter
Vclad:

Vclad =
2π

λ
R
√
n2

clad − n2
air , (3.7)

where nair is the air index of refraction. For Vclad� 1, the number of modes that are
guided by the cladding-to-air interface is ∝V 2

clad/2. In this Chapter, we are interested
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Figure 3.1: Modal evolution in a tapered fiber. a, Dispersion relations for the first
few excited modes of the families l= 0 (TE modes are in red and TM modes in orange), l= 1
(blue curves) and l= 2 (green curves). The curves were calculated using the fully vectorial
finite difference mode solver from commercial software FIMMWAVE2. For the largest values
of Vcore and Vclad, the fiber is initially single mode. When Vcore' 0.76, the fundamental mode
can not be guided as a core mode anymore, and escapes into the cladding. b, Zoom of the
dispersion relations for low fiber radii. As we decrease Vcore and Vclad, higher-order modes
get cutoff progressively. Below Vclad = 2.405, the nanofiber is single mode.

in the propagation, through a tapered fiber, of the fundamental, HE11 mode.

3.3 Mode evolution in a tapered fiber

We initially launch the fundamental mode HE11 in the core of the unpulled fiber.
In order to efficiently launch the fundamental mode into the nanofiber, the light has
to remain confined to the HE11 everywhere inside the tapered fiber. As the light
propagates through the fiber, it first encounters a taper where the radii a and R (and
thus Vcore and Vclad) decrease3. The plots in Figure 3.1a and Figure 3.1b show the
evolution of the effective indices neff as a function of Vcore and Vclad of the first few
modes of families with l= 0, 1 and 2 for light of wavelength λ= 780.24 nm. There
are three important steps in the propagation of the HE11 mode through the taper:

• Initially, Vcore = 2.4412, and the effective index of the fundamental mode verifies
nclad <neff,HE11 ≤ncore. The light is guided by the core-to-cladding interface, and
propagates as a core mode. As Vcore decreases, neff,HE11 decreases and approaches
nclad.

2FIMMWAVE/FIMMPROP by Photon Design Ltd., http://www.photond.com.
3We assume that the core and the cladding radii decrease at the same rate along the taper, which

implies that there is no diffusion of the core into the cladding during the tapering process.
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• When Vcore' 0.76, we observe that neff,HE11 =nclad, showing that the core radius
has become too small to support the fundamental mode (a' 0.78 µm). The
light escapes into the cladding and is guided by the cladding-to-air interface.
At this point, the size of the waveguide (R' 19.4 µm) is large compared to
the wavelength, and therefore: Vclad' 165� 1. As a consequence, the number
of modes that are accepted inside the cladding, together with the fundamental
mode, is of the order of 104. Moreover, we observe in Figure 3.1a that the low-
order cladding modes all have similar indices of refraction neff 'nclad, showing
that energy can be easily transferred from the HE11 mode to higher-order modes.
As a consequence, the moment when the radius of the fiber waist reaches R'
19.4 µm is a critical step in the pulling process.

• Further decreasing R (or Vclad in Figure 3.1b), we observe that the effective
indices decrease and approach nair. The effective indices of the higher-order
modes successively reach their cutoff condition neff =nair, where they stop be-
ing guided by the fiber. When Vclad = 2.405 (R' 300 nm), the fiber is single
mode again: only the fundamental mode HE11 is transmitted through the fiber,
whereas light that has been transferred to higher-order modes during the prop-
agation radiates in the air.

As it propagates through the tapered fiber, the fundamental mode experiences drastic
changes. Energy transfers between modes can occur, especially at the moment when
the mode escapes from the core to the cladding, and where the splitting between
adjacent propagation constants is the smallest. For a perfectly cylindrical fiber,
energy transfers only occur between modes of same l. Energy transfers between
modes of different l are a consequence of the presence of asymmetries.

3.4 Adiabatic tapers

With a typical radius of ' 250 nm, the nanofibers used for trapping atoms are single
mode. Higher-order modes that are excited in the tapers subsequently reach their
cutoffs and radiate into the air. Any higher-order excitation in the taper leads to
losses inside the dilution fridge. As a consequence, we want the fundamental mode
to evolve adiabatically through the taper [Snyder and Love (1983)] so as not to
excite higher-order modes. Adiabaticity can be thought in a simple optical sense, as
making sure that there is always total internal reflection as the ray propagates. As a
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Figure 3.2: Adiabaticity criteria. For taper angles that are small enough, the fun-
damental mode evolves adiabatically in the taper. The blue curve gives an upper limit
(obtained when zt = zb) on the taper angles one has to use top reach adiabaticity.

consequence, adiabaticity is reached for tapers that are long enough, more precisely
when the characteristic length of the taper:

zt =
R

tan Ω
, (3.8)

is large compared to the characteristic beat length (the spatial frequency of the beat-
ing) between the fundamental mode and the first excited mode of the family l= 1

(the EH11 mode):

zb =
2π

βHE11 − βEH11

=
λ

neff,HE11 − neff,EH11

. (3.9)

Solving the equation zb = zt, we obtain an upper limit on the taper angle Ω as a
function of R. In order to obtain an adiabatic taper (zt� zb) the taper angles must
be small compared to the ones indicated by the blue curve in Figure 3.2. As expected,
we observe that the adiabaticity condition is the most stringent for R' 20 µm, where
the light escapes from the core to the cladding. Our 2 mrad linear tapers show angles
that are well below this adiabaticity threshold everywhere along the taper, and are
consequently adiabatic according to this criteria.

3.5 Intermodal energy transfer in a 2 mrad tapered

fiber

We analyze the propagation of the HE11 mode through a 2 mrad tapered fiber by
monitoring the transmission of a few milliwatts of light of wavelength 780.24 nm

during the tapering process. Figure 3.3a shows the transmission monitoring setup for
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Figure 3.3: Transmission of the fundamental mode through a tapered fiber.
a, Experimental setup to monitor the transmission when launching the fundamental mode.
b, Measured transmission of the HE11 mode while tapering the fiber. The top axis shows
the time evolution of the radius of the fiber waist, as calculated using our pulling algorithm.
Around R=20 μm, we observe the presence of beating. c, Schematic of the modal evolution
in the transition region. All the power is initially contained in the fundamental mode (blue
profile). When the core of the fiber becomes too small compared to the wavelength, the
light escapes into the cladding (green arrows) and some higher-order modes can be excited
(red profile). As they propagate through the fiber, the modes show some beating. d, The
quantity of light that couples back to the core in the second taper depends on the fiber
length, which leads to the observation of some beating in the transmission signals.
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the fundamental mode. We launch the input beam into a fiber and split the light using
an in-fiber beam splitter. One output is connected to a photodetector to measure
the laser power while the other output is fusion spliced to the fiber placed in the
fiber puller. Using another photodetector, we record the light intensity transmitted
through the fiber during the pull.

3.5.1 Transmission signal

Figure 3.3b shows the obtained transmission signal as a function of time and fiber
radius. We clearly observe in the transmission signal the different steps of the modal
evolution described earlier:

• The mode is initially launched in the core of the single-mode fiber. We observe
a constant transmission during the first 100 s of the pull, showing that the fiber
is completely adiabatic for radii that are larger than 30 µm.

• AroundR= 20 µm, we observe some oscillations in the transmission signal. This
corresponds to the place where the fundamental mode escapes from the core to
the cladding. The oscillations show that some energy has been transferred to
some higher-order modes as we will demonstrate later.

• As we continue to thin the fibers, the higher-order modes that have been ex-
cited cut off and couple to radiation modes in the air. Below R= 300 nm,
the nanofiber is single mode, and the transmission signal is steady again. We
measure a transmission of 99.95± 0.02%.

3.5.2 Explanation of the observed beating

Energy transfers to higher-order modes occur during the core-to-cladding transition
because of non-adiabaticities. When this is the case, several modes co-propagate in
the fiber with different propagation constants and thus accumulate the phase differ-
ences [Orucevic, Lefèvre-Seguin, and Hare (2007)]:

Φi,j(L) =

∫ L

0

[βi(R(z))− βj(R(z))] dz , (3.10)

where L is the fiber stretch and βi (resp. βj) is the propagation constant of mode i
(resp. mode j). Depending on the fiber length, the phase accumulation between the
modes leads to a different field distribution when the light re-enters the fiber core in
the second taper at R' 20 µm. The fraction of energy that couples back into the core
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Figure 3.4: Spectrogram of the transmission signal obtained for the 2 mrad
tapered fiber. The spectrogram shows the power spectral density (PSD) of the trans-
mission signal of Figure 3.3b as a function of the fiber stretch L and the spatial angular
frequency. The top axis shows the time evolution of the waist radius as calculated using our
pulling algorithm. The spectrogram shows the beating between the fundamental mode and
three higher-order modes after the fundamental mode escapes from the core to the cladding
(R� 20 μm).

depends on the field distribution at this point. If the modes travel through an integer
number of beat lengths (see Figure 3.3c), the field distribution returns to its initial
input and all the energy couples back into the core. If the modes experience a non-
integer number of beat lengths (see Figure 3.3d), the field distribution is different
from what it was initially and only a fraction of energy can couple back into the
core. At the fiber output, we only measure on the detector the quantity of light that
coupled back into the fiber core and as a consequence, we observe some beating in
the transmission signal.

3.5.3 Spectrogram of the transmission signal

As we pull the fiber, the phase does not accumulate at a constant rate, and as a
consequence, the spatial frequency of the beating K is a function of the total stretch
L [Orucevic, Lefèvre-Seguin, and Hare (2007)]:

Ki,j(L)=
1

2π

dΦi,j

dL
. (3.11)

We extract the evolution of the frequencies contributing to the beating using spectro-
grams, which plot local, windowed Fourier transforms of the transmission signal as
a function of time. Figure 3.4 displays the spectrogram of the transmission signal of
Figure 3.3b. We observe that several lines appear around R=20 μm, at the moment
where the fundamental mode escapes from the core. Each curve shows the beating
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between the fundamental mode and a higher-order mode that has been excited due
to the presence of non-adiabaticities in the fiber profile. The curves terminate before
the end of the pull, when the excited mode cuts off. Using the calculated dispersion
relations for the fiber (see Figure 3.1) as well as our pulling algorithm that simulates
the evolution of the fiber profile after each step of the pull (see Chapter 2) we cal-
culate the expected spatial frequencies for ' 1000 pairs of modes of different families
(l= 1 to 6) and order (m= 1 to 20). Without any adjustable parameter, we observe
that three of the calculated curves (see black lines in Figure 3.4) show a perfect
matching with the three ones observed experimentally. Using the spectrograms, we
are thus able to identify the higher-order modes that are excited during the pull.
We determine that the excited modes are HE12, EH12 and HE13. All those modes
belong to the same family of modes as HE11 (l= 1), which shows that the cylindrical
symmetry of our linear tapers is conserved during the pull.

3.6 Quality of our fibers

We have measured a 99.95 ± 0.02% transmission for a 2 mrad tapered fiber. Us-
ing the commercial software FIMMWAVE, we calculate an expected4 fundamental
mode transmission of 99.94%. The measured value is in agreement with the ex-
pected one, which confirms that for that pull, the main source of losses come from
non-adiabaticities in the fiber profile and that we are not subject to other technical
limitations of our pulling apparatus. For other fiber profiles with a varying slope, a
spectrogram analysis has shown that modes of different l get excited, revealing the
presence of asymmetries in the fiber profile. We conclude that linear tapers with
a constant slope are optimal for our fiber puller, since they do not introduce any
asymmetries that could couple modes with different l.

3.7 Nanofibers for a hybrid quantum system

In view of introducing our nanofibers close to a superconducting surface in a cryogenic
environment, our study of the losses in our tapered optical fibers allowed us to draw
the following conclusions:

• For the linear 2 mrad fiber used in this Chapter, the tapers are ' 4 cm long,
4We simulate the propagation of the fundamental mode through a single taper only. We obtain a

transmission of 99.97%, which allows estimating the total transmission as the square of the obtained
value.
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which is compact enough given the geometrical constraints we have in the cryo-
stat. Decreasing Ω would lead to even more adiabatic fibers, but would also
produce longer tapers.

• For ' 30 mW of trapping power, a 99.95% transmission means that 15 µW of
power are scattered in the dilution refrigerator, which is well below the 200 µW

cooling power of the cryostat. The observed losses in our 2 mrad linear tapered
fiber are thus low enough in terms of generated heat.

• We have demonstrated that the observed losses are mainly due to non-adiaba-
ticities in the taper profile. In this case, the photons escape from the fiber
tapers, at the position where the higher-order modes cutoff. This part of the
fiber is not facing directly the superconducting chip, which thus leaves some
latitude to protect the resonator using beam blocks .

• Finally, another source of losses that is present in optical fibers and that we
have not mentioned yet is Rayleigh scattering. Rayleigh scattering is due to
the presence of density fluctuations and impurities in fused silica, and leads
to ' 3 dB/km of losses for light of wavelength ' 780 nm [Snyder and Love
(1983)]. For ' 30 mW of input power, the ' 100 µm portion of nanofiber that
is directly facing the superconducting chip thus scatters ' 1.5 nW of power5.
When the fiber is placed directly above the chip, we estimate that about half
of these scattered photons hit the superconducting chip, which corresponds to
' 750 pW of absorbed power.

As a conclusion, our measurements show great promise for the integration of our
nanofibers into a 10 mK environment. The obtained losses are compatible with the
available cooling power of the dilution fridge. However, due to the extreme sensitivity
to light of the original resonator, the estimated amount of power scattered directly
on the superconducting chip . 1 nW remained too high. As a consequence, our
measurements have led to the fabrication of another superconducting resonator. This
resonator incorporates in a new design of the system that minimizes the illumination
of the resonator, as we will see in Outlook.

5For the red-detuned light used for trapping, the quantity of losses due to Rayleigh scattering is
even smaller. Here, we give a slight overestimate of the quantity of scattered light.
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1. INTRODUCTION
The study of mode coupling in an optical waveguide [1] is fun-
damentally important for good control of connectorization
and transmission. This is especially true for tapered optical
fibers with subwavelength waists, where light propagates in
a mode that exhibits a large evanescent component propagat-
ing outside the waveguide. Nanofibers are ideal for probing
nonlinear physics, atomic physics, and other sensing applica-
tions [2–5]. As the light propagates through the taper, it suc-
cessively encounters regimes where the fiber is single mode,
multimode, and then single mode again. Careful design of
adiabatic tapers leads to ultralow loss fibers [6]. Adiabatic cri-
teria give an upper limit on how steep a taper can be, but are
too vague for optimization of transmission. Here we are inter-
ested in giving quantitative bounds and constraints on the
taper geometry.

Using a spectrogram analysis of the transmission signal
through the fiber [7], we are able to identify the modes
excited during the tapering process and extract the amount
of energy transferred to each of these modes. Using this
analysis, we show the importance of geometry control
and fiber cleanliness in reaching transmissions as high as
99.95% in commercial fibers at 780 nm. Our nanofibers
can handle more than 400 mW of optical power in ultrahigh
vacuum. After reaching the cut-off radius, the excited modes
couple to radiative modes [8] and diffract outside of
the fiber.

Our analysis provides a path to fully model the electromag-
netic field evolution in a nanofiber. This is crucial for a com-
plete modeling of the coupling between light and matter [9,10].
In the example of atoms trapped on the evanescent field
around a nanofiber waist, it is necessary to know the coupling
coefficients between the modes of the field and the atoms.
This work details the modal evolution in the fiber, opening

perspectives for the design of even more adiabatic fibers,
making them usable in extreme conditions [11].

This paper presents our protocols, diagnostics, and
characterization tools for fabricating nanofibers. It is struc-
tured as follows: we first overview our experimental goals
and conditions in Section 2. Section 3 presents the modal
evolution in tapered fibers. We then study in Section 4 adia-
baticity in tapered fibers. Section 5 analyzes in more detail
the transmission signal. We introduce the spectrogram to an-
alyze the transmission [7] in Section 6. By modeling and diag-
nosing the fiber pull, we identify in Section 7 crucial elements
to improve the transmission. Section 8 looks into the other
losses present in the fiber. Section 9 is the conclusion of
the paper.

2. MOTIVATION AND CONSTRUCTION
OVERVIEW
Controlling neutral atoms with dipole traps is a successful and
promising avenue for the implementation of a growing
number of scientific and technical applications [12]. The off-
resonant interaction between light and atoms in the presence
of an intensity gradient produces a dipole force that can gen-
erate traps: detuning below atomic resonance attracts atoms
to go to the most intense region, creating an optical tweezer
[13,14], and above-resonance detuning keeps the atom in the
intensity minima, requiring more complicated geometries
[15–18]. One drawback of optical tweezers obtained by tightly
focusing a laser beam comes from diffraction, which limits the
trapping volume extension in the axial direction. One solution
to this limitation is the use of optical nanofibers [4,9,19]. These
devices offer enough light confinement and guidance to trap
atoms over a few centimeters in the axial direction and
present the advantage of being integrable to other devices
[10,20–22]. We are interested in introducing this device into
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a 12 mK cryogenic environment to probe interactions
between a trapped neutral atom and a superconducting
circuit [11].

Following the work of Warken in [23], we produce our fi-
bers using a heat-and-pull technique, summarized below (see
Ref. [24] for details on the algorithm and the hardware). An
oxyhydrogen flame at stoichiometric combination brings a
0.75 mm long fiber portion to a temperature that exceeds
its softening point. Two high-precision computer controlled
motors pull on the fiber ends at a typical velocity of
0.1 mm∕s. We use an algorithm that relies on conservation
of volume, which calculates the trajectories of the motors
to produce a fiber of chosen geometry. The code is available
at the DRUM Digital Repository of the University of
Maryland [25].

We pull a SM800 fiber from Fibercore that has a numerical
aperture of 0.12 and a cutoff wavelength of 794 nm. Using
the Sellmeier coefficients provided by Fibercore, we deter-
mine the core (ncore � 1.45861) and the cladding (nclad �
1.45367) indices of refraction. The pull is divided into approx-
imately 100 steps, such that the taper is composed of a
series of sections small enough to be considered linear.
Our tapers are generally composed of a section with a con-
stant few mrad taper angle that reduces the fiber to a radius
of 6 μm, and then connects to an exponential section that gen-
tly reaches submicrometer radii (on the order of 250 nm). The
central waist is uniform, and its length can be between 5 mm
and 10 cm. A pull generally lasts for a few hundreds of
seconds.

3. MODAL EVOLUTION
A. Modes in a Cylindrical Waveguide
The description of modes in a cylindrical waveguide using
Maxwell equations can be found in several references, e.g.,
[8,26]. The modal fields vary as exp�i�βlmz − ωt��, where βlm
is the propagation constant of the mode of symmetry and or-
der �l;m�. The propagation of light inside a two-layered step
index fiber depends on the V parameter of the fiber,

V � 2π
λ
a

����������������
n2
1 − n2

2

q
; (1)

where a is the core radius, n1 is the core index of refraction,
n2 is the surrounding medium index of refraction, and λ is the
free space wavelength. The relation between βlm and the V
parameter is called the dispersion relation of mode �l;m�.
In our tapers, we can approximate the fiber as a two-layer step
index cylindrical waveguide in two regions: at the beginning
of the taper, the light is confined to the core and guided
through the core-to-cladding interface. We assume that the
core and the cladding radii decrease at the same rate along
the taper, which implies that there is no diffusion of the core
into the cladding during the tapering process. In the waist,
what was initially the core in the center of the fiber is now
negligible (acore ≈ 10 nm ≪ λ). The light is then guided
through the cladding-to-air interface.

B. Three-Layer Fiber
Since we continuously decrease the fiber radius during the
pull, the fundamental mode leaks from the core to the clad-
ding. In that region, the presence of the core, the cladding,

and the air influence the mode (see Fig. 1). A proper treatment
has to take into account all of those interfaces. We model our
fibers by a three-layered structure, and we calculate the
dispersion relations for a series of modes using the fully vec-
torial finite difference mode solver from commercial software
FIMMWAVE [27]. Figure 2 shows a plot of neff � β∕k0 as a
function of the radius of the SM800 fiber described in
Section 2.

We are interested in modes that are initially launched into
the core, thus guided by the core-to-cladding interface. Core
modes have most of their energy contained in the core, and
their effective indices of refraction satisfy nclad < neff < ncore.
Figure 2 shows that the HE11 mode effective index is initially
greater than nclad � 1.45367 (green curve indicated by an ar-
row). Some higher-order modes from the LP11 family may be
accepted in the core, close to their cutoff condition. (The fiber
cutoff wavelength is 792 nm > 780.24 nm, so strictly speak-
ing, we are not working in the fiber single-mode regime.) Ex-
perimentally, we filter higher-order modes that have been
launched or excited with a 1.27 cm diameter mandrel, effec-
tively placing us into the single-mode regime.

When the fiber radius decreases, nHE11
eff approaches nclad.

Since we model the fiber by a three-slab cylindrical wave-
guide, the cladding area is finite: the core becomes too
small to support the fundamental mode around the point
where nHE11

eff reaches nclad (R � 19.43 μm in Fig. 2). The mode
progressively leaks into the cladding to be guided by the clad-
ding-to-air interface. The characteristic length-scale of the
waveguide is R ≫ λ, and many modes can be guided by the
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Fig. 1. (a) Schematic of the stretched fiber. At a given time, the fiber
is composed of two tapers and a uniform waist of radius r and length
w. The total stretch is equal to L. (b) Calculated intensity profile of the
mode for a radius of fiber equal to 60 μm, 15 μm, and 190 nm. Note that
the position axes are not quantitative, and have been scaled to make
the plots visible. The profiles are normalized to their maximum power.
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cladding-to-air interface (nair < neff < nclad), together with the
fundamental mode. As long as R ≫ λ, the air has little influ-
ence on the effective index of many of the accepted modes
(neff ≈ nclad for all the modes shown in Fig. 2). The indices
are so close to each other that the modes interact and ex-
change energy easily. For that reason, this is the critical region
of the taper, where the adiabaticity condition is the most strin-
gent. By symmetry, for a fully cylindrical fiber, intermodal en-
ergy transfer will only happen between modes of the same
family (one color in Fig. 2). Energy transfers between modes
from different families are a consequence of the presence of
asymmetries.

Further decreasing R, we observe that the modes’ effective
indices approach nair � 1. The dispersion curves separate,
and adiabaticity can again be easily achieved. When the index
of refraction of a mode reaches nair, the mode is not guided by
the fiber anymore and radiates into the air. This radius, spe-
cific to each mode, is called its cutoff. The highly excited
modes leave the fiber first, and the number of modes allowed
in the waveguide decreases progressively [see Fig. 2(c)].
Under 0.3 μm, the only mode that can propagate is the
HE11 mode, whose index asymptotically approaches 1. The
fiber is once again single mode.

4. ADIABATICITY IN FIBERS
Achieving high transmission in nanofibers requires precise
control of the taper geometry, where the mode adiabatically
escapes from the core to the cladding before coupling back to
the core [8,28]. High transmission through tapered nanofibers
is indicative of their quality [6,29].

A. Adiabaticity Criterion
The mode conversion in a taper is strongly related to the taper
geometry. If a taper is too short (taper angle too steep), the
mode evolution is nonadiabatic, and we observe losses.
Inversely, as the taper is lengthened, the mode conversion
is more adiabatic. In the limit of a very shallow angle, we in-
tuitively understand that the transmission can reach 100%,
since all the energy remains in the fundamental mode through-
out the evolution. Following this idea, an adiabaticity criterion
has been derived [8] relating the characteristic taper length, zt,
to the characteristic beating length between two modes, zb.

zt is the length associated with the tapering angle Ω at ra-
dius R, defined by

zt �
R

tan�Ω� : (2)

zb is the beat length between two modes (the spatial fre-
quency of the beating)

zb �
2π

β1 − β2
� λ

neff;1 − neff;2
; (3)

where β1 is the fundamental mode propagation constant at
radius R and β2 is the propagation constant at radius R of
the first excited mode with the same symmetry as the funda-
mental mode (EH11). Equation (3) relates the beat length to
the inverse of the distance between two curves in Fig. 2. Mode
conversion in a taper is adiabatic when the fiber is long
enough: zt ≫ zb [8]. If the two modes are close, zb is large,
making the adiabaticity condition more difficult to satisfy.
The choice of EH11 gives the most stringent condition on
the fiber length, as it produces the shortest beat length
between the fundamental mode and any mode with sym-
metry l � 1. Nevertheless, this condition remains too vague
when one wants to optimize the taper geometry for a given
transmission.

Using the dispersion relations from FIMMPROP, we can
solve the equation zt � zb, when the beat length equals the
taper length. The blue curve in Fig. 3 separates the plane into
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two regions: in order to be adiabatic, taper angles need to be
much smaller than the ones indicated on the curve. Above the
curve, the angles correspond to nonadiabatic tapers.

Figure 3 gives an upper limit on the taper angle at a spe-
cific radius using the condition zb � zt from Eqs. (2) and
(3). It does not provide any quantitative information on
the intermodal energy transfer for a given taper: calculations
in Section 4.D show that the angles in Fig. 3 lead to large
energy transfers. We are interested in producing fibers with
high transmissions, greater than 99.90%, and we need to
find the optimal geometry necessary to reach a specific
transmission.

B. Transmission of a Tapered Fiber Section
We perform numerical simulations with FIMMPROP to ex-
plore the parameter space and find the optimal adiabatic pro-
file for a given transmission. The fiber tapers from 62.55 μm
radius down to 250 nm radius. Using the indices of refraction
for our SM800 fiber (see Section 2), we divide the taper into a
discrete series of linear sections (32 sections in this work). At
the end of each section we project the output field into the
first family of modes (here we use the 15 first modes of family
1) to obtain specific amplitude and phase information in terms
of the excited modes. The S matrix, relating input and output,
contains all the mode phases and amplitudes necessary to re-
late the input and output fields of that particular section.

Figure 4 shows the modal evolution in a tapered section
when the input is in the fundamental mode. When Ω is small
(or the length L is large), the modal evolution is adiabatic and
the transmission approaches unity as seen in the plot for the

normalized power in the HE11 mode in Fig. 4. When Ω
increases, some energy couples to higher-order modes, and
the fundamental mode transmission decreases. For the small
angles considered here, Fig. 4(a) shows energy transfer to one
mode only (EH11 mode-dashed green curve). Energy transfer
to other modes (HE12 mode and higher) is negligible within
the resolution of the plot. The oscillations in the transmission
are due to modal dispersion in the fiber, which leads to spatial
beating: two modes see different indices of refraction and ac-
cumulate a phase difference as they propagate through the
fiber (see Section 3.A). The phase accumulation increases
and can become large for small angles (or increased fiber
length). In the particular situation of Fig. 4(b) where only
two modes beat together, the EH11 power reaches local
maxima for zero phase differences and local minima for π
phase differences. The situation can become complex when
more than two modes are excited. Consequently, there exist
some situations in which large intermode energy transfer dur-
ing propagation still results in good fundamental mode trans-
mission. Thanks to mode spatial interferences, most of the
energy can couple back to the fundamental mode during
the propagation. In this case, one relies on interference in
the nonadiabatic effects.

C. Genetic Algorithm
We obtain the total transmission T after calculating the pro-
jection on the fundamental mode of the full S matrix, given by
the product of all S matrices for each section. We want to find
the shortest tapered fiber given a target transmission. For this
task, we use the genetic algorithm function from MATLAB to
find an optimal solution. This approach is efficient with large
problems and allows the use of information of previous runs
to improve the computing time in contrast with Monte Carlo
methods and other optimization techniques that use determin-
istic approaches. Typical parameters for the algorithm are a
population size of 500, a crossover probability of 0.7, a muta-
tion probability of 0.025, and a number of generations of 500.
The genetic algorithm can probe a large parameter space: for
each section, we have calculated 1500 S matrices, for angles
that can vary between 10 and 1.57 rad. We run the algorithm
more than 1000 times with different sets of parameters to ap-
proach the global minimum.

D. Fully Adiabatic Fiber
We will define total transmissions greater than T � 0.9990 as
a fully adiabatic fiber. In this section, we investigate fibers
with limited intermode energy transfers during the pull. This
means that the power contained in the fundamental mode can-
not deviate too much from T everywhere in the taper. In this
case, the interference between higher-order modes plays a
minimal role in the final transmission. We benefit from the ro-
bustness with respect to variation in parameters that is asso-
ciated with an adiabatic process. We obtain the most strict
condition on the angles that can be used to reach a specific
transmission. We run the algorithm with the added condition
that the transmission of each small taper section is greater
than T . That way, we make sure that the fundamental mode
power is greater than T at 32 points in the taper. Between
those points the fundamental mode power can oscillate,
but remains constrained around T , ensuring the limitation
of intermode energy transfer everywhere in the taper.
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Figure 5 shows results from the genetic algorithm for opti-
mized adiabatic fiber tapers using target transmissions of
99.90% and 99.99%. We plot the taper angle as a function of
the fiber radius as in Fig. 3. We observe similar behavior: large
taper angles are allowed for large fiber radii, and then reach a
minimum around the transition region at 20 μm, before in-
creasing again at smaller radii. For T � 0.9999, the optimal
taper in Fig. 5 (red-dashed curve) shows angles as low as
0.4 mrad, 30 times smaller than the zb � zt criteria. The results
in Fig. 5 give precise bounds on adiabaticity, with minimum
power transmitted to higher-order modes. This last point en-
sures that this algorithm is insensitive to phase effects: the
final transmission is not a consequence of constructive inter-
ference between several modes and will be independent of
perturbation to the fiber geometry.

Figure 6 shows the optimized taper profiles corresponding
to T � 0.9990 (blue continuous line) and T � 0.9999 (red-
dashed line). Strikingly, for T � 0.9999 the optimized adia-
batic taper is only 4.5 cm long, on the order of typical
nonadiabatic taper lengths produced with a heat-and-pull
method [24] (the 2 mrad taper presented Section 5 is
≈6 cm long and still presents nonadiabaticities). Note, how-
ever, that in Fig. 6, Ω varies continuously as a function of

z, and can be large at the beginning of the pull. Experimen-
tally, we show below (see Section 7) that abrupt variations
of Ω during the pull can induce detrimental asymmetries in
the taper. With our apparatus, we have precise control of
the taper geometry for linear and exponential profiles [24].
Reaching adiabaticity that way would require a linear taper
angle Ω ≈ 0.5 mrad, and a substantially increased length.
One could chose to use smaller clad fibers [30] or to chemi-
cally pre-etch fibers, allowing shorter adiabatic tapers with
improved handling.

E. Utilizing Nonadiabaticity
Limiting intermodal energy transfer in a taper to arbitrarily
small values is possible, but can be impractical due to large
taper lengths. An alternative approach consists of allowing
large energy transfers, yet reaching high transmissions by
careful design and phase control in the fiber. Section 3.A
shows that different modes interfere together as they propa-
gate in the taper. Taking advantage of this spatial beating, we
can design fibers with particular phase combinations that al-
low high transmission, despite the presence of nonadiabatic-
ities. In this section, we run the genetic algorithm with only a
condition on the final transmission (T ≥ 0.9999): intermodal
energy transfer in each section is no longer limited. Using
this nonadiabaticity, it is possible to produce short high-
transmission tapers.

We calculate the shortest fiber length that has 99.99% total
transmission in the fundamental mode using the genetic algo-
rithm. Figure 7(a) shows that the taper angles allowed here
are much larger than the ones presented above in the adia-
batic case (Fig. 5). At large fiber radii, the taper angle reaches
≈100 mrad. Closer to the transition region, the minimal taper
angle can still be as large as 2 mrad. From the taper angles
used here, we know that the fundamental mode is not
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propagating adiabatically in this taper. Figure 7(b) shows the
corresponding profile. Figure 7(c) shows a 99.99% transmis-
sion (green continuous line) fiber with a 3.7 mm length, a fac-
tor of 12 shorter than in the adiabatic case (red-dashed line)
calculated using FIMMPROP. This greatly reduces the length
requirements for high-transmission fibers, which is particu-
larly relevant for our application.

Using FIMMPROP, we model the tapered structures pre-
sented in Figs. 6 and 7 by putting together a succession of
32 linear tapered sections obtained with the genetic algorithm.
The input is set to 100% in the HE11 fundamental mode,
and the simulation includes 15 modes of family l � 1. We cal-
culate the modal evolution (phases and amplitudes) along the
taper. In the adiabatic optimized case [red-dashed curve
Fig. 7(b)], we confirm that the power contained in the funda-
mental mode is close to 99.99% throughout the taper. Higher-
order mode excitations are negligible, and the evolution is
adiabatic. Using nonadiabaticity [green curve Fig. 7(b)], we
observe large energy transfer to higher-order modes. Around
R � 23 μm, more than 7% of the energy has been transferred
to higher-order modes. However, using this particular geom-
etry, the resulting phase combinations lead to high transmis-
sion in the fundamental mode.

Nonadiabaticity can lead to high transmission with shorter
tapers, which is particularly useful for taper design. In the rest
of the paper, we experimentally study fibers that exhibit this
behavior. Exploiting nonadiabaticity requires particular atten-
tion because of their sensitivity to mode phases: deviations
from the calculated profile might lead to situations in which
mode interference causes large losses, with less energy end-
ing in the fundamental mode than initially expected. One
needs to reproduce the calculated geometry as accurately
as possible. As discussed above, producing the taper in Fig. 7
with a continuously varying angle is not the best option for us,
due to the presence of large angles and possible experimental
asymmetries. Moreover, this particular taper length (3.7 mm)
is too small in comparison to the heating-zone size (0.75 mm in
our experiment) to accurately produce such a profile. Our typ-
ical profiles start with a linear section (Ω of a few mrad) down
to 6 μm radius, followed by an exponential section down to
250 nm radius. We calculate with FIMMPROP the HE11 mode
evolution through such a taper (Ω � 2 mrad) and show
that it benefits from nonadiabatic effects, leading to high
transmission.

We start by investigating geometries we can produce with
good accuracy using our fiber puller. Figure 8 shows the trans-
mission of the first fewmodes of family l � 1 through a 2 mrad
taper. We create a taper with FIMMPROP that reproduces the
experimental profile, which has been validated with micros-
copy measurements [24]. Initially, all the power is contained
in the fundamental mode. Around R � 23 μm, ≈0.4% of the
energy is transferred to higher-order modes because of non-
adiabaticities (up to HE13, the fifth mode of family l � 1). This
illustrates that non-negligible higher-order mode excitations
can be observed below the zb � zt limit (the taper angle Ω �
2 mrad is at least a factor of five below the zb � zt limit every-
where in the taper). Those modes beat together, and by the
end of the taper, 99.97% of the energy is transmitted through
the fundamental mode. For different taper angles, we observe
that our typical tapers benefit from nonadiabaticity (see
Section 5). If there is still room for optimization, the simplicity

of the linear geometry makes it the ideal candidate for our
application.

5. ANALYSIS OF THE TRANSMISSION
SIGNAL
We evaluate the quality of a pull by monitoring the transmis-
sion of a few milliwatts from a 780.24 nm laser through the
fiber during the process. We normalize the signal to remove
fluctuations of the laser intensity. Figure 9(a) shows a typical
transmission as a function of time for a successful 2 mrad
pull. The transmission and normalization fiber outputs are
connected to two Thorlabs DET10A photodetectors, which
deliver a signal to a SR570 low-noise differential preamplifier
from Stanford Research Systems. A Tektronix DPO7054 dig-
ital oscilloscope set on high-resolution mode and sample rate
of 10–20 ksample/s records the data. The fiber is thinned dur-
ing the pull, and as its radius decreases, we observe different
notable features in the transmission signal. Figure 9(b) shows
the relation between time and radius for the particular pull of
Fig. 9(a) calculated using the algorithm for fiber pulling that
was validated in [24], with a deviation from the experimental
measurements lower than 8% at all diameters.

A. Single-Mode Section
The fiber is initially close to being single mode (V ≈ 2.45) at
the light wavelength we use to measure the transmission. We
carefully launch the fundamental mode with a 1.27 cm radius
of curvature mandrel wrap, to filter higher-order modes from
the initial launch. During the first 100 s (down to 25 μm ra-
dius), we observe a constant transmission. A 2 mrad taper
is completely adiabatic in this region (see Fig. 3). The funda-
mental mode is confined to the core and does not interact with
any other mode.

B. From Single Mode to Multimode
As the fiber radius decreases, the fundamental mode effective
index approaches the cladding index of refraction (see Fig. 2).
The fiber core becomes too small to support the fundamental
mode, which progressively leaks into the cladding to become
guided by the cladding-to-air interface. The point at which the
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losses. We attribute this to the presence of impurities on the
surface of the fiber at the beginning or during the pull. A dust
particle on the fiber waist leads to losses through coupling to
higher-order modes or scattering. The cleanliness of the fiber
is critical before and during the pull. Such imperfections are
avoidable by properly cleaning the fiber and imaging the fiber
prior to a pull as explained in [24]. All the pulls presented in
this paper were performed after applying the cleaning pro-
cedure described in [24].

9. CONCLUSION
We have demonstrated our ability to produce ultralow loss
optical nanofibers. Reaching high transmissions is important
for many nanofiber applications. We have described an algo-
rithm that calculates the optimum taper length for a given
transmission, or equivalently the optimum transmission for
a given taper length. This new approach concerning adiaba-
ticity in tapered fibers gives more precise bounds than the tra-
ditional adiabaticity condition, which helps in the design of a
suitable taper geometry. We show that in our experiments, the
transition from the single-mode regime to the multimode re-
gime is nonadiabatic, inducing excitations of higher-order
modes during the tapering. Having good control of the taper
geometry is crucial for limiting losses due to those excitations.

The propagation of different modes during the pull leads to
a characteristic beating pattern in the transmission. Plotting
the spectrogram of the transmission signal and using a model
of fiber pulling, we are able to identify the modes excited
during the pull. This gives information for the analysis of the
quality of a fiber and the understanding of loss factors, which
will help in the manufacture of even more adiabatic fibers.

ACKNOWLEDGMENTS
We thank Prof. A. Rauschenbeutel for his interest and support
on this project. This work was funded by the National Science
Foundation through the Physics Frontier Center at the Joint
Quantum Institute, and the Army Research Office Atom-
tronics MURI. S. R. acknowledges support from the Fulbright
Foundation.

REFERENCES
1. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J.

Quantum Electron. 9, 919–933 (1973).
2. F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity

distributions and polarization orientations in a vacuum-clad sub-
wavelength-diameter optical fiber,” Opt. Commun. 242, 445–455
(2004).

3. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M.
Mason, “Supercontinuum generation in submicron fibre wave-
guides,” Opt. Express 12, 2864–2869 (2004).

4. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A.
Rauschenbeutel, “Optical interface created by laser-cooled
atoms trapped in the evanescent field surrounding an optical
nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).

5. J. Bures and R. Ghosh, “Power density of the evanescent field in
the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996
(1999).

6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I.
Maxwell, and E. Mazur, “Subwavelength-diameter silica wires
for low-loss optical wave guiding,” Nature 426, 816–819 (2003).

7. F. Orucevic, V. Lefèvre-Seguin, and J. Hare, “Transmittance and
near-field characterization of sub-wavelength tapered optical
fibers,” Opt. Express 15, 13624–13629 (2007).

8. A. W. Snyder and J. D. Love, Optical Waveguide Theory

(Chapman & Hall, 1983).
9. V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga,

“Atom trapping and guiding with a subwavelength-diameter op-
tical fiber,” Phys. Rev. A 70, 011401 (2004).

10. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala,
“Ideality in a fiber-taper-coupled microresonator system for ap-
plication to cavity quantum electrodynamics,” Phys. Rev. Lett.
91, 043902 (2003).

11. J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson,
A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M.
Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to
squids,” Rev. Mex. Fis. 57, 1–5 (2011).

12. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical di-
pole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170
(2000).

13. A. Ashkin, “Trapping of atoms by resonance radiation pressure,”
Phys. Rev. Lett. 40, 729–732 (1978).

14. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental
observation of optically trapped atoms,” Phys. Rev. Lett. 57,
314–317 (1986).

15. R. J. Cook and R. K. Hill, “An electromagnetic mirror for neutral
atoms,” Opt. Commun. 43, 258–260 (1982).

16. K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K.
Wang, and T. R. Hess, “Examination of effects of TEM�

01-mode
laser radiation in the trapping of neutral potassium atoms,”
Phys. Rev. A 34, 2962–2967 (1986).

17. N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu,
“Long atomic coherence times in an optical dipole trap,” Phys.
Rev. Lett. 74, 1311–1314 (1995).

18. S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A.
Orozco, “A single hollow-beam optical trap for cold atoms,”
J. Opt. B 3, 353–357 (2001).

19. A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M.
Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration
of a state-insensitive, compensated nanofiber trap,” Phys. Rev.
Lett. 109, 1–5 (2012).

20. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D.
Yang, “Demonstration of optical microfiber knot resonators,”
Appl. Phys. Lett. 88, 223501 (2006).

21. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T.
Miyazaki, and Y. Sugimoto, “Cavity formation on an optical
nanofiber using focused ion beam milling technique,” Opt.
Express 19, 14040–14050 (2011).

22. C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A.
Rauschenbeutel, “Nanofiber Fabry–Perot microresonator for
nonlinear optics and cavity quantum electrodynamics,” Opt.
Lett. 37, 1949–1951 (2012).

23. F. Warken, “Ultra thin glass fibers as a tool for coupling light and
matter,” Ph.D. thesis (Rheinische Friedrich-Wilhelms Universi-
tat, 2007).

24. J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D.
Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull
apparatus for ultrahigh transmission optical nanofibers,” (in
preparation).

25. http://drum.lib.umd.edu.
26. A. Yariv, Optical Electronics in Modern Communications

(Oxford University, 1997).
27. Photon Design Ltd., “FIMMWAVE/FIMMPROP,” http://www

.photond.com.
28. T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Tech-

nol. 10, 432–438 (1992).
29. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmit-

tance degradation in tapered fibers,” Opt. Express 19,
8596–8601 (2011).

30. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie,
and F. K. Fatemi, “A low-loss photonic silica nanofiber for
higher-order modes,” Opt. Express 21, 18325–18335 (2013).

Ravets et al. Vol. 30, No. 11 / November 2013 / J. Opt. Soc. Am. A 2371



Chapter 4

Propagation of higher-order modes in
tapered optical nanofibers

Contents
4.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 First family of excited modes . . . . . . . . . . . . . . . . 63

4.3 Transmission signals . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Reduced-cladding fibers . . . . . . . . . . . . . . . . . . . . 65

4.5 Increasing adiabaticity . . . . . . . . . . . . . . . . . . . . 66

We have shown that we are able to produce tapered optical nanofibers with un-
precedented levels of transmission in the fundamental mode. Using the two-color
trapping scheme described in Chapter 1, the JQI team has successfully trapped atoms
around one of these nanofibers as we will show in Outlook. This trapping scheme uses
the evanescent field created around the nanofiber by the fundamental, HE11 mode.
Other trapping schemes that are based on the interference between different modes
co-propagating in the fiber have also been proposed [Sagué, Baade, and Rauschen-
beutel (2008)]. However, efficiently guiding higher-order modes in tapered optical
fibers is experimentally challenging [Frawley et al. (2012)], and these schemes have
not been implemented yet. In this Chapter, we investigate higher-order mode prop-
agation in our tapered optical fibers. We achieve more than 97% transmission of the
first family of excited modes, with less than 1% fundamental mode contamination.

61
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Figure 4.1: Launching higher-order modes. a, Higher-order modes of interest. Inten-
sity and polarization profile of the first three higher-order modes TE01, TM01 and HE21.
b, Experimental setup. A Gaussian beam passes through a π phase plate and is coupled
into the fiber. At the output of the fiber, we record the transmission of a few milliwatts
of power on a photodetector (PD) and on a camera (CCD). The insets show typical beam
images recorded on a CCD.

4.1 Motivations

The propagation of higher-order modes in optical fibers show some remarkable prop-
erties that are of interest for atom trapping:

• Higher-order modes experience a cutoff at a finite radius, unlike the HE11 mode.
This allows controlling the extent of the evanescent field using larger fiber radii,
leading to stronger fibers with improved handling.

• The energy distributions of higher-order modes are less confined into the fiber
core than for the fundamental mode1. For a given input power, more energy
propagates at the periphery of the fiber, which decreases the amount of laser
power required for trapping atoms and thus the amount of Rayleigh scattering.

• When different modes propagate simultaneously inside the fiber, they beat.
One can use the interference pattern created by this beating to axially confine
the atoms, where the distance between the traps and the longitudinal trap size
is determined by the spatial frequency of the beating.

1As a matter of fact, at a given fiber radius, the effective indices of higher-order modes are smaller
than the one of the fundamental mode, showing that the higher-order modes are less confined into
the fiber core.
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4.2 First family of excited modes

We are interested in the propagation in a tapered optical fiber of the three lowest
higher-order modes TE01, TM01 and HE21 modes, that have the polarization profiles
shown in Figure 4.1a. Initially, the fiber must be multimode so as to be able to launch
these modes in the fiber core. The three lowest higher-order modes are allowed in the
core when Vcore,R0 > 2.8, where R0 is the initial fiber radius (see dispersion relations in
Figure 3.1). We use commercial fibers that are designed to be single mode for light of
wavelength 980 nm and 1500 nm (see Section 4.4), and that are thus multimode for
the light of wavelength 780 nm we use in our experiments. To excite these modes, we
send a Gaussian beam through a phase plate that imprints a π-phase shift on half of
the beam (see Figure 4.1b), producing a two-lobed beam that approximates a TEM01

free-space mode. Because of the inversion of the polarization over half the incident
beam, we excite a combination2 of the TE01, TM01 and HE21 modes when coupling
the light into the fiber [Fatemi (2011); Pechkis and Fatemi (2012)]. We follow the
mode evolution during a pull by monitoring the transmission of a few milliwatts of
laser power. The transmission is monitored both by a CCD and by a photodetector.

4.3 Transmission signals

Figure 4.2 shows typical transmission signals obtained when exciting the fiber with
a combination of the TE01, TM01 and HE21 modes. Four important steps labeled by
A, B, C and D can be distinguished in the transmission signal in Figure 4.2b:

A The modes are initially confined to the core, and the transmission is steady.

B The modes escape from the core to the cladding when the fiber radius reaches
R≡Rc. Because of non-adiabaticities in the taper profile, other higher-order
modes (including, in particular the modes TE02, TM02 and HE22) get excited
and we observe the beating between those modes.

C The fiber radius reaches R' 0.7 µm (Vclad' 6), which corresponds to the cutoff
radius for the modes TE02, TM02 and HE22. Those modes radiate into the
air, and as a consequence, we observe a decrease in the beating amplitude.
For R≤ 0.45 µm (Vclad≤ 3.8), the only modes that are guided by the fiber are

2Stressed-induced birefringence can be use to selectively excite each of these modes, but we have
not used this selectivity here. Initially the three modes are quasi-degenerate, and we couple to a
combination of those three modes.
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Figure 4.2: Comparison of the transmissions of higher-order modes obtained
with different kinds of fibers. a, Fiber with an initial 80 μm diameter. We obtain
a 10% transmission of the higher-order modes through a 2 mrad, linearly tapered fiber.
The spectrogram shows energy transfers to lots of modes. b, Fiber with an initial 50 μm
diameter. For this fiber, the spectrogram shows less energy transfers during the pull. c,
CCD images of the output mode transmitted through the 50 μm fiber at different steps of
the pull, labeled with green capital letters A, B, C and D (see description in the text).
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Table 4.1: Properties of the different fibers pulled. We use a SM980G80 fiber from
Thorlabs and a SM1500 fiber from fiber core. The SM1500 fiber shows a reduced cladding
size and an increased N.A. (and thus an increased Vcore,R0). Those properties are beneficial
in order to obtain high transmissions for the higher-order modes.

R0 λcutoff N.A. Vcore,R0 Rc Vclad,Rc

(µm) (nm) (µm)

SM980G80 40 920 0.18 2.9 34 288

SM1500 25 1396 0.3 4.3 13 119

TE01, TM01, HE21 and HE11. We measure the transmission of the higher-order
modes after this cutoff. For R' 330 nm, the observed drop in transmission
corresponds to the HE21 mode cutoff (Vclad = 2.8).

D For R' 290 nm, the fiber reaches its single-mode cutoff (Vclad = 2.405) and only
guides the fundamental, HE11 mode. For this fiber, losses in the fundamental
mode are negligible. As a consequence, the small quantity of light that reaches
the detector at the end of the pull (less than 2%), indicates that we excite the
first three higher-order modes with better than 98% purity.

4.4 Reduced-cladding fibers

We have compared the transmissions of the first few higher-order modes when taper-
ing fibers with different numerical apertures and different initial radii (R0 = 40 µm

and R0 = 25 µm). The parameters of those commercially available fibers are sum-
marized in Table 4.1. We record the transmission signals obtained while tapering
two different fibers with a Ω = 2 mrad tapering angle. We observe in Figure 4.2 the
beneficial effects of fibers with a reduced cladding size and with a higher numerical
aperture:

• The fiber with the initially smallest size and largest numerical aperture shows
a 52% transmission while the other shows only a 10% transmission.

• The spectrograms in Figure 4.2 show less energy transfers when increasing N.A.

and decreasing R0.
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Figure 4.3: Reaching adiabaticity for higher-order modes. We also observe a good
agreement between the experimental data (blue markers) and the transmission calculated
using the commercial waveguide propagation software FIMMWAVE.

Indeed, we have seen that non-adiabaticities occur when the light escapes from the
core to the cladding due to intermodal energy transfers. For the modes TE01, TM01

and HE21, this transition occurs when the fiber radius reaches Rc (see Table 4.1).
One can show using Equation 3.6 and Equation 3.7 that when this transition occurs,
the number Vclad is equal to:

Vclad,Rc =
2π

λ
R0

2.405

Vcore,R0

√
n2

clad − n2
core . (4.1)

Indeed, at the core-to-cladding transition, the number of modes that are accepted
in the waveguide is ∝V 2

clad,Rc
/2. As a consequence, reducing R0 from 40 µm to

25 µm and increasing N.A. from 0.18 to 0.30 in Figure 4.2 leads to a significant
decrease of the number of modes to which energy can be transferred during the pull
due to non-adiabaticities3. The reduction in Rc also leads to an increase in the
difference between adjacent propagation constants, leading to less mode interaction.
As a consequence, fibers with a reduced cladding size and a high N.A. allow us to
reach better transmissions.

4.5 Increasing adiabaticity

We have discussed in the previous Sections the transmission of higher-order modes
in tapered fibers with a 2 mrad tapering angle. It is clear from Figure 4.2 that, for

3Vcore,R0
and N.A. are proportional. As a consequence, increasing N.A. increases Vcore,R0

in
Equation 4.1.
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this value of Ω, higher-order modes propagation is non-adiabatic. In this Section, we
produce more adiabatic fibers by decreasing Ω. Figure 4.3 shows the transmissions
measured for tapering angles Ω that vary between 4 mrad and 0.4 mrad. As expected,
we observe that decreasing Ω (and thus producing more adiabatic tapers) increases
the transmission of the first few higher-order modes. For Ω = 0.4 mrad, we measure a
transmission as high as 97.8±1.0%. An advantage of working with fibers that have a
reduced cladding size is that it allows to use tapering angles as low as 0.4 mrad while
keeping reasonable taper lengths. With the level of transmission reached here, our
fibers become usable for implementing higher-order modes trapping schemes [Sagué,
Baade, and Rauschenbeutel (2008)].
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1. Introduction

Optical nanofibers with a waist diameter smaller than the wavelength of the guided light are cur-
rently used for non-linear optics, atomic physics, sensing, and fiber coupling [1–3]. The intense
evanescent field outside of an optical nanofiber is particularly interesting for atom trapping
and strong atom-photon coupling. Tapering standard optical fiber down to submicron diame-
ters has been a successful fabrication technique for a variety of applications [4–8], in which
transmissions of the fundamental mode of the waveguide reaching more than 99% have been
achieved [4,9]. Until now, the efficient guidance of higher-order modes has not been observed,
due to the ease with which they couple to other modes, leading to large losses. This restricts
most work with nanofibers to the single mode regime, where the diameter is small enough to
only support the fundamental mode HE11 [3, 10].

This paper reports measurements with nanofibers using the first excited T E01, T M01, and
HE21 modes, which have azimuthal, radial, and hybrid polarization states, respectively. Prior
work on higher-order mode propagation has shown ≈30% transmission of this LP11 family of
modes [11], with a mode purity at the fiber output of≈70%, which gives a total transmission of
only 20%. Here, by carefully controlling the taper geometry, and by choosing a commercially
available 50 micron reduced-cladding-diameter fiber with increased numerical aperture, we
demonstrate transmissions greater than 97% for light of 780 nm wavelength in the first excited
LP11 family of modes through fibers with a 350 nm waist radius. Furthermore, we present a
setup that enables us to efficiently launch these three modes with exceedingly high purity at the
output, where less than 1% of the light is coupled to the fundamental mode [12]. We follow
the work of [13] to fabricate the nanofibers and use a series of diagnostics during the pull to
monitor the quality of the fiber. We record the total transmission of the light and image the
mode exiting the fiber for the duration of the pull. Analysis of the transmission as a function of
time for different types of fibers allows us to estimate which modes are excited during the pull
as well as their relative energies of excitation through the use of spectrograms [14].

These results open the way to efficiently use higher-order modes in optical nanofibers. Unlike
the HE11 mode, higher-order modes experience a cutoff at a finite radius. This allows improved
control of the evanescent field extent at large radii, enabling stronger fibers and improved han-
dling characteristics. Our work enables the usage of higher-order modes for atomic physics
applications. In particular, the spatial interference between several of those modes can create
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unique evanescent field distributions on the waist, providing an easy and self-consistent way to
break the symmetry along the propagation axis, suppressing the need to create a standing wave.
This is particularly relevant to atomic physics applications for the realization of a one color,
blue-detuned and state insensitive trapping potential for atoms [15].

2. Mode propagation in an optical fiber

References [16, 17] describe the modes in a cylindrical waveguide using Maxwell equations.
The modal fields vary as exp [i(β z−ωt)] where β is the propagation constant of the mode. A
mode propagates in the fiber with an effective index

ne f f = β/k, (1)

where k = 2π/λ is the free-space propagation constant and λ is the free-space wavelength of
the light. The propagation of light inside a two-layered step-index fiber, consisting of a core of
radius a and refractive index ncore surrounded by a cladding of radius R and refractive index
nclad , depends on V ,

V =
2πa
λ

√
n2

core−n2
clad . (2)

V plays an important role in our tapers, since the radius, a in Eq. (2), varies enough that the
interfaces seen by the modes change as they propagate through the taper. At the beginning of
the taper, the light is confined in the core, and guided by the core-to-cladding interface with
Vcore as in Eq. (2), and nclad < ne f f < ncore. At the end of the taper, the core is negligible
(acore ≈10 nm� λ ) and the light is guided by the cladding-to-air interface with nair < ne f f <
nclad . Between these two regimes, the light escapes the core to the cladding, and the relevant
radius in Eq. (2) becomes R, which is much larger than a. Due to this radius increase, and the
large index difference between nclad and nair, V >> 1. The fiber becomes highly multimode, as
the number of bound modes is proportional to V 2/2 [16]. Maintaining adiabaticity through this
transition is critical.

2.1. First family of excited modes

Figure 1(a) shows the effective index of refraction against V for several low-order modes in a
nanofiber. When V < 2.405, the fiber supports only the HE11 mode. For a typical nanofiber,
ncore ≈ 1.5 and nclad = 1. The T E01 and T M01 modes are allowed for V > 2.405, and the
HE21 mode is allowed for V > 2.8. As long as V remains lower than 3.8, only the four modes
mentioned above are allowed. In the weakly guided regime, the modes of interest are known
as the LP11 family. We initially launch into the actual LP11 family, because at the entrance,
the fiber is weakly guided. The taper takes us into the strong guiding regime where the LP11
splits into T E01, T M01, and HE21. We will refer to the set of modes (T E01, T M01, and HE21)
during the entirety of the pull as the LP11 family. This simplifies discussions when referring to
the full set of modes, especially in reference to excitations to modes or families with the same
symmetry, i.e. LP12 for T E02, T M02, and HE22. Prior work has emphasized propagation of the
HE11 mode, where V ≤ 2.405 [3, 7, 10]. We are interested in selectively exciting and guiding
the LP11 family through a nanofiber, in a regime where 2.405 ≤ V ≤ 3.8. When expanded to
free space, these modes have the intensity and polarization profiles shown in Fig. 1(b).

2.2. Adiabaticity condition

During the pull we continuously decrease R and the light escapes the core to the cladding as it
propagates through the taper. After light escapes the core, the presence of the core, the cladding,
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Fig. 1. (a) ne f f indices of several low-order modes in a nanofiber with nclad = 1.5, sur-
rounded by vacuum (nair = 1). Below V ≈ 3.8, two families of modes exist. In this work,
we are emphasizing the LP11 family (circled). By symmetry, modes in this family can in-
terfere with the T M02, T E02, HE22 family, which may be excited through non-adiabatic
processes. (b) Intensity and polarization profiles of the LP11 family of modes considered in
this work.

and the air influence the mode. The fiber is highly multimode, and modes of the same symmetry
can couple to each other. The mode evolution in a taper is strongly related to the shape of the
taper. If a taper is too steep, the mode evolution is non-adiabatic resulting in low transmission.
As the tapering angle Ω is reduced, the mode propagation becomes more adiabatic. Following
this reasoning, an adiabaticity criterion has been derived [16] relating the characteristic length
of the taper zt , to the characteristic beat length between two modes zb where zt = R/tan(Ω),
and zb = 2π/(β1−β2) = λ/(ne f f 1 −ne f f 2).

The mode evolution in a taper is adiabatic when the fiber is long enough to satisfy zt � zb
[16]. For a typical silica optical fiber single mode at λ = 780 nm, we calculate using this
criterion a minimum Ω of a few milliradian for the limiting case of zt = zb. This implies that
a taper requires sub-milliradian Ω to achieve adiabaticity in the region where light leaves the
fiber core and becomes a cladding mode. Therefore, choosing an optical fiber with a small
initial cladding radius (and thus a reduced Vclad) combined with a high numerical aperture is
highly advantageous to maintaining adiabaticity [11]. Additionally, such a fiber reduces the
overall drawing time, length requirements of the pulling apparatus, and the overall length of the
taper.

3. Experimental setup

Figure 2 shows a diagram of our experimental setup. Here, we review the mode preparation,
the pulling process, and the detection and analysis. We efficiently excite the T M01, T E01, and
HE21 modes using a fiber-based Cylindrical Vector Beam (CVB) generation method [12, 18].
The fiber is drawn using a heat-and-pull method [13,19,20]. We measure the transmission while
pulling, recording simultaneously the output of the photodiode to a digital storage oscilloscope
and beam profiles on a Charge-Coupled Device (CCD) camera.

A New Focus Vortex laser delivers a T EM00 Gaussian beam at λ=780.24 nm. This wave-
length corresponds to the D2 line of Rubidium, our atom of interest. We spatially filter this
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Fig. 2. (a) Simplified diagram of the experimental setup. A Gaussian beam passes through

a π-phase plate and is coupled into the fiber to be drawn. On the output of the fiber, a

photodetector (PD) and camera (CCD) monitor the transmission. Typical beam images are

shown. (b) Schematic of tapered nanofiber.

beam using a polarization-maintaining optical fiber, and collimate with an asphere to a 1/e2 di-

ameter of 630 microns. The Gaussian beam passes through a phase plate that imparts a π phase

shift on half of the beam, producing a two-lobed beam that approximates a T EM01 free-space

optical mode. The phase plate is on a translation stage, so that we can easily switch between the

LP11 and LP01 families without adjusting alignment. Figure 2 shows profiles of the beam be-

fore and after the phase plate. We couple the beam into the fiber using a matched asphere. The

coupling coefficients to the fiber modes are determined by the beam symmetry. The inversion

of the polarization over half the incident beam allows us to selectively excite the LP11 family

with high efficiency. Stress-induced birefringence at the input end of the fiber can be used to

selectvely excite the T M01, T E01, and HE21 modes individually [12], but we have not used that

selectivity here. The fundamental HE11 mode is only excited through aberrations in the beam.

To achieve efficient coupling into the LP11 family, we wrap the fiber with two or three wind-

ings around a 4-mm diameter mandrel that attenuates any modes higher than the LP11 family.

Figure 2(a) shows typical input (black and white) and output (color) modes.

We detail our nanofiber pulling process in Ref. [14, 20]. We start by clamping a fiber to two

high-precision Newport XML 210 motor stages. We strip the buffer from the fiber and clean

it thoroughly following the procedures in [20]. We image the fiber with an optical microscope

and remove any undesired particle remaining on the fiber surface. This is important for the

repeatability of our measurements. An oxyhydrogen flame with a stoichiometric combination

brings a 0.75 mm long portion of the fiber to a temperature that exceeds the softening point of

fused silica. We pull on the fiber ends at a typical relative velocity of 0.1 mm/s. We calculate

the stage trajectories to produce a fiber of a chosen geometry using an algorithm that relies

on conservation of volume [5]. We divide the pull into approximately 100 steps. Each step

adds a small section to the taper that reduces the radius of the waist. The sections are small

enough to be considered linear locally. The compilation of each small taper creates the final

taper with a desired geometry, which is generally composed of a few mrad steep linear section

that reduces to a radius of 6 μm, and then connects to an exponential section that gradually

reaches a submicrometer radius. The central region forms a 7-mm uniform waist (see Fig. 2(b)

for the geometry). To observe all possible mode cutoffs, the fibers are typically drawn to R≈280

nm, at which point only the fundamental HE11 mode propagates. We vary Ω from 0.4 mrad to 4
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mrad, resulting in pull times lasting between 100 to 1000 seconds The output side of the fiber is
held straight with no mode filtering. We follow the mode evolution for the duration of the pull
by monitoring the transmission of a few mW of laser power through the fiber. The transmitted
beam is monitored both by a CCD and by a photodetector (PD). The beamsplitter shown in the
figure is tilted to as small an angle as possible to eliminate polarization-dependent reflections.
Another PD, not shown in Fig. 2(a), measures the input laser power during the pull to normalize
the transmission signal. We record PD signals with a Tektronix DPO7054 oscilloscope with 16-
bit resolution and a sample rate of 1-10 ksamples/s.

4. Results

In this section, we present our results on the transmission of the LP11 mode family in the context
of adiabaticity. We first analyze the improvements gained by choosing a fiber with a reduced
cladding radius and increased numerical aperture. In [11], Frawley et al. looked at the improve-
ment obtained by reducing the initial R from 125 µm to 80 µm. Moving from 80 µm to 50 µm
fibers, we improve the transmission from 10% to 51% for a 2-mrad taper. A spectrogram anal-
ysis depicts fewer and weaker excitations of higher-order modes. Second, we demonstrate an
improvement in adiabaticity through the control of the taper geometry. Our ability to vary Ω
allows for marked improvement in guidance efficiency through the nanofiber, increasing from
16% at 4 mrad up to 97.8% at 0.4 mrad.

4.1. Varying the fiber type

4.1.1. Transmission measurements

Figure 3 shows typical transmissions obtained when exciting the fiber with a combination of
LP11 modes. We plot the normalized transmission during a single pull as a function of the fiber
waist radius. We can identify four distinct regimes in Fig. 3. The modes are initially confined to
the core (regime A in Fig. 3). Adiabaticity can easily be achieved, and the transmission is steady.
Because this fiber initially also supports the LP02 and LP21 modes and because our launch can
weakly excite these modes, we observe a slight drop in transmitted power near R = 20 µm,
when these higher-order modes become cladding modes. Regime B occurs after the light has
escaped from the core to the cladding. Because the cladding is typically much larger than the
core (R/a > 10), and because nclad − nair � ncore− nclad , V increases by over two orders
of magnitude (Vclad ≈ 200). If the core-cladding transition is not adiabatic, modes of similar
symmetry are excited. In particular, we observe transfers of energy to the LP12 family which
contains the modes T E02, T M02, and HE22. The interaction between those modes results in
mode beating inside the fiber, and an oscillation in the amount of output light. The oscillations
continue to R≈ 0.7 µm (regime C), where for a typical silica fiber, Vclad ≈ 6. From this cutoff
location, it is clear that much of the beating behavior is due to the LP12 modes which have
been excited through non-adiabatic transitions. The pull extends through the T M01, T E01, HE21
cutoffs (regime D). After reaching the cutoff radius near R = 290 nm, very little light reaches
the photodetector - typically less than 1-2% - indicating low population of the fundamental
mode. To determine the loss in the HE11 mode, we measured the transmitted power before
and after the pull by translating the phase step out of the way. The losses in this mode were
negligible, meaning that we reach a mode purity of 98-99%. Mode purity is of fundamental
importance for nanofiber applications, and in particular for atomic physics where polarization
control and stability are required.

We have compared the transmissions obtained using fibers of diameter 80 µm and 50 µm,
and observed the beneficial effects of smaller clad fibers and higher numerical aperture for
Ω = 2 mrad. This taper angle is chosen because it is non-adiabatic and highlights the effect
of fiber diameter on adiabaticity. The improvement in adiabaticity is clear in Fig. 3, with a

#191071 - $15.00 USD Received 28 May 2013; revised 16 Jul 2013; accepted 19 Jul 2013; published 24 Jul 2013
(C) 2013 OSA 29 July 2013 | Vol. 21,  No. 15 | DOI:10.1364/OE.21.018325 | OPTICS EXPRESS  18330





cladding-to-air guidance regime) and the corresponding fiber V -number at that radius Vclad,Rc

for a wavelength of 780 nm. Empirically, we obtain an estimate of RLP11
c on the transmission

plot when the oscillations start. The numbers agree quantitatively. We see that reducing the
initial cladding radius and increasing the fiber numerical aperture allows the LP11 family to leak
from the core to the cladding at a smaller fiber radius. This results in a significantly reduced
Vclad when the modes escape from the core to the cladding: By reducing the cladding diameter
from 80 µm to 50 µm and increasing the numerical aperture from 0.18 to 0.30, the number
of available modes decreases by more than an order of magnitude for these two commercially
available fibers. Improvements could be achieved by pre-etching the fiber to a smaller diameter
so that the initial core radius to cladding radius ratio R/a is further reduced. In this case, the
numerical aperture remains unchanged, and the number of available modes directly scales with
the square of the ratio of initial cladding radii.

4.1.2. Spectrograms

In non-adiabatic propagation, the LP11 modes couple to higher-order modes of the same sym-
metry, belonging to families LP1m (m≥ 2). Because they propagate with different propagation
constants during the pull, they accumulate a phase difference leading to interference in the
amount of light that coupled back into the core. Since the photodetector only measures core
light, this interference leads to oscillations in the transmission (Fig. 3). A useful way to exam-
ine these data is through spectrograms, which plot local, windowed Fourier transforms of the
transmission signals as a function of waist radius. Plotting the spectrogram of the transmission
signal [14, 21], we directly observe the contribution of various pairs of modes in the beating.
Figure 3 shows the spectrograms for the 80-µm and 50-µm diameter fiber pulls. Each line in
the spectrogram is specific to the beating between a LP01 or LP11 mode and another mode of
similar symmetry excited during the pull. The curve ends when one of the modes reaches its
cutoff: the energy is then lost via coupling to radiative modes.

The number of lines observed in a spectrogram is directly related to the excitation of higher-
order modes through non-adiabatic processes from a single launched mode: the more lines
present in the spectrogram, the less adiabatic the pull is. Moreover, the colormaps in Fig. 3 are
normalized in such a way that the intensity of each red line gives the strength of the energy
transferred. It is clear from Fig. 3 that more intense lines are present in the 80-µm fiber than in
the 50-µm, further supporting our observation of more stringent adiabaticity requirements for
fibers with a large cladding radius and small numerical aperture.

4.1.3. Imaging the fiber output

We monitor the transmitted beam with a CCD, and obtain Media 1 showing both the core
and cladding light as a function of time throughout the tapering process. Using a microscope
objective, we first image the end of the fiber to observe the core-guided light (Media 1 in Fig. 3).
The movie shows oscillations that result from mode competition, which modulates the amount
of light that exits the fiber in the core.

Media 2 in Fig. 4(a) also depicts the transfer of energy from the core to the cladding. Because
the cladding intensity is low compared with the core, we record two spatially separated images
of the fiber simultaneously by using strong and weak reflections from a thick beamsplitter with
AR-coated front face. Figure 4 shows the normalized fractions of energy exiting the fiber from
the cladding and from the core. The two signals are out of phase. We note that the sum of
the energy contained in the core and the energy contained in the cladding does not add up
to the total energy input in the fiber. Outside the taper region, cladding light becomes highly
scrambled and lost through the fiber buffer, resulting in both the speckle observed in Media 2
and the reduced total transmitted power. Residual cladding light is spatially filtered from hitting
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Fig. 4. Amount of light (normalized) exiting the fiber from the core (blue curve) and from
the cladding (red curve). The signals are out of phase, confirming the transfer of energy
between modes during the tapering. We observed the two simultaneously by using the two
reflections from a thick beamsplitter. (a)-(b) (1.1 MB) Media 2 shows the evolution of the
beam transmitted through a nanofiber during a portion of a pull, where the power is high
enough to observe the cladding light.

the photodetector, so that the observed oscillations Fig. 3 are due only to core-guided light.

4.2. Varying the angle

The measurements in this section use the reduced-cladding Fibercore SM1500. For this fiber,
the LP11 modes transition to cladding modes near R = 13 µm. By using a reduced-diameter
fiber, we observed a drastic improvement of the transmission of the LP11 modes. To further
improve the adiabaticity, it is necessary to look into more details of the tapering process itself.
We have lowered Ω to improve the transmission over what is observed in the previous section.
Figure 5 shows the results of draws using Ω = 4, 2, 1, 0.75 and 0.4 mrad. Although each plot
shows the same qualitative behavior as described in Fig. 3 for the 2-mrad pull, the strength of
the features depends on Ω.

The free-space mode at the fiber input has a spatial polarization that is an equal superposition
of HE21 and T M01 (or T E01). However, mode conversion occurs where the fiber is wound
around the mode-filtering mandrel so that the distribution entering the nanofiber is unknown.
Within the nanofiber waist, which is held fixed and straight, mode conversion is unlikely to
occur so that the desired LP11 mode can be achieved after the pull [12]. By R = 0.45 µm, only
the T M01, T E01, and HE21 modes are confined, with a small contribution in the fundamental
HE11. The HE12 mode achieves cutoff at Vclad = 2.8 (R ≈ 330 nm), earlier than the T M01
and T E01 modes, which reach cutoff at V = 2.4 (R ≈ 290 nm). At R ≈ 330 nm, the power is
reduced by the HE21 content, which is determined by the initial superposition of states entering
the nanofiber.

The transmitted power in the LP11 mode family is 16.6% for Ω = 4 mrad. The transmitted
power drops sharply near R = 13 µm, and undergoes strong oscillations between 10-80%. For
Ω = 2 mrad, the oscillations below R = 13 µm are reduced, with the transmission fluctuating
between 30-90%, and the transmitted power improves to 51.5%. Further decreasing the angle to
Ω = 1, 0.75 and 0.4 mrad, improves the transmission to 84.3%, 91.2% and 97.8% respectively,
where uncertainty is dominated by systematic effects that should be less than 1%. Figure 5 also
shows excellent agreement between the experimental results and those obtained using commer-
cial waveguide propagation software [22]. For those calculations, the propagation was modeled
using the targeted fiber geometry. In our transmission measurements, the scaling between time
and radius is made using a separate algorithm that models the dynamics of the pull based on
conservation of volume [20]. For Ω = 0.4 to 2 mrad, the mode cutoff positions we obtain using
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that when we remove the π-phase plate from the launch, the transmission in the fundamental
mode is essentially equal to the transmission before pulling, as adiabaticity is strongly satisfied
for this mode. During the tapering process, the higher-order modes escape from the core to
the cladding earlier than the fundamental HE11 mode. When the HE11 mode finally transitions
to a cladding mode, R has decreased, so that V and the number of available modes to couple
to is smaller. The reduction in R also leads to an increase in the difference between adjacent
propagation constants, allowing less mode interaction and a steeper Ω. Mode conversion also
occurs throughout the fiber and not just at the core-cladding transition point, but this region has
the most stringent adiabatic criterion.

5. Conclusion

We have demonstrated propagation of higher-order modes in nanofibers using the T E01, T M01,
and HE21 modes. By tapering the fiber with angles near 0.4 mrad and using a commercial, off-
the-shelf fiber with 50 µm diameter, we have achieved transmission efficiency of 97.8% with
excellent mode purity, a factor of four higher than previous work, and more than one order of
magnitude improvement on mode purity. Critical to this work was a spectrogram analysis of
the modes present during the pulling. Our experimental results agree with simulations of the
propagation through the taper. High transmissions of LP11 modes with high purity is a promising
tool for atomic physics, expanding the possible intensity and polarization configurations of
evanescent fields surrounding the nanofiber.
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This second part concentrates on the experiments we performed at the Institut
d’Optique on systems of neutral atoms trapped in arrays of optical tweezers. As we
mentioned earlier (see Introduction), neutral atoms in their ground state are well
isolated from their environment. However, they show weak interatomic interactions,
leading to slow entanglement operation. To overcome this difficulty, the solution cho-
sen in our setup is to use highly excited Rydberg atoms. Their remarkable properties
allow coupling efficiently the different constituents of the system, a prerequisite for
the creation of fast entanglement in the system.

A Rydberg atom is an atom in a highly excited state, where at least one elec-
tron has a large principal quantum number n [Gallagher (2005)]. Rydberg states
are named after the Swedish physicist Johannes Rydberg who proposed in 1888 an
empirical formula describing the relation between the wavelengths of the spectral
lines observed in alkali metal. This formula was later derived by N. Bohr within the

81



82 Chapter 5: Properties of Rydberg atoms

Figure 5.1: Classical and quantum pictures of a Rydberg atom. a, Classical picture
of an alkali Rydberg atom. The valence electron spends most of its time far from the
nucleus, experiencing essentially a charge +e. For low angular momentum states, the orbit
can probe the inner core of the atom thus changing the effective charge seen by the electron.
b, Quantum picture showing the spectrum of rubidium: the energy levels spacing decreases
when n increases. The Rydberg states are the ones close to the ionization threshold.

framework of his atomic model [Bohr (1913)], which provided the interpretation of
the observed spectral lines as the result of transitions between high-lying states. Here,
we concentrate on alkali atoms which possess only one valence electron. In a classical
picture, the valence electron of an alkali Rydberg atom orbits far from the nucleus
(see Figure 5.1a). Alkali Rydberg atoms can therefore be pictured classically as giant
hydrogen atoms, which confers them interesting properties that are summarized in
this introduction.

5.1 Energy spectrum of alkali Rydberg atoms

Classically, the valence electron of a Rydberg atom always remains far from the inner
electronic core. In a first approximation, we can therefore consider that the valence
electron experiences the Coulomb potential of a positive charge +e created by the
inner core. This places us exactly in the context of the description of the hydrogen
atom, whose eigenergies are given as a function of n by:

En =−Ry

n2
, (5.1)

where Ry' 13.6 eV. However, one main difference with the hydrogen atom is that,
for Rydberg atoms, the inner core can not always be reduced to a simple charge
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Table 5.1: Quantum defects of 87Rb for n≥ 30. The quantum defects (obtained
from [Li et al. (2003)] and [Han et al. (2006)]) decrease with increasing L since the valence
electron orbits further and further from the electronic core.

L J δL,J

0 1/2 3.131

1 1/2 2.654

3/2 2.641

2 3/2 1.348

5/2 1.346

3 5/2 0.016

7/2 0.016

+e. In particular, for low angular momenta (L< 3), the valence electron can probe
the inner core (as shown in Figure 5.1a), which modifies the effective electric charge
experienced by the electron and the position of the energy levels as a function of
L. One describes this effect by applying small corrections to the values of En using
quantum defect theory [Gallagher (2005)], that expresses the energy of a state |n, L〉
by:

En,L =−Ry

n∗2
, (5.2)

where n∗=n− δL is the effective quantum number, that differs from n by the quan-
tity δL called the quantum defect. The energy spectrum of 87Rb Rydberg states is
represented in Figure 5.1b for L∈{0; 1; 2}. We observe indeed that the positions of
the energy levels depend on L, in contrast with the case of the hydrogen atom.

Finally, the energy levels and thus the quantum defects are also affected, to a lesser
extent, by the spin-orbit coupling between the magnetic moment of the electron and
its spin. For Rydberg states, the coupling between the valence electron and the atom
nucleus is so weak that the hyperfine structure (smaller than 1 MHz for n≥ 55) can
be neglected to a good approximation 1. In the end, the quantum defects also depend
slightly on the quantum number J , and the energies En,L,J are given by Equation 5.2,
where:

1In the rest of this thesis, we consequently express the Rydberg states in the fine basis
|n,L, J,MJ〉.
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n∗=n− δL,J . (5.3)

The quantum defects δL,J are measured experimentally, and depend on the atom
considered. Table 5.1 lists the 87Rb quantum defects measured, for L≤ 3, in [Li
et al. (2003)] and [Han et al. (2006)]. For large angular momenta (L≥ 3), the valence
electron always remains far from the inner electronic core, so that the energy spectrum
approaches the one of hydrogen. As a consequence, we observe that δL,J abruptly
decreases and approaches zero when L increases (δL,J ' 0 for L≥ 4).

5.2 Exaggerated properties of Rydberg atoms

As “giant hydrogen atoms”, alkali Rydberg atoms show exaggerated properties. Those
properties can be derived using semi-classical models that lead to the simple scaling
laws summarized below [Gallagher (2005)]:

• The mean radius of the atoms scales as n∗2:

〈r〉' 3

2
n∗2a0 . (5.4)

As a result, the dipole coupling 〈n, L, J,MJ | d̂± |n′, L± 1, J ′,M ′
J ′〉' e 〈r〉 be-

tween neighboring Rydberg states |n, L, J,MJ〉 and |n′, L′=L± 1, J ′,M ′
J ′〉 is

large. As an example, in the case n= 59 and n'n′ (see Chapter 9), typical
transition dipole moments are ' 3500ea0, that is to say about 5000 times as
big as the dipole of a water molecule. Throughout this thesis, we calculate the
needed dipole matrix elements using a Matlab code developed by R. Chicireanu
during his postdoctoral studies in the group2.

• As a consequence of this large dipole moment, Rydberg states are highly po-
larizable and therefore extremely sensitive to electric fields. For example, the
polarizability of the state 59D3/2 (see Chapter 9) is α' 550 MHz/(V/cm)2,
showing that a small electric field of ' 100 mV/cm is enough to shift the en-
ergy of a state by as much as ∼ 3 MHz. The polarizability α scales as n∗7 with
the effective quantum number.

2The code is based on a numerical integration of the Rydberg radial wave functions while imposing
for the energies of the states the ones given by Equation 5.2 (Numerov method [Zimmerman et al.
(1979)]). For more details, see in [Béguin (2013)].
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• Rydberg states have a long radiative lifetime τtot, of the order of 100 µs for the
typical Rydberg states that we use. Rydberg states decay to other states due
to spontaneous emission at a rate τ−1

rad and also due to stimulated emission at
a rate τ−1

bb induced by black-body radiation in an environment at temperature
TLab' 300 K. We have:

1

τtot

=
1

τrad

+
1

τbb

. (5.5)

A semi-empirical formula for τrad has been obtained from experimental and
theoretical considerations [Gounand et al. (1976); Beterov et al. (2009)]:

τrad' τsn∗δ , (5.6)

where τs' 1.1 ns and δ' 3.0 for
∣∣nD3/2

〉
states. For n= 60, this gives a radiative

lifetime τrad' 208 µs. Transitions between Rydberg states induced by black-
body radiation [Farley and Wing (1981)] occur at a rate:

τbb'
3

4

(
~c
e2

)3 ~
kBTLab

n∗2' (49 ns)× n∗2 , (5.7)

where kB is the Boltzmann constant. For n= 60 we have τbb' 169 µs. The two
effects give a lifetime τtot' 93 µs for the

∣∣60D3/2

〉
state. This approximate value

is reasonably close to the one given in [Beterov et al. (2009)] (τtot' 108 µs).

Rydberg atoms show both large dipole moments and long lifetimes. The large dipole
moments lead to strong interactions and fast manipulation of the atoms, while the
long timescales allow for long experimental sequences as well as manipulations within
the Rydberg manifold as we will see in Chapter 8.

5.3 Rydberg atoms in magnetic and electric fields

In all our experiments, we apply a 3.3 G magnetic field that is used to optical pump
the atoms (see Chapter 6). Moreover, in Chapter 9, we use an electric field to control
the interactions between the atoms. In this Section, we thus summarize the effects
that electric and magnetic fields have on a Rydberg atom.
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Table 5.2: Landé factors for the Rydberg states of interest in this thesis. For the
3.3 G magnetic field used in this experiment, the typical Zeeman shifts given in frequency
units are of the order of a few MHz.

State gJ
∣∣nS1/2

〉
2

∣∣nP1/2

〉
2/3

∣∣nD3/2

〉
4/5

∣∣nF5/2

〉
6/7

∣∣nF7/2

〉
8/7

5.3.1 Zeeman effect

Neglecting diamagnetism, there is nothing special about the influence of a magnetic
field on Rydberg atoms as compared to ground state atoms, at least for low-lying L-
states. A magnetic field B acts on an atom by means of its coupling to the magnetic
dipole moment µ̂ of the atom. This effect known as the Zeeman effect lifts the
degeneracy of the magnetic sub-levels of the atom. For a magnetic field aligned along
the z-axis, the interaction Hamiltonian reads:

ĤB =−µ̂ ·B' µB
~

(gSŜz + gLL̂z)Bz , (5.8)

where µB is the Bohr magneton (µB ' 1.4 MHz/G), and where the electron spin and
electron orbital Landé factors are taken equal to gS = 2 and gL = 1 in Equation 5.8.

Limit of a weak magnetic field

In a weak magnetic field, the interaction Hamiltonian can be treated perturbatively.
To lowest order, the unperturbed eigenstates are shifted by an energy

∆EB = 〈n, L, J,MJ | ĤB |n, L, J,MJ〉= gJMJµBB , (5.9)

where gJ is the Landé factor:

gJ '
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (5.10)
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This perturbative approach is valid as long as the Zeeman shifts are small compared
to energy splitting between states of different J , that are coupled by ĤB. The Landé
factors for the states of interest in this Chapter are given in Table 5.2. For the
magnetic field B' 3.3 G used in our experiments, the Zeeman shifts are typically
below 10 MHz. This is much smaller than the fine structure splitting for P -states
(typically a few hundreds of MHz for the states used in this thesis) and D-states
(typically a few tens of MHz for the states used in this thesis). However, for F -
states, the fine structure splitting is smaller than 1 MHz for the Rydberg states used
in this thesis, which is typically smaller than the calculated Zeeman shift. In this
case, one has to consider the full Hamiltonian ĤB.

Full Hamiltonian ĤB

In large magnetic fields, the couplings between states {|n, L, J,MJ〉} introduced by
ĤB modify the eigenstates of the system. After decomposition in the uncoupled basis
{|n, L,ML, S,MS〉}, one can calculate the coupling due to the magnetic field between
two states |n′, L′, J ′,M ′

J〉 and |n, L, J,MJ〉. The orthogonality of radial wavefunctions
implies that couplings only occur when ∆n= 0. Moreover, the operators L̂z and Ŝz
conserve L, and therefore ∆L= 0. The relevant matrix elements of the Zeeman
Hamiltonian are thus given by:

〈n, L, J ′,M ′
J |HB |n, L, J,MJ〉=µBBz

∑

ML,MS

(2MS +ML)CJ,MJ

L,ML;S,MS
C
J ′,M ′

J
L,ML;S,MS

,

(5.11)
where CJ,MJ

L,ML;S,MS
are the Clebsch-Gordan coefficients:

CJ,MJ

L,ML;S,MS
= 〈L,ML;S,MS|J,MJ〉 . (5.12)

Clebsch-Gordan coefficients are non-zero if and only if MJ =ML + MS =M ′
J . As a

consequence, the magnetic field introduces couplings between states of different J .
Note that the diagonal elements of ĤB coincide with the Zeeman shifts obtained in
the weak field limit in Equation 5.9.

5.3.2 Stark effect

An electric field F acts on an atom by means of its coupling to the electric dipole
moment d̂ of the atom. Rydberg atoms have large dipole moments and are therefore
particularly sensitive to electric fields due to the Stark effect. This property can be
a drawback as one needs to pay attention to the electric environment, but it can also
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be used to control the interaction between two atoms as we will see in Chapter 9. In
the presence of an electric field, the atomic states are perturbed under the influence
of the Hamiltonian:

ĤF =−d̂ ·F . (5.13)

Second-order perturbation theory

For low orbital momenta (L≤ 3, the states of interest in this manuscript), Rydberg
states are non-degenerate due to the electrostatic interactions between the ion core
and the valence electron (see quantum defect theory in Section 5.1). Because the
average value of the dipole moment vanishes in an atomic eigenstate, ĤF has no
effect to first order. In the presence of weak electric fields, we apply second-order
perturbation theory. In this case, a state |φ0〉= |n, L, J,MJ〉 undergoes a quadratic
energy shift, given by:

∆EF =
∑

|φ〉

∣∣∣〈φ| d̂ ·F |φ0〉
∣∣∣
2

Eφ − Eφ0
=−1

2
α |F |2 , (5.14)

where the summation ranges over all states that are different from |φ0〉. In a first
approximation, we will consider that the effect of the electric field is to shift the
energy of the state |n, L, J,MJ〉 by the quantity ∆EF , while the state itself stays
unperturbed. The coefficient α is called the polarizability of the state |n, L, J,MJ〉.
Using the scaling laws given in Section 5.1, we can obtain an order of magnitude of
the polarizability α:

• The numerator inside the sum in Equation 5.14 scales as the modulus squared
of the product of a dipole matrix element times the electric field, (n∗2ea0)2 |F |2,

• The denominator inside the sum in Equation 5.14 scales as the difference in
energy between two Rydberg states, −2Ry × n∗−3

r ,

• As a consequence, we obtain an approximate expression for α:

α' e
2a2

0n
∗7

Ry

. (5.15)
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Full Stark Hamiltonian

For larger angular momenta (L≥ 4), the quantum defects vanish, which leads to
some degeneracies between states. In this case, the electric field mixes the states,
leading to new eigenstates for the system, with eigenenergies that vary linearly with
|F |. As a consequence, we determine the effect of F by diagonalizing numerically ĤF ,
where we calculate the dipole matrix elements numerically as described in Section 5.2.
Note that ĤF only couples states with |∆MJ | ≤ 1 and ∆L=±1 which allows to
significantly reduce the size of the basis. Moreover, the matrix elements decrease
rapidly with n and we only keep elements verifying ∆n≤ 4. In this thesis, we only
consider states with L≤ 3 in small electric fields ≤ 100 mV/cm (see Chapter 9). For
those states we obtain the polarizabilities α by fitting the calculated Stark effect by a
parabola for electric fields that are lower than 100 mV/cm. We have verified that the
polarizabilities obtained this way coincide with the ones obtained in Equation 5.14,
showing that the perturbative approach is valid for the small fields used in this thesis
(see Chapter 9). In this regime, the Stark Hamiltonian is a diagonal matrix, that
shifts the eigenenergies by a quantity α |F |2 /2 without disturbing the eigenstates3.

5.4 Interactions between Rydberg atoms: a brief

overview

The presence of large dipole moments in our system of Rydberg atoms results in
strong interatomic interactions. Indeed, two Rydberg atoms located at positions RA

and RB interact predominantly through the dipole-dipole coupling described by the
Hamiltonian:

V̂dip =
1

4πε0

d̂A · d̂B − 3(d̂A ·n)(d̂B ·n)

R3
, (5.16)

where d̂i is the electric dipole moment of atom i (i=A,B), R=RB −RA, and n=

R/R. As a consequence, we observe that the increased dipole moments immediately
result in increased interaction energies. An estimate of the interaction can be obtained
using the n∗2 scaling of the transition dipoles moments:

|Vdip| ∼
1

4πε0

e2a2
0

R3
n∗4 . (5.17)

3One can show that the non-diagonal matrix elements are higher-order terms Cohen-Tannoudji,
Dupont-Roc, and Grynberg (1988).
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Figure 5.2: Two-body interaction strengths for rubidium atoms (adapted from
[Saffman, Walker, and Mølmer (2010)]). The Figure shows the interaction strengths
for ground state rubidium atoms (purple and blue curves) and Rydberg atoms excited to
the 59D3/2 level (green and red curves). The purple curve corresponds to the van der Waals
interaction between ground state atoms (∝R−6), and the blue curve represents the magnetic
dipole-dipole interactions (∝µ2

B/R
3). The green and red curve correspond to electric dipole-

dipole interactions between Rydberg atoms. For the typical interatomic distances in our
experiment, the interactions between Rydberg atoms are ∼ 1011 larger than between ground
state atoms. For Rydberg states, we observe the existence of two regimes for the interaction.
The green curve is an extrapolation of the resonant dipole-dipole interactions ∝R−3 regime
at large distances: this situation can be achieved by controlling the electric field, as we will
demonstrate in Chapter 9.

For two atoms of principal quantum number n= 60 and separated by a distance
R= 10 µm, we obtain a typical interaction energy of ∼h × 10 MHz, which implies
operation times of ∼ 100 ns� τtot for our qubits.

Figure 5.2 compares the interaction strength for ground state rubidium atoms and
Rydberg atoms excited to the 59D3/2 state. At the typical interatomic distances in
our experiment (∼ 1 to 10 µm), ground state alkali atoms interact mainly via magnetic
dipole-dipole coupling ∝ 1/R3. At those distances, the interaction strength between
two ground state atoms is lower than 10−2 Hz. In our system the manipulation of
ground state atoms is not possible on timescales that are smaller than the coherence
time of the qubit. On the other hand, Rydberg atoms show electric dipole-dipole
interactions that are approximately a factor 1011 larger than for ground state atoms
(see red and green curves in Figure 5.2). At a few microns distance, Rydberg atoms
show interactions of a few tens to a few hundreds of MHz, in agreement with our
estimations in Equation 5.17, which confirms the possibility to perform fast operations
using Rydberg states. A closer look at the curves of the interactions for Rydberg
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atoms in Figure 5.2 shows the existence of two regimes. In the case of two atoms
excited to the 59D3/2 level, one observes that for R. 8 µm, the interaction scales as
1/R3: this is the regime of resonant dipole-dipole interactions that we will discuss in
Chapter 9. At larger distances, the interaction scales as 1/R6: this corresponds to
the regime of van der Waals interactions that will be the subject of Chapter 7.

5.5 Rydberg blockade

The large interactions between Rydberg atoms have inspired theorists who proposed
to use them for the generation of entanglement and for applications in quantum
information [Jaksch et al. (2000); Lukin et al. (2001)]. One extreme regime that allows
fast creation of entanglement is the so-called “Rydberg blockade” that we describe
in this paragraph in the case of two atoms A and B separated by a distance R. We
consider each atom as a two-level system, with a ground state |g〉 and an excited
Rydberg state |r〉 separated by an energy En (see Figure 5.3). The two-atom system
contains four pair-states: |gg〉, |gr〉, |rg〉 and |rr〉. In the van der Waals regime, the
effect of the strong interaction between the two Rydberg atoms leads to a shift of
the level |rr〉 by the interaction energy ∆E(R), while the other levels stay essentially
unshifted. We assume that a laser is resonant with the excitation of a single atom
to the Rydberg state. As a consequence of the dipole-dipole interaction, the laser is
not resonant with the excitation of a pair of atoms to state |rr〉, provided that the
linewidth of the excitation Ω is smaller than ∆E(R). The inhibition of the excitation
of one of the two atoms by the dipole-dipole interaction occurs when ∆E(R)� ~Ω,
which is a condition that is tolerant to experimental imperfections. This is one of the
reasons why the Rydberg blockade triggered a huge interest in the field of quantum
information.

When we illuminate the two atoms with the same laser field EL, we do not know
which of them has been excited to the Rydberg state. This is the key to produce
entanglement in the system: because of the Rydberg blockade we excite the system
to a superposition state of having prepared one or the other atom to the Rydberg
state

|Ψ+〉=
1√
2

(
eik ·RA |rg〉+ eik ·RB |gr〉

)
, (5.18)

where k is the wavevector of the excitation laser and RA,B are the positions of the
atoms. For each atom, the laser couples the states |g〉 and |r〉 with the Rabi frequen-
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Figure 5.3: Principle of the Rydberg blockade between two atoms. The one-atom
spectrum contains the ground state |g〉 and the Rydberg state |r〉. In the case of two atoms
separated by a distance R, the van der Waals interaction shifts the doubly excited state
|rr〉, preventing its excitation by a laser resonant with the one-atom transition. This results
in the collective excitation of the state |Ψ+〉= (|gr〉+ exp (iφ) |rg〉) /

√
2.

cies ΩA and ΩB:

~Ωi =−〈r| d̂i ·ELe
ik ·Ri |g〉≡ ~Ωeik ·Ri , (5.19)

As a consequence, one can calculate the laser coupling between |gg〉 and |Ψ+〉:

−〈Ψ+| d̂A ·ELe
ik ·RA + d̂B ·ELe

ik ·RB |gg〉=
√

2~Ω . (5.20)

Note that the coupling from |gg〉 to the antisymmetric state

|Ψ−〉=
1√
2

(
eik ·RA |rg〉 − eik ·RB |gr〉

)
(5.21)

is zero: |Ψ−〉 is a dark state with respect to the laser excitation, that cannot be
excited. In the Rydberg blockade regime, the two-atom system undergoes Rabi oscil-
lations between |gg〉 and |Ψ+〉 at a frequency

√
2Ω. Extended to the case of N atoms

where one atom only is excited while the excitation of the N − 1 other atoms are
blockaded, the system oscillates at a frequency

√
NΩ between the state |gg...g〉 and
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|Ψ〉= 1√
N

N∑

j=1

eik ·Rj |gg...rj...g〉 . (5.22)

The Rydberg blockade was first observed in disordered ensembles of cold atoms
[Tong et al. (2004); Singer et al. (2004); Comparat and Pillet (2010)]. Today, it
has been observed in systems as different as optical lattices [Viteau et al. (2011);
Schauß et al. (2012)] or Bose-Einstein condensates [Heidemann et al. (2008); Löw
et al. (2009); Balewski et al. (2013)], where it has proved to be a useful tool for
the study of many-body physics [Anderson, Veale, and Gallagher (1998); Mourachko
et al. (1998)], or photon-photon interactions [Dudin and Kuzmich (2012); Peyronel
et al. (2012); Maxwell et al. (2013)]. With the level of control reached in an array of
optical tweezers, new applications in quantum information and quantum simulation
become possible. The demonstration of Rydberg blockade between two individual
atoms at a controlled distance occurred in 2009 in our group [Gaëtan et al. (2009)]
and simultaneously in the group of M. Saffman at the University of Wisconsin [Urban
et al. (2009)]. This subsequently allowed the entanglement of two individual atoms
using the Rydberg blockade at the Institut d’Optique [Wilk et al. (2010)] and the
demonstration of a CNOT gate [Isenhower et al. (2010)] at the University of Wis-
consin. These experiments set the ground for the experimental implementation of a
Rydberg quantum simulator.

5.6 Outline of the second part

The large dipole moments in Rydberg atoms allow reaching the interaction ener-
gies required for fast manipulation and control of an ensemble of atomic qubits.
A remarkable consequence of the large interactions between Rydberg atoms is the
Rydberg blockade, as we will observe in Chapter 7 in the case of van der Waals in-
teractions. One of the interests of the Rydberg blockade comes from the fact that it
does not require any control over the interaction due to its robustness with respect
to experimental fluctuations or imperfections. In Chapter 8 and Chapter 9, we work
in a completely different regime where multiple Rydberg excitations are present in
the system. In the regime of resonant dipole-dipole interaction, we show our abil-
ity to control and actively tune the interatomic interactions themselves, either using
microwave or DC electric fields.
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In this chapter, we describe our setup of neutral atoms trapped in arrays of optical
dipole traps. This system has been designed to allow the engineering of quantum
states in ordered ensembles of interacting atoms. The setup has been extensively
described by L. Béguin in [Béguin (2013)], and we recall some of its principles in
this chapter. In the first two sections, we concentrate on the techniques we use to
produce ordered ensembles of single atoms. We first recall the principles of single atom
trapping in an optical dipole trap. Secondly, we describe our addition of a Spatial
Light Modulator (SLM) to the setup, which allows generating arrays of dipole traps
with controllable geometries. We then concentrate in Section 6.3 on the techniques
we use to excite an atoms to a Rydberg state. We detail in particular the addition of
an ultra-stable cavity to the setup during my thesis, used to stabilize the frequencies
of the Rydberg excitation lasers. The control of electric fields, which is fundamental
when working with Rydberg atoms, is the subject of Section 6.5, where we describe
in particular our recent calculations used to fully characterize the electric field inside
the chamber. We finally describe our implementation of addressing of a single atom
for Rydberg excitation.

6.1 Trapping and imaging single atoms

The core of our setup, shown schematically in Figure 6.1 is an ensemble of microscopic
dipole traps, which allows to trap individual atoms [Schlosser et al. (2001); Schlosser,
Reymond, and Grangier (2002)].

6.1.1 Our microscopic dipole traps

We use microscopic dipole traps (“optical tweezers”) that are produced by tightly
focusing a laser beam so as to generate a conservative dipole force on atoms that
are illuminated by the laser [Ashkin (1970); Grimm, Weidemüller, and Ovchinnikov
(2000)]. In particular, red-detuned dipole traps (with a detuning ∆) produce an
attractive dipole force that leads to trapping at the maximum intensity of the beam
I0. The trap depth U0 is proportional to I0 and inversely proportional to ∆:

U0∝
I0

∆
. (6.1)



6.1 Trapping and imaging single atoms 97

Figure 6.1: Generation of arrays of microtraps for single-atom trapping. The
SLM imprints a calculated phase pattern on the 850 nm dipole trap beam. A high numerical
aperture aspheric lens (fAsph = 10 mm) under vacuum focuses it at the center of a MOT.
The atomic fluorescence at 780 nm is reflected off a dichroic mirror (DM) and detected using
Avalanche Photodiodes (APDs) or an EMCCD camera. A second aspheric lens identical to
the first one collimates the 850 nm beam. The transmitted beam is used for trap diagnostics
on a CCD.

In our experiment, we use light of wavelength 850 nm, red-detuned from the D1 and
D2 lines of rubidium, giving:

1

∆
=

1

3∆1/2

+
2

3∆3/2

, (6.2)

where ∆1/2 is the detuning from the D1 line of 87Rb and ∆3/2 is the detuning from the
D2 line of 87Rb. One specificity of our setup, schematically shown in Figure 6.1, is the
small size of our trap. We focus the trapping beam using a custom-made D-ZLaF52LA
high-numerical aperture aspheric lens from LightPath technologies (N.A.= 0.5). This
creates a trap for 87Rb atoms in the focal plane of the lens, with a radial dimension
as small as w0' 1 µm [Sortais et al. (2007)]. Using ' 3 mW of laser power, we obtain
a typical trap depth of U0' kB × 1 mK. We use, as a reservoir of atoms to load this
trap, a cloud of cold atoms at temperature ∼ 100 µK, laser-cooled in a MOT. The
optical tweezers are focused in the cold-atom cloud, allowing atoms to enter the trap
at random times.

As long as they are illuminated by the MOT beams, the atoms absorb and sponta-
neously reemit resonant photons at a wavelength of 780 nm in all directions. We use
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this fluorescence to detect the trapped atoms. When an atom is in the trap, the scat-
tered photons are collected by the aspheric lens used for trapping. We separate the
fluorescence light from the trapping light using a dichroic mirror, shown in Figure 6.1
(DM). We measure the fluorescence signal using fiber-coupled avalanche photodiodes
(APD) connected to photon counting modules. In this thesis, we performed experi-
ments with arrays containing one, two and three atoms. In order to follow each atom
individually, we spatially separate the fluorescence coming from different traps using
a combination of two orthogonal edge mirrors separated by a distance of ' 40 µm

(see Figure 6.2a). We image the plane of the atoms, with a magnification equal to
25, on the intersection of the mirrors. One signal is transmitted between the two
mirrors, while the two other ones are reflected in opposite directions. We couple the
single atom signals to different single-mode optical fibers connected to independent
detectors [Beugnon et al. (2006)]. This approach works for experiments with one,
two or three atoms. To work with higher number of atoms, we have also used an
iXon Ultra cooled 16-bit EMCCD camera from Andor. We conjugate the plane of
the atoms with the plane of the camera (see Section 6.2) such that each fluorescence
signal is imaged on a single pixel.

6.1.2 Single-atom trapping

Because our dipole trap has a small volume ∼ 1 µm3, it is possible to isolate one
single atom in the trap. Indeed, there exists a regime of densities of the cold-atom
cloud where one atom at most is trapped at a time [Schlosser et al. (2001)]. In this
single-atom regime, the entrance of more than one atom in the trapping region results
in fast light-assisted collisions. Both atoms are expelled from the trap on timescales
∼ 10 µs, that are too fast to allow the collection of enough photons to detect two-
atom events [Fuhrmanek et al. (2012)]. As a consequence, we only detect events with
zero or one atom in the trap.

Fluorescence signals

Figure 6.2b shows typical fluorescence signals observed in the single-atom regime,
where we integrated the number of photon counts per 20 milliseconds time bins. We
clearly distinguish two levels of fluorescence, that correspond to the absence or the
presence of one and only one atom in the trap. We define a fluorescence threshold that
makes the situation binary, with a low fluorescence level corresponding to no atom in
the trap and a high fluorescence level corresponding to one and only one atom in the
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Figure 6.2: Observing single atoms with APDs. a, We spatially separate the three
fluorescence signals using edge mirrors. The fluorescence light is coupled to APDs connected
to photon counting modules. b, We plot the integrated number of counts per 20 milliseconds
time bins. For each of the atoms, we observe the characteristic single atom signal consisting
of two fluorescence levels corresponding to the presence or absence of one atom in the trap.
We define a threshold to discriminate between the presence or the absence of one atom in
the trap.

trap. Note that this method implies that the level of background has to be stable,
especially for long runs. We were initially bothered by a fluctuating background
coming from light from the MOT beams at wavelength 780 nm, scattered off metallic
vacuum parts, creating a speckle field that varies with time. To average out this
speckle field, we added five piezoelectric crystals of maximal displacement of � 5 μm

on the mirrors of the MOT beams. The addition of those piezos did not lead to
any noticeable change in the temperature of the atoms, but drastically improved the
stability of the background level compared to the previous situation.

Non-deterministic loading

Since the atoms enter the trap at random times, the trap is loaded � 50% of the
time, and our arrays are half-filled on average (non-deterministic loading). However,
for some experiments (as it is the case in this thesis) it can be required to work with
fully-loaded arrays of atoms. Working with fully-loaded arrays implies that we have
to wait for the presence of one atom in each trap in order to trigger the experiment.
The probability for this situation to occur is 1/2N where N is the number of traps. For
the small arrays studied here (N ≤ 3), this leads to reasonable duty cycle times � 1 s.
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For future experiments with larger fully-loaded arrays of atoms, other deterministic
schemes [Grunzweig et al. (2010); Beterov et al. (2011); Ebert et al. (2014)] will have
to be implemented (see Outlook).

6.1.3 Characteristics of the trap

To characterize our traps, we performed single-atom measurements of the trap depth,
the single atom temperature, and the trap frequency. We used standard sequences
that have been detailed in [Darquié (2005); Beugnon (2007); Gaëtan (2009); Béguin
(2013)], and that we briefly summarize below:

• We obtain the trap depth by measuring the lighshift introduced by the dipole
trap beam on the ground state of a single atom. We shine the atom with
a σ+-polarized probe beam whose frequency is ramped around the resonance∣∣5S1/2, F = 2,mF = 2

〉
→
∣∣5P3/2, F = 3,mF = 3

〉
[Tey et al. (2008); Shih and Chap-

man (2013)]. We record the number of fluorescence photons scattered by the
atom as a function of the probe detuning. The measured light shift corresponds
to the trap depth1. Using ' 3 mW of laser power, we obtain a typical trap depth
of U0' kB × 1 mK.

• We measure the single atom temperature using a release and recapture method.
We turn the trap off for a variable duration of time, and we measure the re-
capture probability at the end of the sequence. The data is compared with
Monte-Carlo simulations of the single atom trajectories inside the trap, taking
into account the energy distribution of an atom at a temperature T [Tuchendler
et al. (2008)]. We typically obtain a single atom temperature of T ' 50 µK.

• To measure the radial trapping frequency, we first excite the monopole mode
by turning the trap off for a few microseconds and turning it on again, as
in [Sortais et al. (2007); Engler et al. (2000)]. When the trap is switched on
again, the atoms oscillates in the trap. The confinement in the radial direction
being much tighter than in the longitudinal direction, we mainly excite the
radial motion of the atom at a frequency ωr. We then perform a release and
recapture experiment, varying the intermediate holding time. The probability
to recapture the atom at the end of the sequence depends on its kinetic energy

1Another method that we have used to obtain the trap depth consists in measuring, on a single
atom, the position of a chosen Rydberg line. As mainly the ground state experiences a light shift,
the frequency shift measured when leaving the trap on (as compared to when the trap is turned off
during the measurement) corresponds to the trap depth.
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at the time we released the atom, and thus oscillates at the frequency 2ωr.
Assuming the trapping beam to be a Gaussian, the measurement of the radial
trapping frequency gives ωr' 2π × 90 kHz for a trap depth of ' 1 mK, which
is consistent with a 1/e2-radius of 1 µm for the trapping beam. From this
measurement, we infer the longitudinal trapping frequency ωx' 2π × 20 kHz.

6.2 Creating arrays of traps

Only two traps were used, in the early stage of the experiment, to characterize the
setup and perform the first measurements [Béguin (2013)]. The two traps were created
by two independent laser beams forming a small angle. One important task during
my thesis was to increase the number of atoms in our system. A proof of principle
of the possibility to do so by holographic generation of microtrap arrays had been
performed at the Institut d’Optique on an older setup, with up to 5 traps [Bergamini
et al. (2004)]. With the help of F. Nogrette, a research engineer at the Institut
d’Optique who took care of the optical design, we implemented and pushed further
this method on our setup: we demonstrated our ability to trap atoms in arrays with
variable geometries containing up to 100 traps, and performed experiments in two-
atom and three-atom systems (see Chapters 7, 8, and 9). Here, we briefly summarize
our implementation of trap arrays. A more complete description can be found in
[Nogrette et al. (2014)], and more details will be given in the thesis of H. Labuhn.

6.2.1 Spatial Light Modulator (SLM)

The holographic generation of dipole traps arrays uses a diffractive element in order to
turn the collimated trapping beam into an array of traps after the aspheric lens. We
use a X10468-02 reflective phase-modulating SLM from Hamamatsu (see Figure 6.1)
to modulate the phase of the incoming trapping beam. The SLM has an active area of
12× 18 mm2 with a resolution of 600× 800 pixels, and is illuminated by the trapping
beam, which has been collimated to a 1/e2 radius of 6.7 mm in order to cover the
active area of the SLM as much as we can. Upon reflection on the SLM, we imprint a
calculated phase pattern ϕ(x, y) onto the trapping beam of initial Gaussian intensity
I0(x, y) [Boyer et al. (2004); Bergamini et al. (2004); Gaunt and Hadzibabic (2012);
Gaunt et al. (2013)]. An afocal telescope with a −0.8 magnification then conjugates
the plane of the SLM with the plane of the aspheric lens to adapt the trapping beam
to the active area of the aspheric lens aperture, while maintaining its collimation. The
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intensity distribution in the focal plane of the aspheric lens is given by the squared
modulus of the 2D-Fourier transform of

√
I0 exp (iϕ).

6.2.2 Calculating the phase pattern: the Gerchberg-Saxton

algorithm

Starting with the known initial intensity of the beam I0 we want to produce a desired
trap array, with target intensity It in the focal plane of the aspheric lens. The target
intensity is a superposition of Gaussian peaks, with a 1 µm 1/e2 radius and centered at
the location of the traps. Our goal is to calculate the phase ϕ(x, y) we need to imprint
on the beam to obtain the target intensity in the focal plane of the aspheric lens. We
calculate ϕ iteratively, using the Gerchberg-Saxton algorithm [Gerchberg and Saxton
(1972)] that we have implemented in Matlab. We initialize ϕ to a random phase
ϕ0, which is uniformly distributed over the range [0, 0.2× 2π]. Using fast Fourier
transform, we propagate the electric field back and forth from the SLM plane to the
plane of the atoms. At each step of the calculation, we impose that the amplitude of
the field is

√
I0 in the SLM plane and

√
It in the focal plane:

• At step n, we obtain a phase ϕn in the SLM plane. We then fix the electric field
amplitude to

√
I0 and, using fast Fourier transform, we propagate the electric

field
√
I0e

iϕn through the aspheric lens. We obtain the field Afneiϕ
f
n in the focal

plane of the aspheric lens.

• In the plane of the atoms, we then fix the amplitude of the field to
√
It, and we

propagate the field
√
Ite

iϕf
n back to the SLM plane by inverse Fourier transform.

We obtain the new phase ϕn+1.

• Convergence is reached when the difference between the calculated intensity∣∣Afn
∣∣2 and the target intensity It is smaller than a chosen threshold.

After a few tens of iterations, the algorithm typically converges toward an approxi-
mate solution, where the intensity distribution in the focal plane of the lens is It to
a good approximation.

6.2.3 Improving the quality of our trapping arrays

We use several tools to characterize and optimize our trapping arrays. We first
collect the trapping light after the vacuum chamber so as to image the intensity
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Figure 6.3: Examples of trapping arrays. For each panel, we show the calculated
phase pattern used to create the array (left), an image of the resulting trap array taken
with the diagnostics CCD (middle), and the average of 1000 fluorescence images of single
atoms loaded into the traps (right). We have calibrated the distances between the traps,
by measuring the displacement of a trap image on the CCD camera when we change the
angle of incidence of the trapping beam by a known amount [Béguin (2013)]. We found a
systematic uncertainty of 5%, which will be the uncertainty given for the distances between
atoms in the rest of this thesis.

pattern obtained in the focal plane of the aspheric lens. To do so, we re-collimate
the trapping beam with the second aspheric lens placed in vacuum and facing the
first one in a symmetrical configuration as shown in Figure 6.1. We then analyze
the trapping light using either a CCD camera to measure its intensity distribution
or a Shack-Hartmann sensor to measure the wavefront distortion at the output of
the chamber. The second option is to look at the fluorescence signals of single atoms
trapped in the produced arrays. To do so, we measure the fluorescence emitted by
atoms in the trap using the EMCCD camera or the APDs (see Figure 6.1). These
four approaches are complementary and allowed us to check and optimize the quality
of our trapping arrays, as described below:
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• The CCD camera placed after the vacuum chamber allows us to image our
trapping arrays (the plane of the CCD is conjugated with the plane of the
atoms), as shown for several phase patterns (middle panels of Figure 6.3). We
can use those images to improve the quality of our trapping arrays. Indeed,
after we first calculate the phase needed for a given trap array, we generally
notice on the CCD images some non-negligible dispersion in the trap intensities.
For example, after we first calculated the phase for a 10 × 10 square lattice,
the standard deviation of the trap intensities distribution was ' 19%. Such
non-uniformities are detrimental to our experiment since the quality of single-
atom trapping depends in the trapping power2. As a consequence, we use this
diagnostic to retroact on the phase we imprint on the SLM: we modify the target
intensity and continue to run the Gerchberg-Saxton with this updated target
intensity so as to correct for the measured imperfections. In the new target
image, we enhance the depths of the traps that show too low intensities on
the CCD and we reduce the ones that showed too high intensities on the CCD.
This leads to a new phase pattern, with improved distribution of trap intensities.
Iterating this procedure a few times drastically improves the uniformity of our
trapping arrays: for the 10× 10 array showed in Figure 6.3, we have obtained
a standard deviation in the distribution of trap intensities of ' 1.4%.

• After we installed the SLM, we also noticed on the CCD images the degradation
of the quality of the traps when increasing the size of the array. This led
us to analyze the wavefront of the trapping beam using a Shack-Hartmann
wavefront sensor. Applying a flat phase on the SLM (i.e. one single trap
centered on the field), we observed a significant deformation of the wavefront
as the light traveled across the vacuum system3. This deformation is mainly due
to imperfections of the optics (vacuum windows, aspheric lenses) and residual
misalignments that introduce aberrations in the system. Following an approach
commonly used in adaptive optics, we compensate for the optical aberrations
of the system by applying on the SLM the conjugate of the measured distortion
[López-Quesada, Andilla, and Martín-Badosa (2009)]. After this correction, we
measured a root mean square deviation for a flat wavefront as low as ' 0.014λ.
This correction pattern is now systematically added to the holograms we display

2Too low powers lead to shallow traps, with short trapping times. Too high powers can place us
outside of the single-atom regime.

3The measurement of the root mean square deviation from a flat wavefront gave ' 0.05λ before
the vacuum chamber and ' 0.15λ after the vacuum chamber.
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on the SLM.

• Using the EMCCD camera, we have been able to demonstrate single-atom trap-
ping in large lattices. The right panels in Figure 6.3 show the average of ap-
proximately 1000 EMCCD fluorescence images of single atoms in the traps. We
demonstrated single-atom trapping in up to 100 traps separated by distances
as small as 3 µm, in various geometrical configurations.

• Using the avalanche photodiodes, we repeated the temperature, trap depth and
trap frequency measurements in an array of three traps. We obtained trap
characteristics identical to the ones shown in Section 6.1.3, demonstrating the
viability of the holographic approach for the production of our traps.

Our arrays are particularly adapted to Rydberg physics, where the large inter-
atomic interactions allow working with interatomic distances as large as a few microns
(in this thesis, interatomic distances range from ' 4 µm to ' 50 µm). The versatility
of this tool is also striking considering the ease with which it is possible to create
various types of arrays, in comparison to more traditional techniques such as optical
lattices [Dumke et al. (2002); Schlosser et al. (2011); Bloch (2005); Nelson, Li, and
Weiss (2007)].

6.3 Coherent excitation to a Rydberg state

We have shown our ability to trap single atoms in arrays of optical dipole traps, with a
typical interatomic separation of a few microns. In order to have strong interactions in
our system, we use Rydberg states with principal quantum numbers n' 50−100. In
this section, we describe our Rydberg excitation scheme on a single atom. To realize
our experiments, especially in view of quantum information applications [Jaksch et al.
(1999)], one requirement is to coherently excite the atoms to Rydberg states. Here,
we demonstrate our ability to perform Rabi oscillations on single atoms.

6.3.1 Two-photon excitation

Transition energies from the ground state to a Rydberg state typically lie in the UV
domain, with wavelengths of ∼ 300 nm. The coherent excitation of a single atom
to a Rydberg state using a UV laser has been demonstrated recently [Hankin et al.
(2014)]. However, it is generally preferred to use an intermediate state in a two-
photon process [Singer et al. (2004); Afrousheh et al. (2004); Liebisch et al. (2005);
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Figure 6.4: Excitation to Rydberg states. a, Level configuration for our two-photon
excitation used to reach the Rydberg states. b, Typical excitation sequence. After optically
pumping the atoms to the ground state, we shine the excitation beams on the atoms for a
variable duration τ .

van Ditzhuijzen et al. (2006); Johnson et al. (2008); Miroshnychenko et al. (2010)],
due to the technical difficulties encountered when working with UV light4 [Tong et al.
(2004); Hankin et al. (2014)].

Laser configuration

For two-photon excitation, we use a red laser of frequency ωR that couples the ground
state |g〉= ∣∣5S1/2, F =2,MF =2

〉
to the intermediate state

∣∣5P1/2, F =2,MF =2
〉

with
a Rabi frequency ΩR, and a blue laser of frequency ωB that couples the intermediate
state to the chosen Rydberg state |r〉 with a Rabi frequency ΩB (see Figure 6.4). The
Rabi frequency Ωi (i= {R;B}) is given by [Gaëtan (2009)]:

�Ωi = |di| Ei, (6.3)

where Ei is the amplitude of the field and di is the dipole matrix element between the
states that are coupled by the laser. We define the detunings Δ=ωR−E|5P1/2〉/� and

4Those difficulties include current technical limitations of UV lasers, and the accumulation of
charges on surfaces hit by the UV laser due to the photoelectric effect.
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δ=ωR + ωB − E|r〉/~. Under the assumption ΩR,ΩB�∆ and in the rotating wave
approximation, it is possible to show that this situation is equivalent to coupling |g〉
to |r〉 with an effective Rabi frequency and an effective detuning:

Ωeff =
ΩRΩB

2∆
,

δeff = δ −
(
|ΩR|2
4∆

− |ΩB|2
4∆

)
.

(6.4)

Typical Rabi frequencies

The red laser is a DL100 commercial laser from Toptica, with a wavelength of 795 nm.
The detuning from the intermediate state is fixed5 to ∆ = 2π × 740 MHz [Miroshny-
chenko et al. (2010)]. The laser beam has a measured 1/e2 radius wR' 105 µm at
the position of the atoms, which leads to the following typical order of magnitude for
ΩR/2π:

ΩR

2π
=
|dR|
h

√
4PR

πε0cw2
R

' 146

√
PR

1 mW
MHz , (6.5)

where the value dR' 1.73ea0 was taken from [Steck (2010)]. We keep the possibility
to vary the red laser power so as to tune ΩR (the red laser power PR that is sent on
the atoms varies between 100 µW and 12 mW in the experiments presented in this
thesis).

The 474 nm light comes from a TA-SHG-110 commercial laser from Toptica. A
diode laser produces light with a ' 950 nm wavelength, that is frequency doubled
to obtain blue light, with a ' 474 nm wavelength. Once the laser is locked (see
Section 6.3.2), the detuning δ can be scanned by changing the frequency of an electro-
optic modulator (see Section 6.3.2). The laser beam has a measured 1/e2 radius
wB ' 18 µm at the position of the atoms. The Rabi frequency ΩB depends on the
principal quantum number n of the chosen Rydberg state, and reads:

ΩB

2π
=
|dB|
h

√
4PB

πε0cw2
B

' 5.5

(
58∗

n∗

)3/2
√

PB
1 mW

MHz . (6.6)

Here, the value dB ' 0.011×ea0 for the transition between the states
∣∣5P1/2,MJ = 1/2

〉

and
∣∣58D3/2,MJ = 3/2

〉
was taken from [Gaëtan (2009)], and we used the (n∗)−3/2

scaling of the dipole coupling between low-lying states and Rydberg states. Since
5As a consequence, the frequency of the 795 nm excitation laser is fixed in our experiments. The

frequency measured with the wavemeter is νR = 377 105 726± 10 MHz.
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the dipole element dB is small compared to dR, we generally use all the available
power for the blue laser (PB ' 90 mW on the atoms). In total, with the available
power in the red and blue lasers, the largest effective Rabi frequency for the Rydberg
transitions studied in this thesis is Ωeff ' 2π × 10 MHz.

Polarization properties

In our experiments the 795 nm light is π-polarized, and the 474 nm light can be either
σ+-polarized or σ−-polarized, depending on the orientation of a quarter waveplate.
The σ+ polarization allows coupling |g〉 to |r〉=

∣∣nD3/2,mj = 3/2
〉
states, whereas

the σ− polarization is used to excite |r〉=
∣∣nS1/2,mj = 1/2

〉
states. In most of the

experiments performed here, we chose to work with |r〉=
∣∣nD3/2,mj = 3/2

〉
states6,

because they show a better coupling to |g〉. We chose the value of n depending on
the type of experiment we want to perform. In what follows, n varies from 59 to 82.

6.3.2 Laser system

The excitation lasers need to be on resonance with the studied transition to per-
form the two-photon excitation. Also, the relative phase drift (associated with the
linewidths of the lasers) has to be stable and its rate of change has to be smaller than
the Rabi frequency, of a few MHz typically.

Our ultra-stable cavity

One of our tasks during my thesis was to modify the previous laser system described
in [Béguin (2013)] by installing an ultra-stable reference cavity in order to improve
the laser stability. We stabilize the lasers using a commercial ultra-stable reference
cavity from Stable Lasers Systems, as shown in Figure 6.5a. The ensemble is placed in
a vacuum system at a pressure of ' 10−7 mbar, and mounted on a breadboard which
is enclosed in a wooden box lined internally with lead foam. The cavity, of length L=

10 cm, is made of a plane mirror and a spherical mirror with a radius of curvature Rc =

50 cm. The mirrors are mounted on an ultra-low expansion (ULE) glass spacer, which
coefficient of thermal expansion cancels (α0 = 0± 30× 10−9 K−1) at a temperature of
307.65±1.00 K, as specified by the manufacturer. The cavity is placed under vacuum
at a temperature of 307.65 K, in a thermally regulated environment with ∆T = 2 mK

precision. The zero-crossing temperature is known to a precision of 1 K. A linear
estimate around this point of the expansion coefficient change with temperature gives

6see one exception where we use S-states in Chapter 7.
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Figure 6.5: Locking the Rydberg lasers. a, Image of our ultra-stable cavity. The
mirrors are mounted on a ultra-low expansion (ULE) spacer. The assembly is placed in
a thermally insulated vacuum housing. b, Principle of the lock. We send both lasers on
the ultra-stable cavity and use a Pound Drever Hall method to narrow down the lasers to
linewidths ≤ 10 kHz.

a maximal thermal expansion coefficient α� 2 × 10−9 K−1. As a consequence, the
relative cavity length L is passively stable to:

ΔL

L
≤α ΔT � 2× 10−9 × 2× 10−3 =4× 10−12. (6.7)

This gives an upper bound on the variations in frequency Δν = νΔL/L of light at
frequency ν =377 THz due to temperature fluctuations of the cavity Δν≤ 1.5 kHz,
showing that temperature fluctuations are not a limiting factor in our case. The
cavity has a free spectral range (FSR) of 1.5 GHz and a specified finesse ≥ 1 500 for
wavelengths varying between 750 nm and 1 000 nm. At the wavelengths of interest for
our locking scheme (795 nm and 950 nm), the specified finesse is ≥ 20 000, providing
reflection peaks with full width at half maximum ≤ 75 kHz. The specified value
for the finesse is consistent with estimates based on ring-down measurements at a
wavelength of 795 nm7.

7We measure a τ � 2.4 μs lifetime of the photons inside the cavity after switching off the 795 nm
light on a fast timescale using an AOM. This timescale is directly related to the reflection coefficient
of the mirrors by τ =L/(c(1−R)), yielding a finesse F =πR/(1−R)� 22 500.
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Locking the lasers

The locking schemes of the blue and the red laser are identical and based on the
Pound Drever Hall technique [Black (2001)]. We carefully mode-match the lasers
beams to the cavity and we measure the reflection signals from the cavity using two
PD100 photodiodes. We send ' 1 mW of 795 nm light directly to the cavity. For the
blue laser beam, we pick off ' 0.1 mW of 950 nm light before the frequency doubling
crystal. Both lasers are first modulated at a frequency of ' 18 MHz, providing the
sidebands necessary for the Pound Drever Hall error signals. We use an electro-
optic modulator (from New Focus) for the 795 nm laser, and we use the built-in
current modulation of the 950 nm laser used to lock the doubling cavity. To reach
the resonance condition of the cavity for given frequencies of the red and the blue
lasers, we use Lithium Niobate fibered modulators (from EOspace) driven at the
frequencies νREOM and νBEOM. This creates replicas of the error signals with variable
offset from the carrier, that we can use to lock the laser on the cavity. The choice of
the modulation frequency νREOM is set by the detuning ∆/2π= 740 MHz, and is fixed.
The modulation frequency νBEOM can be scanned and adjusted to reach the resonance
condition of the cavity for a given Rydberg transition frequency. The photodetector
reflection signals are mixed with the ' 18 MHz local oscillators that are used for the
modulation. After phase shifting and filtering, we obtain error signals that we send
to reconfigurable laser servos from Vescent Photonics. Those PID controllers correct
for the fluctuations of the laser frequencies by direct feedback on the current of the
lasers.

We obtain a crude estimate of the linewidths of our lasers by visualizing the error
signals:

• The error signal obtained for the 795 nm laser shows a peak-to-peak voltage
of ' 3.1 V over a spectral range of ' 75 kHz. After locking the laser, the root
mean square of the error signal is ' 270 mV over a few ms timescale, giving a
' 6.5 kHz estimate for the linewidth of the laser.

• The error signal obtained for the 474 nm laser shows a peak to peak voltage of
' 156 mV over a spectral range of ' 75 kHz. After locking the laser, the root
mean square of the error signal is ' 4.5 mV over a few ms timescale, giving a
' 2 kHz estimate for the linewidth of the laser.

With this new locking scheme, we estimate that we have narrowed the linewidths
of the Rydberg lasers to better than 10 kHz over timescales of a few ms, which is
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satisfying for our application. A more accurate method for the measurement of the
linewidths of our excitation lasers would consist in doing a self-heterodyne inter-
ferometric measurement [Okoshi, Kikuchi, and Nakayama (1980)], but we have not
performed this measurement yet.

During our measurements, we also record the wavelength of our lasers using a
WSU/10 wavemeter from HighFinesse, which has a 100 kHz resolution and a 10 MHz

absolute accuracy. The standard deviation of the laser frequencies measured on the
wavemeter over timescales of a few seconds is 100 kHz, showing that we are limited
by the resolution of the wavemeter, and that the linewidth of the lasers is indeed
better than 100 kHz. We also observe long-term drifts of a few MHz over the course
of a day, which are most probably due to temperature drifts of the wavemeter itself,
as suggested by the experiment in the next section.

6.3.3 Rydberg detection and coherent excitation to a

Rydberg state

We now suppose that we have one trap, that we are in the single atom regime, and
that the lasers are locked at a chosen frequency. We trigger the experiment upon the
presence of one atom in the trap. We first apply a vertical magnetic field B' 3.3 G

that defines our quantization axis (see Figure 6.4b) and that allows to optically pump
the atoms into the ground state |g〉=

∣∣5S1/2, F = 2,mF = 2
〉
. In order to excite the

atoms to the chosen Rydberg state, we first turn the trap off so as to avoid any
position-dependent light shift induced by the trapping beam during the experiment8.
We then shine the excitation beams on the atoms for a duration τ . In practice, we
use two electro-optic modulators to have switching times on a nanosecond timescale.

Rydberg detection

Our detection of Rydberg atoms is based on the fact that Rydberg states are not
trapped by our trapping beam. Rydberg atoms have long lifetimes (∼ 100 µs), and
leave the trapping region before decaying back to the ground state. After the ex-
citation of duration τ , we turn the trap on again and measure the fluorescence in
the trap by shining some resonant light. We interpret the presence of fluorescence
as the fact that the atom has stayed in the ground state, whereas the absence of
fluorescence means that the atom has been excited to the Rydberg state. Excitation

8For that reason, all the Rydberg experiments reported in this manuscript are done in the absence
of trapping light.
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Figure 6.6: Excitation dynamics of a single atom. a, Spectroscopy of the
∣∣62D3/2

〉

state showing the probability of Rydberg excitation as a function of laser detuning δ from the
targeted state (circles). The solid line is a fit by the formula in Equation 6.8, used to measure
the center position of the Rydberg line. b, Rabi oscillation on a single atom. The dashed line
shows a fit by the Rabi formula, where Ω is the only fitting parameter (see Equation 6.11).
The solid line is a fit by the solution of the optical Bloch equations (see Equation 6.15),
where Ω and γ are two fitting parameters. The fits give: Ω/(2π) = 2.03± 0.02 MHz.

of an atom to the Rydberg state is thus inferred from its loss from the correspond-
ing trap at the end of the sequence [Miroshnychenko et al. (2010)]. We repeat each
sequence ' 100 times and reconstruct the populations Pi (i∈{0; 1}) where P1 is the
probability to detect fluorescence at the end of the sequence and P0 = 1 − P1 is the
probability not to detect fluorescence at the end of the sequence. For 100 repetitions
of the sequence, we have a typical 5% error bar on the measured probabilities.

Spectroscopy

We first perform the spectroscopy of the Rydberg line: for a given duration of the
excitation τ , we measure the loss probability P0 as a function of the laser detuning δ.
Figure 6.6a shows an example of the spectroscopic line observed experimentally for
the

∣∣62D3/2

〉
state using ' 710 µW of red power and ' 91 mW of blue power. Far

from resonance, the probability P0 of losing the atom is low (most of the atoms stay
in the ground state and we recapture them at the end of the sequence). When we
approach the resonance, P0 increases due to the increase in the Rydberg excitation
probability. On resonance, we observe a ' 86% excitation peak, showing that we have
excited the atom to the Rydberg state with a high efficiency (here, τ was chosen to
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maximize P0 on resonance). The solid line in Figure 6.6a shows a fit of the data to
the formula:

P0(δ) =A+B
Ω2

Ω2 + (δ − 2πνB)2
sin2

(τ
2

√
Ω2 + (δ − 2πνB)2

)
, (6.8)

where A, B, Ω and νB are fitting parameters. From the fit we obtain the frequency
νB of the blue laser at resonance:

νB = 632 022 092± 10 MHz , (6.9)

where the uncertainty comes from the absolute accuracy of the wavemeter. The
measurement agrees well with the expected value:

νB,theo = 632 022 108 MHz , (6.10)

where we included the light shifts and the Zeeman shifts due to the magnetic field.
Over the course of a few weeks, we have noticed that the value νBEOM needed to lock
the laser on resonance for a given state is stable to better than 1 MHz. Variations
observed on the wavemeter are interpreted as temperature drifts of the wavemeter
itself. Finally, the fact that the Rabi formula reproduces well our data is an indication
that our spectra are essentially power-broadened for this duration of the excitation
(τ = 200 ns), and that other sources of broadening (if any) are negligible. The fit
gives a Rabi frequency Ω/(2π) = 2.0± 0.4 MHz.

Rabi oscillation

In a second experiment, we vary the duration of the excitation while the lasers are
locked on resonance. This leads to the Rabi oscillation shown in Figure 6.6b. The
oscillation of P0 as a function of excitation time τ shows the coherent character of our
excitation scheme from |g〉 to |r〉. For a duration of the excitation τ = τπ (π-pulse),
the transfer of population to the Rydberg state |r〉 is maximum ' 90%. The dashed
line in Figure 6.6b shows a fit of the data by the Rabi formula at resonance:

Pr(τ) = sin2
(

Ω
τ

2

)
, (6.11)

where Ω is the only fitting parameter (dashed line in Figure 6.6b). The fit gives
Ω/(2π) = 2.03 ± 0.02 MHz. This measurement of Ω is in agreement with the one
obtained from the spectrum, which confirms that our spectra are power-broadened,
and that other sources of broadening have a negligible impact for our range of Rabi
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frequencies. Note that an estimation of Ωeff using our estimates of ΩB in Equation 6.6
and ΩR in Equation 6.5 gives Ωeff ' 2π×4 MHz. The observed deviation might come
from systematic errors in the estimate of the amount of excitation light seen by the
atoms (due to errors in the measurement of the waists or due to the fact that the
atoms are not perfectly centered on the excitation beams for instance).

6.4 Modeling our system

Our Rydberg excitation in Figure 6.6b shows some deviations from the theoreti-
cal Rabi formula: the measured contrast is smaller than 1, and we observe a slight
damping of the oscillation. This indicates that there are some limits to our Rydberg
excitation. Some of these limits are well understood (dissipation due to spontaneous
emission, dephasing due to fluctuations in the light seen by the atoms) and were
presented in detail in [Gaëtan (2009); Béguin (2013)]. We briefly recall them here.
During my thesis, we also refined our understanding of the limitations of our de-
tection scheme as detailed in Section 6.4.3. The understanding of these limitations
is particularly important since it allows refining our modeling of the system, which
plays and important role when increasing the number of atoms.

6.4.1 Discussion of the limitations on the Rydberg excitation

In this section, we list the known limitations that lead to a reduction of the efficiency
of the Rydberg excitation.

Spontaneous emission

One first limitation intrinsic to our two-photon excitation scheme itself, comes from
the fact that we use the intermediate state

∣∣5P1/2, F = 2,mF = 2
〉
to excite the Ry-

dberg state. The finite detuning of the red laser (∆/(2π) = 740 MHz), leads to a
residual off-resonant excitation probability of the intermediate state. Population
in the intermediate state spontaneously decays to the states

∣∣5S1/2, F = 1,mF = 1
〉
,∣∣5S1/2, F = 2,mF = 1

〉
and

∣∣5S1/2, F = 2,mF = 2
〉
at the rates ΓP/2, ΓP/6 and ΓP/3,

where ΓP/(2π) = 5.75 MHz [Steck (2010)]. Spontaneous emission limits our Ryd-
berg excitation since some atoms decay during the excitation, leading to a damp-
ing of the oscillations. Atoms that decayed to the states

∣∣5S1/2, F = 1,mF = 1
〉
and∣∣5S1/2, F = 2,mF = 1

〉
are not coupled to |r〉 anymore, but we keep detecting them as

being in |g〉. As a consequence, for large laser powers, this leads to an asymmetric
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damping [Miroshnychenko et al. (2010)]. In order to limit the effect of spontaneous
emission, one has to be sufficiently detuned from the ground state (ΩR,ΩB�∆).
This condition is well verified in our experiment. For our typical experimental pa-
rameters, we calculate that the excitation efficiency to the Rydberg state after a time
τπ (π-pulse) should be better than 95%.

Another source of decay comes from the finite lifetime of Rydberg states. Their
typical decay rate (ΓRyd/(2π)' 10 kHz) is small compared to our typical Rabi fre-
quencies (Ω/(2π)' 1 MHz) so that the damping due to the finite lifetime of Rydberg
is limited (less than a few percents) for the typical duration of our sequences (a few
µs). For our longest sequences, we include the finite lifetime of the Rydberg states
in our model (see Chapter 8 for instance, where τ goes up to 7 µs).

Imperfections in the laser system

Imperfections in the laser system lead to some dephasing of the oscillations. We have
narrowed the laser linewidths down to . 10 kHz so that the frequency fluctuations are
small. However, fluctuations in the power and polarization of the lasers (estimated
to be of the order of a few percents) lead to fluctuations in Rabi frequencies seen by
the atoms as well as fluctuating light shifts (see Equation 6.4). The observed Rabi
oscillation results from the averaging of several oscillations with different frequencies,
which leads to some damping.

Temperature effects

Another effect is due to the motion of the atoms resulting from their finite temper-
ature (T ' 50 µK). The thermal velocity of the atoms vth =

√
kBT/m' 70 nm.µs−1

leads to fluctuations in the laser frequencies seen by the atoms due to the Doppler ef-
fect, which varies the detuning of the excitation δ from shot to shot (with a standard
deviation σδ/(2π) = |kR + kB| vth/(2π)' 150 kHz). Variations in the position of the
atoms also lead to fluctuations in the quantity of light seen by the atoms, and in Ω.
This effect is negligible since the displacements on the timescale of an experimental
sequence (vthτ ≤ 500 nm) are small compared to the size of the excitation beams.

Optical pumping

Imperfections in the initial optical pumping can also contribute to the reduced effi-
ciency of our Rydberg excitation, since atoms that are not optically pumped in |g〉



116 Chapter 6: Experimental apparatus

can not be excited to |r〉. We estimate that the quality of our optical pumping is
better than 90%, but we have not characterized its efficiency in detail.

6.4.2 Modeling the system

We model our Rydberg excitation by solving the master equation for the two-level
system {|g〉 ; |r〉}, where we add a dissipator L̂[ρ̂] to account for the limitations listed
previously:

dρ̂

dt
=− i

~

[
Ĥρ̂− ρ̂Ĥ

]
+ L̂[ρ̂] . (6.12)

The Hamiltonian of the system is:

Ĥ = ~

(
0 Ω/2

Ω/2 −δ

)
, (6.13)

with Ω the Rabi frequency and δ the detuning. The dissipator reads:

L̂[ρ̂] =
γ

2
(2σ̂grρ̂σ̂rg − σ̂rrρ̂− ρ̂σ̂rr)

= γ

(
ρrr −ρgr/2
−ρrg/2 −ρrr

)
,

(6.14)

where σ̂ij = |i〉 〈j| (i, j ∈{g; r}) are the transition and projector operators for the
atom, and γ is a phenomenological damping rate that accounts for the imperfections
listed above (here, we assume that all processes are homogeneous). Assuming that
all the population is initially in |g〉 and that δ= 0, one obtains [Loudon (2000)]:

Pr(t) =
Ω2

2Ω2 + γ2

[
1− e−3γt/4

(
cos(Ω̃t) +

3γ

4Ω̃
sin(Ω̃t)

)]
, (6.15)

where Ω̃ =
√

Ω2 − γ2/16, and where we observe the presence of a damping term
exp(−3γt/4) that is due to dissipation. We fit the data by the formula of Equa-
tion 6.15, where γ and Ω are the only fitting parameters (see solid line in Figure 6.6b),
and we obtain the effective damping rate:

γ= 0.4± 0.1 µs−1 , (6.16)

where the error bar comes from the fit. As a consequence, γ−1' 2.5 µs, which indi-
cates small decoherence during the experimental sequence. In this model, we note
that the damping is symmetric, which differs from the type of damping one expects
from spontaneous emission from the intermediate

∣∣5P1/2

〉
state. A more sophisticated
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model can be implemented [Gaëtan (2009)], where we include the intermediate state
and its three decay channels, leading to a five-level system. Nevertheless, in view of
increasing the number of atoms we prefer to work with this simpler model describing
the atoms as two-level systems.

6.4.3 Detection errors

For τ = 0 ns, we observe that we do not recapture 100% of the atoms: P0 is equal
to a few percent despite the fact that we have not illuminated the atoms with the
excitation beams. These events can not be attributed to excitation of the atom to
the Rydberg state, but are attributed to losses that come from two effects:

• Collisions with background gas,

• Escape of the atom from the trap region during the Rydberg excitation se-
quence, due to the finite temperature of the atoms.

As a consequence, each atom has a small probability ε to be lost during the sequence,
independently of its internal state. When this happens, the event is erroneously
counted as a Rydberg excitation. For sequences that are shorter than ' 4 µs, we
have measured that both contributions add up to a few percent detection error. As a
consequence, our measured probabilities P1 and P0, differ from the actual probabilities
Pg, Pr that the atom is in |g〉 or |r〉. If we assume that Pg is the probability for the
atom to be in the ground state at the end of the sequence, then the probability P1 to
detect some fluorescence at the end of the sequence differs from Pg by the quantity
εPg of atoms that were supposed to be in Pg but that were lost during the sequence.
Taking into account the fact that P0 + P1 =Pr + Pg = 1, we obtain:

{
P1 = (1− ε)Pg
P0 = (1− ε)Pr + ε .

(6.17)

These formulae will be generalized later, in the case of 2 and 3 atoms (see Chapter 7
and Chapter 8).

6.4.4 Summary of the effects

All the effects discussed above can be summarized in the following expression of P0(t):

P0(t) = ε+ η(1− ε) Ω2

2Ω2 + γ2

[
1− e−3γt/4

(
cos(Ω̃t) +

3γ

4Ω̃
sin(Ω̃t)

)]
, (6.18)
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Figure 6.7: Excitation dynamics of a single atom. Fit of the Rabi oscillation shown
in Figure 6.6 using the formula Equation 6.18.

where ε represents the detection errors, and η represents the efficiency of our optical
pumping and the depumping due to spontaneous emission. The result of the fit is
shown in Figure 6.7. We obtain:





Ω/(2π) = 2.03 ± 0.02 MHz ,

γ = 0.2 ± 0.1 µs−1 ,

ε = 1.3 ± 3.5 % ,

η = 90 ± 4 % ,

(6.19)

where the error bars come from the fit. The fitted values of η and ε are com-
patible with our estimations of optical pumping (& 90%) and detection errors ('
5%). In general for our experiments, we use single atom measurements as a cal-
ibration to obtain an independent measurement of Ω and γ for each individual
atom. For this purpose, we fit the data by the simple phenomenological formula
P0(t) =A + B exp(−3γt/4) sin(Ωt), where we have checked that we obtain similar
results for γ and Ω than with Equation 6.18.

6.5 Control of electric fields

We have shown our ability to coherently excite single atoms to Rydberg states. Ry-
dberg states are sensitive to electric fields due to their large polarizability (see Chap-
ter 5). L. Béguin has shown during his thesis [Béguin (2013)] that with all electrodes
grounded, there exists a residual DC electric field of ' 150 mV/cm at the position
of the atoms. This leads to Stark shifts of a few MHz as well as state mixing9,
which degrades the efficiency of the Rydberg excitation. As a consequence, another
key feature of our setup is the possibility to cancel stray electric fields. Moreover, a

9As an example, an electric field of 150 mV/cm is enough to shift the
∣∣59D3/2,MJ = 3/3

〉
state

by ≈ 4.5 MHz, as we will see in Chapter 9.
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good control of the electric field is also required when one wants to reach a Förster
resonance for instance as we will see in Chapter 9.

6.5.1 Compensating residual electric fields

Our setup was designed to minimize residual electric fields acting on the Rydberg
atoms:

• The metallic vacuum chamber is relatively large, so that the glass surfaces of
viewports are about 10 cm away from the atoms, which are further shielded by
a large metallic piece holding the aspheric lenses.

• The surfaces of the aspheric lenses facing the atoms are coated with a ' 200 nm-
thick Indium-Tin Oxide (ITO) conducting layer and connected to ground.

Moreover, a set of eight independent electrodes in an octopole configuration (shown
Figure 6.8a) has been included, allowing us to apply controlled electric fields pointing
in any direction at the position of the atoms. For example, when the four electrodes
in the half-space z > 0 are at a potential Vz while the four other electrodes are con-
nected to ground, we produce an electric field F =Fzuz at the position of the atoms.
Similarly, we can apply electrics F =Fiui pointing in the directions x and y. We
define the effective lengths Li such that:

Fi =
∆V

Li
, (6.20)

where i∈{x; y; z}.

6.5.2 Calibration of the electrodes

The calibration of the electrodes was described by L Béguin in [Béguin (2013)], and
was obtained in the three directions of space by performing the Stark spectroscopy of
the state

∣∣62D3/2,mj = 3/2
〉
as a function of ∆Vi (i= {x; y; z}). The observed shift

of the spectroscopic line as a function of the applied electric field was compared to
the theoretical expectations from the calculated polarizability of

∣∣62D3/2,mj = 3/2
〉
.

This allowed to estimate experimentally the effective lengths Li:




Lcal
x ' 40 cm

Lcal
y ' 9 cm

Lcal
z ' 5.2 cm .

(6.21)
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Figure 6.8: Calculation of the electric field profile inside the chamber. a, Our
experimental configuration. A set of eight independent electrodes allows us to apply con-
trolled electric fields pointing in any direction. We solve the Laplace equations using the
finite element method on the mesh shown here. b, Components of the electric field along
the z-axis when applying a potential ΔVz =1 V. The field points in the z-direction.

Compensation is reached when the measured Stark shift is minimum. During my the-
sis, we reproduced this measurement a couple of times on the

∣∣82D3/2

〉
and

∣∣59D3/2

〉
levels so as to check or adjust the compensation of the electric fields. Over the course
of a year, the voltages required to reach compensation did not vary by more than
10%. The Stark spectroscopy of the more sensitive

∣∣82D3/2

〉
state allowed to estimate

the residual electric fields after compensation to be well below � 5 mV/cm.

6.5.3 Comparison with calculations

We have also performed a numerical simulation of the expected electric field to get
more insight in the electric field profile inside the full chamber. This allowed us to
compare the measured values of Li to the expected values. The calculations were
performed by M. Besbes, a research engineer at the Institut d’Optique, using a finite
element method. Figure 6.8a shows part of the mesh we used to solve the Maxwell
equations. All vacuum parts are included in the simulation: the metallic parts are
considered as perfect conductors with a specified potential, and the insulating parts
are included with their respective dielectric constants. The vacuum chamber is rep-
resented by a rectangular box at potential V =0 V. Figure 6.8b shows a result of one
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of these simulations for a potential ∆Vz = 1 V, where we plot the components of the
electric field along the z axis. On axis, we observe that the field points along z as
expected. At the position of the atoms (z= 0 mm), we obtain a field Fz = 19.4 V/m.
Reproducing the same calculations along the axes x and y, we obtain the simulated
values for the effective lengths Li :





Lsim
x ' 36 cm

Lsim
y ' 8.8 cm

Lsim
z ' 5.2 cm .

(6.22)

The results of the simulations are in good agreement with the experiment. In the rest
of this thesis, we are interested in small fields along the z-direction. In particular, in
Chapter 9 we apply vertical electric fields Fz . 60 mV/cm at the position z= 0 V.
Using the simulation, we evaluate that for an applied electric field Fz = 60 mV/cm

at the center of the chamber, the field does not vary by more than 0.3 mV/cm over
a 100 µm range around the position of the atoms, the maximal size of the arrays we
produce. This indicates that inhomogeneities of the electric field are not a limitation
in our experiments.

6.6 Single-site addressability

We have demonstrated in Section 6.3.3 Rydberg excitation of a single atom. In
view of increasing the number of atoms, we use large excitation beams allowing
to simultaneously excite several atoms in an array. However, some proposals for
quantum information using Rydberg atoms are based on the possibility to selectively
manipulate individual atoms (called “control atoms”) in an ensemble [Müller et al.
(2009)]. As a consequence, we have implemented during my thesis a way to address
some atoms in the array. We achieve selective addressing by shining a red-detuned
laser beam on a single 87Rb atom, which induces a light-shift on the ground state of
the targeted atom. The Rydberg states stay nearly unaffected so that the targeted
atom is off-resonant with the Rydberg excitation, while all the other unperturbed
atoms stay in resonance with the Rydberg excitation.

6.6.1 The setup

Figure 6.9 shows an illustration of our implementation of single site addressing. We
produce the addressing beam using far red-detuned 850 nm light coming from the
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Figure 6.9: Single site addressability in an array of traps. We shine the excitation
beams on all the atoms. We induce a light shift on the ground state of a chosen atom using
some 850 nm light so that the atom is no longer resonant with the excitation field.

same laser as the one used for trapping. We superimpose the addressing beam on
the phase-manipulated trap beam. We use two crossed AOMs for precise control
of the addressing beam position with respect to the targeted trap. The two beams
have orthogonal polarizations and are detuned by � 200 MHz so as to minimize the
interference between the beams in the focal plane of the aspheric lens. Before the
aspheric lens, the addressing beam has a slightly smaller collimated diameter than
the dipole trap beam, which allows obtaining a larger 1/e2-radius (� 1.3 μm) at
the position of the atoms, and ensures that the motional state of the atom is not
significantly disturbed when the addressing beam is switched on. Finally, an electro-
optic modulator (EOM) allows switching the addressing beam on fast timescales of
� 10 ns.

6.6.2 Illustration on a single atom

We illustrate the effect of our addressing beam on a single atom (see Figure 6.10). In
the absence of addressing beam, we tune our excitation lasers on resonance with the
state

∣∣59D3/2

〉
. The blue curve in Figure 6.10 shows the resulting Rabi oscillation,

with a Rabi frequency Ω� 2π× 1 MHz. In a second experiment, we send � 4 mW of
addressing light on the atom. The ground state |g〉 of the atoms experiences an energy
shift proportional to the local intensity of the addressing beam at the position of the
atom, while the Rydberg state |r〉 stays nearly unaffected. For induced light shifts
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Figure 6.10: Proof of principle of addressability on a single atom. The Rydberg
excitation lasers are resonant with the |r〉=

∣∣59D3/2

〉
level. When the addressing beam if

turned off, we observe a Rabi oscillation between |g〉 and |r〉 (where the blue line is a fit by
a damped sine). Turning on the addressing beam induces a light shift on the ground state
of the atom, while leaving the Rydberg states nearly unaffected. The excitation lasers are
not resonant anymore with the transition, which prevents us from exciting the atom to the
Rydberg state.

that are larger than the Rydberg excitation linewidth10, the lasers are consequently
not resonant anymore with the transition |g〉→ |r〉, which prevents us from exciting
the atom to the Rydberg state. The red curve in Figure 6.10 shows the excitation
probability of the atom as a function of excitation time in the presence of addressing
light. The excitation probability P0 stays below 5%, which confirms the inhibition of
the Rydberg excitation due to the presence of the addressing beam.

6.6.3 Addressing in arrays of atoms

For work with larger ensembles of atoms, we have also checked that the presence of
the addressing beam has a negligible impact on other sites of the array. The induced
light shift on a neighboring atom as close as 3 µm to the targeted atom is estimated
to be as low as ' 1 kHz, well below the resolution of our experiment. This confirms
our ability to selectively address a single atom in an array, with no disturbance on the
other atoms11. An application of this new feature of our setup is shown in Chapter 8.

10For ' 2 mW of total power in the addressing beam, we have measured a maximum light shift of
∆E'h× 5 MHz, and for larger addressing beam intensities we have measured light-shifts as large
as ∆E'h× 40 MHz. Here, we use ' 4 mW of power, so that ∆E/h= 10 MHz�Ω/(2π).

11More information can be found in [Labuhn et al. (2014)]. The detailed implementation and
characterization of single-site addressability on our setup will be given in the thesis of H. Labuhn.
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6.7 Conclusion

We have demonstrated our ability to trap and manipulate single atoms in optical
tweezers. Using a two-photon excitation scheme, we can excite coherently the atoms
to Rydberg states. Combined with other tools like the control of electric fields and
the possibility to address a particular atom in an array, our system becomes an
interesting platform for the study of interactions between Rydberg atoms, which will
be the subject of the next chapters.
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Rydberg atoms in small systems of two or three atoms. In most situations, two atoms
excited to a given Rydberg state show van der Waals interactions, expressed as C6/R

6.
As a result, most of the early demonstrations of Rydberg blockade were performed
in this regime that does not require any active control over the interaction. In this
Chapter we concentrate on the van der Waals interactions between Rydberg atoms,
leaving the active control over the interaction for Chapter 8 and Chapter 9.

The Rydberg blockade has attracted a lot of interest because of its robustness with
respect to fluctuations of experimental parameters. Indeed, the blockade occurs as
long as the interatomic interactions in a system are larger than the Rydberg excitation
linewidth (∆E� ~Ω). This criteria can be fulfilled for a large range a parameters, and
as a consequence the Rydberg blockade can be observed in disordered systems, where
distances or relative angles between the atoms fluctuate. On our setup, L. Béguin
demonstrated the blockade between two Rydberg atoms [Béguin (2013)], with signif-
icant improvement compared to earlier demonstrations [Urban et al. (2009); Gaëtan
et al. (2009)]. In this Chapter, we extend this study to three-atom systems, and
illustrate the robustness of the blockade with respect to the geometrical arrangement
of the atoms.

With the level of control reached in our system, L. Béguin also showed the pos-
sibility to work in the more sensitive regime where ∆E' ~Ω. In this situation, the
coherent excitation of the two atoms is not fully blockaded, but is still affected in a
characteristic way by the interaction. We can use this feature to directly measure
the van der Waals interaction between two Rydberg atoms aligned along the quanti-
zation axis as described in [Béguin et al. (2013)]. Here, we use the same method to
measure the angular dependence of the van der Waals interaction. We finally observe
the influence of anisotropies of the van der Waals interaction on the excitation of a
three-atom system.

7.1 Van der Waals interactions

When the interatomic distance R is large compared to the size of the atoms1, two
atoms A and B located at positions RA and RB interact through the dipole-dipole
interaction described by the Hamiltonian

V̂dip =
1

4πε0

d̂A · d̂B − 3(d̂A ·n)(d̂B ·n)

R3
, (7.1)

1This hypothesis is always verified in this thesis.
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where d̂i is the electric dipole moment of atom i (i=A,B), R=RB − RA, and
n=R/R.

7.1.1 Second-order perturbation

We consider this Hamiltonian as a weak perturbation to the unperturbed Hamiltonian
Ĥ0 = ĤA + ĤB describing the non-interacting two-atom system. In this Chapter, we
are interested in the interaction between two atoms excited to the same Rydberg
state |r〉= |n, L, J,MJ〉. Because the average value of the dipole moment vanishes
in an atomic eigenstate, V̂dip has no effect to first order. Second-order perturbation
theory gives rise to an energy shift of the atom pair, which results in the van der
Waals interaction

VvdW =
C6

R6
. (7.2)

For a two-atom system excited to |rr〉, the C6 coefficient is given by

C6 =
1

(4πε0)2

∑

|φAφB〉

∣∣∣〈φAφB| d̂A · d̂B |rr〉 − 3 〈φAφB| (d̂A ·n)(d̂B ·n) |rr〉
∣∣∣
2

2Er − (EφA + EφB)
, (7.3)

where we sum on all possible states |φAφB〉= |nA, LA, JA,MJ,A〉 ⊗ |nB, LB, JB,MJ,B〉
different from |rr〉. An estimate of the C6 coefficient can be obtained using the scaling
arguments given in Chapter 5:

• The numerator inside the sum in Equation 7.3 scales as the modulus squared
of the product of two dipole matrix elements ' (n∗2ea0)4,

• The denominator inside the sum in Equation 7.3 scales as the difference in
energy between two Rydberg states '−2Ry × n∗−3,

• As a consequence, we obtain an approximate expression for the C6 coefficient:

C6'
1

(4πε0)2

e4a4
0n
∗11

2Ry

. (7.4)

Using this scaling, we estimate an interaction energy of ∆E/h' 8.5 MHz for two
atoms excited to the state 82D3/2 (the main state of interest in this Chapter), and
separated by ' 5 µm. This energy is almost an order of magnitude larger than our
typical Rabi frequencies of Ω/(2π)' 1 MHz, which is well adapted to the study of
Rydberg blockade.
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7.1.2 Expansion in the spherical basis

When the internuclear axis defines an angle θ with the quantization axis z, it is
convenient to express V̂dip in the spherical basis using the spherical dipole operators





d̂0 = d̂z ,

d̂+ = − 1√
2

(
d̂x + i d̂y

)
,

d̂− = 1√
2

(
d̂x − i d̂y

)
,

(7.5)

where the operator d̂0 conserves the magnetic quantum number MJ , the operator d̂+

couples states with ∆MJ = 1, and the operator d̂− couples states with ∆MJ =−1. In
this basis, the dipole-dipole interaction operator can be written as:

V̂dip =
1

4πε0

1

R3

[
1− 3 cos2 θ

2

(
d̂A,+d̂B,− + d̂A,−d̂B,+ + 2d̂A,0d̂B,0

)

+
3√
2

sin θ cos θ
(
d̂A,+d̂B,0 − d̂A,−d̂B,0 + d̂A,0d̂B,+ − d̂A,0d̂B,−

)
(7.6)

− 3

2
sin2 θ

(
d̂A,+d̂B,+ + d̂A,−d̂B,−

)]
,

where the matrix elements 〈φ′Aφ′B| d̂A,id̂B,j |φAφB〉 of the Hamiltonian describe the
coupling between two oscillating dipoles. In Equation 7.6, we have grouped into
three different terms the different operators contributing to the interaction. Each
term present the particularity to only contain operators that couple states with a
given absolute value of the variation of total magnetic quantum number:

∆MTot =MJ,A +MJ,B − 2MJ . (7.7)

The first term, with the angular prefactor (1−3 cos2 θ)/2 couples states with |∆MTot|=
0. The second term, with the angular prefactor 3 sin θ cos θ/

√
2 couples states with

|∆MTot|= 1. Finally the third term, with the angular prefactor 3 sin2 θ/2 couples
states with |∆MTot|= 2. We observe immediately that for θ= 0, only the first term
contributes.

7.1.3 Interaction energy for two atoms aligned along the

quantization axis

When the interatomic axis is aligned with the quantization axis (θ= 0), the interac-
tion Hamiltonian reduces to
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V̂dip = − 1

4πε0

1

R3

(
d̂A,+d̂B,− + d̂A,−d̂B,+ + 2d̂A,0d̂B,0

)
. (7.8)

In this case, Vdip only couples pair states with |∆MTot|= 0, which simplifies the study
of the interaction since it limits the number of states one has to consider to compute
the interaction strength. During his post-doctoral studies in the group, R. Chicireanu
developed a Matlab code to calculate the interaction energy in the case θ= 0◦, in a
zero magnetic field [Béguin (2013)]. In this Section, we summarize the main steps for
the calculation.

Selection rules

In order to accurately evaluate the interaction energy between two atoms excited to
|r〉= |n, L, J,MJ〉, one has to consider all possible couplings between the pair state
|rr〉 and other pair states |φAφB〉= |nA, LA, JA,MJ,A〉⊗ |nB, LB, JB,MJ,B〉. Selection
rules for the electric dipole operator allow to significantly reduce the number of states
one has to consider. Indeed, the electric dipole operator only couples states with
∆L=±1, ∆J = 0,±1 and ∆MJ = 0,±1 [Cohen-Tannoudji, Diu, and Laloë (1977)].
The interaction Hamiltonian contains terms that are products of dipole operators,
and we can use these selection rules to restrict the basis to states |φAφB〉 that satisfy
|∆MTot = 0|: for θ= 0, we can only keep the Zeeman sub-levels that conserve MTot.
We further limit the number of states by truncating the basis so that:

• |nA,B − n| ≤ 4 and |2Er − (EφA + EφB)| /h≤ 5 GHz, where the energies are ob-
tained from quantum defect theory (see Chapter 5). For the range of inter-
atomic distances considered in this thesis (R≥ 5 µm), the interaction energies
are smaller than ' 100 MHz, which remains small with respect to 5 GHz.

• LA,B ≤ 4: in this Chapter, we are mainly interested in interactions between
atoms that are excited to D-states (L= 2). Because of the selection rules, D-
states show non-zero transition dipole moments only with P -states (L= 1) and
F -states (L= 3). In the calculation of the interaction energy, pair states |φAφB〉
with LA,B /∈{1; 3} only show indirect couplings to |rr〉. As a consequence, ma-
trix elements involving states with LA,B > 4 will have negligible contributions.

We calculate the interaction energy between the atoms in this restricted basis. For
the principal quantum numbers considered in this thesis, the basis typically contains
a few hundreds to a thousand states.
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Figure 7.1: Diagonalization of the interaction Hamiltonian. Potential curves
corresponding to the interaction energy between two 87Rb atoms around the Ry-
dberg states

∣∣62D3/2

〉
. The thick red curve is the potential curve for the state∣∣62D3/2,MJ = 3/2; 62D3/2,MJ = 3/2

〉
.

Calculation of the C6 coefficient

We first calculate the interaction energy according to second order perturbation the-
ory. We compute the C6 coefficient by calculating the sum of Equation 7.3, in the
restricted basis described above, where the radial wave functions are obtained numer-
ically using the Numerov algorithm [Weissbluth (1978); Zimmerman et al. (1979)].
For instance, for the state

∣∣82D3/2,mJ = 3/2
〉
studied in this Chapter, we obtain:

|C6,th|= 8780± 150 GHz.µm6 , (7.9)

where the error bar comes from an ' 0.5% uncertainty in the calculation of the dipole
matrix elements. Our calculated C6 coefficients are in very good agreement with the
ones computed in [Reinhard et al. (2007)].

Full diagonalization of the Hamiltonian

The perturbative approach is not valid for large interaction energy (or equivalently,
small interatomic distances). We then diagonalize the interaction Hamiltonian writ-
ten in the basis described in Section 7.1.3. Figure 7.1 shows the result of the cal-
culation in the case of two interacting atoms in the state

∣∣62D3/2,mJ = 3/2
〉
, in the

absence of magnetic field (adapted from [Béguin (2013)]). The origin of energies is
the energy of the pair state

∣∣62D3/2,mJ = 3/2; 62D3/2,mJ = 3/2
〉
in the limit of two

infinitely separated atoms. We observe the presence of a large number of potential
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Figure 7.2: Three-level model of the van der Waals interaction. The excitation
lasers resonantly couple |g〉 to |r〉 with Rabi frequency Ω. Because of the interaction, the
energy of |rr〉 is shifted by a quantity VvdW.

curves due to the multiple couplings allowed by Vdip. The thick red curve corre-
sponds to the potential for the state

∣∣62D3/2,mJ = 3/2; 62D3/2,mJ = 3/2
〉
. At large

distances, the interatomic interaction is weak, and we observe almost no shift of the∣∣62D3/2,mJ = 3/2; 62D3/2,mJ = 3/2
〉
state. As we decrease the distance R between

the atoms, the interaction energy increases, leading to an increased energy shift of
the state. For a ' 6 µm distance, we observe an energy shift corresponding to an
interaction energy ∆E/h' 15 MHz, while a simple C6/R

6 would give approximately
190 MHz.

Description in terms of a three-level system

We checked that the asymptotic behavior of the potential curve obtained by diag-
onalizing the Hamiltonian is in good agreement with a 1/R6 law. For the states
studied in this thesis, and for our typical interatomic distances, we observe that the
result of the diagonalization is in very good agreement with the calculation of the C6

coefficient obtained from second-order perturbation theory. This shows that in our
experiment, the interaction Hamiltonian can be considered as a perturbation. When
applying second-order perturbation theory, we neglect the perturbation of the state
|rr〉 due to the interaction, and we simply picture the effect of the interaction be-
tween two atoms in the state |r〉 as an energy shift of the pair state |rr〉 by a quantity
∆E=VvdW.

In this regime, the two atoms interacting with each other and with a laser can be
modeled by a three-level system containing the pair states |gg〉, |+〉= (|gr〉+|rg〉)/

√
2

and |rr〉. Figure 7.2 shows the three-level diagram and under the rotating wave
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Figure 7.3: Anisotropy of the interaction. a, Potential curves for the different mag-
netic sublevels of the state |rr〉= ∣∣nD3/2, nD3/2

〉
. In the internuclear basis, each curve

corresponds to a given value of Mz′,Tot. In the basis defined by the quantization axis, the
states are mixed: |rr〉 contributes to the different potential curves, as represented by the
level of red in each curve. b, Diagram of the resulting energy levels, summarizing the
different couplings and detunings.

approximation. The Schrödinger equation for this system reads:

i�
d

dt

⎛⎜⎝ cgg

c+

crr

⎞⎟⎠=

⎛⎜⎝ 0 Ω
√
2/2 0

Ω
√
2/2 0 Ω

√
2/2

0 Ω
√
2/2 VvdW/�

⎞⎟⎠
⎛⎜⎝ cgg

c+

crr

⎞⎟⎠ (7.10)

In the low-excitation limit �Ω�VvdW, where the energy shift is large compared to
the Rabi frequency (blockaded regime), we adiabatically eliminate the doubly-excited
state by setting dcrr/dt=0 and obtain:

crr =− 1√
2

�Ω

VvdW

c+ , (7.11)

The maximal double excitation probability (Prr = |crr|2) is obtained when |c+| � 1:

PMax
rr =

1

2

�
2Ω2

V 2
vdW

, (7.12)

to lowest order in Ω/VvdW [Walker and Saffman (2008)]. This number characterizes
the blockade in a quantitative way.
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7.1.4 Anisotropy of the interaction

The dipole-dipole interaction Hamiltonian in Equation 7.6 shows that the interaction
is anisotropic [Carroll et al. (2004); Reinhard et al. (2007)]. When θ 6= 0, all the terms
of the dipole-dipole interaction Hamiltonian come into play, and one has to consider
couplings to states with |∆MTot|= 1 and |∆MTot|= 2. One of the consequences of
these couplings is that the state |rr〉 is indirectly coupled to all (2Jr + 1)2 magnetic
substates:

|rM ; rM ′〉≡ |nr, Lr, Jr,M〉 ⊗ |nr, Lr, Jr,M ′〉 , (7.13)

where M and M ′ range from −J to J in steps of one. As an example, if we suppose
that the interaction Hamiltonian couples the states |rr〉 and |φAφB〉, then, as soon as
θ 6= 0, |φAφB〉 is necessarily also coupled to the states |rM ; rM ′〉 (with M and M ′ ∈
{±1;±2}). The dipole-dipole interaction couples the different magnetic sublevels,
and as a consequence, the eigenstates |φi〉 of the Hamiltonian are superpositions
states of the form2:

|φi〉=
∑

M,M ′

CM,M ′(R, θ) |rM ; rM ′〉 . (7.14)

The interaction potentials for the states |φi〉 are represented in Figure 7.3a as a
function of the separation distance R between the atoms. The states |φi〉 show
different interaction strengths, which leads to the different energy shifts Vi(R, θ).
When we excite the system, our excitation laser shows couplings to all states φi
that have a |rr〉 component (〈rr|φi〉 6= 0). Compared to the θ= 0◦ case, the effect
of the interaction can not be reduced to the energy shift of a single level, but the
contributions of several potential curves have to be taken into account. We define
the couplings Ωi between |+〉= (|gr〉+ |rg〉)/

√
2 and |φi〉 by:

Ωi =
√

2Ω 〈rr|φi〉 . (7.15)

The resulting situation is represented by the multi-level system in Figure 7.3b, where
the energy levels |φi〉 and |+〉 are coupled with a Rabi frequency Ωi, and the ex-
citation laser is detuned from those transitions by the energy Vi. One can write
the Schrödinger equations for this system and, in the low-excitation limit, adiabati-

2Note that in the basis that rotates with the internuclear basis, the Hamiltonian conservesMz′,Tot.
In this basis, the eigenstates of the interaction Hamiltonian are the pure states |rMz′ ; rM

′
z′〉. Chang-

ing the basis to the laboratory frame using Wigner matrices leads to eigenstates that are superpo-
sition states.
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cally eliminate the doubly-excited states as in Equation 7.10. We obtain the sets of
equations:

ci =−
1

Vi

~Ωi

2
c+ . (7.16)

As a consequence, the double-excitation probability Prr =
∑

i |ci|
2 has an upper limit:

PMax
rr =

1

4

∑

i

~2Ω2
i

V 2
i

. (7.17)

We notice the similarity with the maximum double-excitation probability calculated
in Equation 7.12. Following the procedure in [Walker and Saffman (2008)], we define
an effective potential Veff so that:

PMax
rr =

1

2

~2Ω2

V 2
eff

. (7.18)

We obtain:

1

V 2
eff

=
1

2Ω

∑

i

~2Ω2
i

V 2
i

=
∑

i

~2 |〈rr|φi〉|2
V 2
i

. (7.19)

As a conclusion, in the low-excitation limit and for an arbitrary angle θ, we can
define a potential Veff that allows us to effectively place ourselves in a three-level
configuration in the low-excitation limit3. In this simplified picture, an effective level
undergoes a Veff shift of energy due to the dipole-dipole interaction. The effective
potential Veff is a weighted average of the different potential curves that contribute
to the interaction.

This Chapter presents the measurement of the van der Waals interaction in the
particular case of the stretched state

∣∣82D3/2, 82D3/2

〉
, that shows a maximal |MTot|=

3. For θ= 0◦, the interaction energy is directly obtained from the single potential
curve that is labeled by |Mz,Tot|= |Mz′,Tot|= 3 in Figure 7.3a. For θ 6= 0◦, the effective
potential Veff is a weighted average of the different potential curves. We observe in
Figure 7.3a that the potential curve corresponding to the maximal value |Mz′,Tot|= 3

shows the largest interaction energies. As a consequence, the contributions of the
other potential curves in Veff can only lead to decreased effective interactions when

3A complete theoretical study also requires to consider the effect of the magnetic field, that
shifts the levels and adds some couplings to other states. The influence of the magnetic field in
our experimental configuration is currently under study by B. Vermersch in the group of P. Zoller
in Innsbruck. In the simpler case of the resonant dipole-dipole interaction (see Chapter 9), we will
study the influence of the magnetic field in more detail.
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θ 6= 0◦. On our setup, for a given separation distance, pairs of atoms aligned along
the z-axis will show larger van der Waals interactions than other pairs of atoms4.
This shows the importance of keeping in mind these anisotropies when working with
two-dimensional arrays of traps.

7.2 Rydberg blockade in three-atoms system with

varying geometry

We have demonstrated in Chapter 6 our ability to produce 2D arrays of traps. As a
proof a principle that our 2D arrays are suitable for applications using the Rydberg
blockade in large ordered ensembles we first test the robustness of the blockade in
elementary 2D systems containing three atoms. In a 2D configuration, some atom
pairs necessarily have an internuclear axis not aligned along the quantization axis,
which might eventually prevent a perfect blockade [Pohl and Berman (2009); Cano
and Fortágh (2012); Qian et al. (2013)]. Here we study the blockade both in a linear
and an equilateral triangle configuration where, in the latter case, the anisotropic
character of the D-state orbital plays a role.

We need large interatomic interactions in order reach a robust blockade. In the
van der Waals regime, because of the 1/R6 dependence of the interaction, varying
R is an efficient way to tune the relative strength of VvdW(R) with respect to ~Ω.
Moreover, we chose to work with a large principal quantum number (n= 82), so as
to increase the interactions. The |r〉=

∣∣82D3/2,MJ = 3/2
〉
state has been studied in

detail by L. Béguin in the case of two atoms [Béguin et al. (2013)], who measured a
C6 coefficient of:

|C6,mes(n= 82)|= 8500± 300 GHz.µm6 , (7.20)

in good agreement with the calculated value of |C6,th(n= 82)|= 8870± 150 GHz.µm6

given in Equation 7.9. For a 8 µm interatomic distance, we expect an interaction as
large as ' 32 MHz, placing us in a strong Rydberg blockade regime for our accessible
Rabi frequencies Ω/(2π)∼ 1 MHz.
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Figure 7.4: Trap arrangements and level configuration in three-atom systems.
a, Three single-atoms are trapped in microscopic optical tweezers separated by R= 4 µm
in a linear arrangement (top), and by R= 8 µm in a triangular arrangement (bottom). The
quantization axis ẑ is set by a ' 3.3 G external magnetic field. b, Relevant energy levels of
a three-atom system with van der Waals interactions Vij .

7.2.1 Experimental sequence

We consider two different arrangements of three individual atoms. Figure 7.4a shows
CCD images of the arrays are shown. The first trap configuration (top panel in
Figure 7.4a) is a chain of three atoms separated by ' 4 µm and aligned along the
quantization axis. In a second experiment, the traps form an equilateral triangle,
with ' 8 µm sides. We trigger the experimental sequence upon the presence of one
atom in each of the three traps. We turn the trap off for 2 µs, and shine on the atoms
an excitation pulse of variable duration τ that couples |g〉 to |r〉. We repeat each
measurement about 100 times so as to reconstruct the excitation probabilities Pi,j,k
(where i, j, and k ∈{0; 1}).

The Rabi frequencies Ω1, Ω2 and Ω3 of each individual atom are obtained inde-
pendently from single-atom Rabi oscillation measurements. By careful alignment of
the atoms with respect to the center of the excitation beams, we obtain Rabi frequen-
cies Ω1'Ω2'Ω3' 2π × 0.8 MHz that are identical5 to better than 5%. Figure 7.4b

4Note that for spherically symmetric S-states, the degree of asymmetry is small, of the order of
∼ 1% [Walker and Saffman (2008)].

5The alignment is particularly sensitive for the triangular configuration, since the ' 7 µm height
of the triangle has a size which is comparable with the size of the blue beam (wB ' 20 µm), and the
quantity of blue light seen by the atom can vary significantly from site to site. As a consequence,
we align the center of gravity of the triangle with respect the center of the blue beam so that each
atom sees approximately the same quantity of blue light. The size of the red beam is much bigger
than the size of the trap pattern (wR' 100 µm), and variations of the amount of red light seen by
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pictures the different energy levels in our three-atom system. The excitation laser
resonantly couples the ground state |ggg〉 to the singly-excited states |rgg〉, |grg〉 and
|ggr〉. Because of the van der Waals interaction between Rydberg atoms, the doubly-
excited states |rrg〉, |rgr〉 and |grr〉 and the triply-excited state |rrr〉 are respectively
shifted in energy by the quantities V12, V13, V23 and V123.

For two
∣∣82D3/2,MJ = 3/2

〉
atoms separated by ' 8 µm and aligned along the

quantization axis, we have seen that we expect an interaction energy V13/h' 32 MHz.
In the linear configuration, the interaction energies V12 and V23 are 64 times larger
than V13 due to the 1/R6 scaling. As a consequence, the multiply excited states are
completely off-resonant with the excitation laser, and we expect the blockade of the
excitation of doubly and triply excited states. In the triangular configuration, V12

and V23 are slightly smaller than V13, due to the anisotropy of the interaction. How-
ever, the blockade should be robust to these anisotropies of the interaction, since we
placed the system in a strong blockade regime, with V13/(~Ω)' 40. A more detailed
experimental analysis of the van der Waals interaction angular dependence support-
ing this statement will be presented in Section 7.3. In the triangular configuration,
we should therefore also observe the suppression of the two-atom and three-atom ex-
citation probabilities. When the two-atom and three-atom excitations are blockaded,
the excitation laser is only resonant with the three singly-excited state, which leads
to a collective excitation of the system (see Chapter 5), and an oscillation at the
frequency:

Ωcoll =
√

Ω2
1 + Ω2

2 + Ω2
3'Ω

√
3 , (7.21)

where Ω≡Ω1'Ω2'Ω3.

7.2.2 Demonstration of a robust Rydberg blockade

We define the probability Pn,0, of losing n atoms at the end of the sequence. In
particular, the probability of losing exactly one atom at the end of the sequence is
P1,0 =P011 + P101 + P110. The probability of losing exactly two atoms at the end
of the sequence is P2,0 =P001 + P010 + P001. Finally, the probability to lose all the
atoms at the end of the sequence is P3,0 =P000. Figure 7.5b and Figure 7.5c show the
evolution of the three-atom populations as a function of the excitation time. Clear
blockade of multiple Rydberg excitations is observed in both configurations, as the

the different atoms are less critical. We nevertheless also align the center of gravity of the triangle
with respect to the center of the red beam.
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Figure 7.5: Rydberg blockade in three-atom systems. a, Typical single-atom Rabi
flopping to the

∣∣82D3/2

〉
state for the central atom in the linear arrangement. Single-atom

Rabi frequencies Ω' 2π× 0.8 MHz, and damping rates γ' 0.3 µs−1 for all three atoms are
obtained from fits (see solid line) to the solution of the optical Bloch equations for a single
two-level atom (see Chapter 6). In this experiment, a π-pulse corresponds to ' 625 ns. b,
Probability of single (blue circles), double (red triangles), and triple (green squares) Rydberg
excitation as a function of the excitation pulse area in the linear arrangement. The collective
enhancement of the Rabi frequency by

√
3 clearly appears in the data. Solid lines are the

result of the model described in the text without any adjustable parameter. c, Same as b
but for the triangular geometry with R= 8 µm.



7.2 Rydberg blockade in three-atom systems 139

populations P2,0 and P3,0 are suppressed in the system. We observe that P2,0 never
exceeds 9%, and P3,0 never exceeds 1%. Moreover, the single excitation probability
P1,0 shows oscillations with a frequency (1.72±0.02)Ω, compatible with the expected√

3Ω, which confirms the collective character of the excitation. In particular, after
an excitation time τ = π/(

√
3Ω), the system has evolved to the collective state:

|Ψ〉= 1√
3

(
eik ·R1 |rgg〉+ eik ·R2 |grg〉+ eik ·R3 |ggr〉

)
, (7.22)

where k is the wave vector of the excitation and Ri (i∈{1, 2, 3}) are the positions of
the atoms (see Chapter 5).

The strong similarities between the two sets of data demonstrates that we are in
a strong Rydberg blockade regime that is robust to fluctuations of the interactions
due to variations of relative distances or angles between the atoms. Despite the
presence of anisotropies in the systems, both experiments show the Rydberg blockade,
which is promising for applications of Rydberg blockade in larger arrays of atoms.
Nevertheless, we observe that the probability P2,0 can be as high as 9%, and oscillates
in phase with P1,0. In the next Section, we demonstrate that this effect is mostly due
to detection errors, and that the blockade is actually even better than suggested by
these observations.

7.2.3 Comparison with simulations

We now simulate the dynamics of the three-atom system, to gain more insight into
the quality of the blockade for our experimental parameters.

Hamiltonian of the system

An atom at site i has its ground state |gi〉 coupled to the Rydberg state |ri〉 with
a Rabi frequency Ωi. The atoms interact via pairwise interactions, with interaction
energies Vij. In the van der Waals regime, the effect of the interaction is to shift the
energy of the doubly excited states by the quantity Vij, and the system is described
by the Hamiltonian6 [Lesanovsky (2011)]:

6Interestingly, this Hamiltonian has the form of an Ising Hamiltonian, showing that our setup
can be used for the simulation of spin systems. We note that all parameters of the Hamiltonian can
be tuned by a proper choice of the experimental settings, which shows the versatility of our system.
In particular, choosing |r〉=

∣∣nD3/2

〉
gives a degree of freedom to tune Vij due to the anisotropy of

the interaction.
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Ĥ =
3∑

i=1

~Ωi

2
(σ̂(i)

rg + σ̂(i)
gr ) +

∑

i<j

Vijσ̂
(i)
rr σ̂

(j)
rr , (7.23)

where σ̂(i)
rg = |ri〉 〈gi|, σ̂(i)

gr = |gi〉 〈ri|, and σ̂(i)
rr = |ri〉 〈ri| are transition and projector op-

erators for the atom at site i. In the simulation with no adjustable parameters, we use
the 1/R6 scaling of the interaction to extrapolate the coefficients Vij from indepen-
dent measurements of the interaction energy we performed on two

∣∣82D3/2,MJ = 3/2
〉

atoms separated by ' 12 µm at angles θ= 0 and θ= 60◦, as we will discuss in Sec-
tion 7.3.

Optical Bloch equations

We solve the optical Bloch equations for the three-atom system to include dissipation
in our model (see Chapter 6). We use the Hamiltonian of Equation 7.23, and we add
a sum of independent single-atom dissipators to account for the small experimental
damping γi observed experimentally on single-atom Rabi oscillations:

L[ρ] =
∑

i

γi
2

(2σ̂(i)
gr ρσ̂

(i)
rg − σ̂(i)

rr ρ− ρσ̂(i)
rr ) . (7.24)

The coefficients Ωi and γi are obtained from fits of Rabi oscillations taken on each
atom individually (see Chapter 6). We obtain γi' 0.3 µs−1, and we observe that all
the γi are equal within 10%. Figure 7.5 (top panel), shows a typical single-atom Rabi
oscillation.

Detection errors

We also include in the simulation the detection errors (see Chapter 6), to account
for the small probability to lose atoms from the trapping region independently of
their actual state. Generalized to the case of three atoms, the relation between the
observed probabilities Pijk (i, j, k∈{0; 1}) and the actual excitation probabilities
Plmn (l, m, n∈{g; r}) reads:
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



P111 = (1− ε)3Pggg

P011 = (1− ε)2(Prgg + εPggg)

P101 = (1− ε)2(Pgrg + εPggg)

P110 = (1− ε)2(Pggr + εPggg)

P001 = (1− ε)(Prrg + ε(Prgg + Pgrg) + ε2Pggg)

P010 = (1− ε)(Prgr + ε(Pggr + Prgg) + ε2Pggg)

P100 = (1− ε)(Pgrr + ε(Pgrg + Pggr) + ε2Pggg)

P000 = Prrr + ε(Pgrr + Prgr + Prrg) + ε2(Pggr + Prgg + Pgrg) + ε3Pggg

(7.25)

A release and recapture measurement realized on a single atom allows to estimate
ε. Turning the trap off for a total duration τ = 2 µs leads to a 95 ± 1% recapture
probability. In the simulation, we use ε= 5 ± 1%. Because of the error detection ε,
the measured probability P2,0 differs from the double excitation probability P2,r. In
the case of a perfect blockade, one has P2,r' 0 and, using Equation 7.25, we obtain
P2,0∼ 2εP1,r to first order in ε. Despite the fact that the blockade is perfect, the
probability P2,0 oscillates between 0 and 2ε' 10%, in phase with P1,r, as can be seen
on the experimental data (see Figure 7.5).

Quality of the blockade

The results of the simulation, with no adjustable parameters, are plotted in Figure 7.5
(solid lines in Figure 7.5b and Figure 7.5c). The very good agreement with the
experimental data further supports the quality of the blockade. In particular, due
to detection errors included in the model, we observe that the predicted probability
P2,0 that two atoms are lost at the end of the sequence agrees well with the measured
probability, which can reach up to ' 10%, despite the fact that the model predicts
a maximal double excitation probability P2,r of ∼ 0.1%. For the population P2,0

in the line configuration, we measure an average residual of 1.5% with a residual
standard deviation of 2.1%. We can estimate that in our experiment, the actual
double excitation probability is lower than 2%, showing an efficient blockade.

7.3 Measurement of the van der Waals interaction

between two atoms

The Rydberg blockade demonstrated above is a manifestation of strong interactions
between Rydberg atoms that occurs above a certain threshold of the interaction
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Figure 7.6: Partial blockade dynamics for two atoms. a, Configuration of the levels.
The excitation lasers resonantly couple |gg〉 to |gr〉 and |rg〉. Because of the interaction,
the energy of |rr〉 is shifted by a quantity VvdW. b, Measuring the excitation dynamics
of a two-atom system. Here, |r〉=

∣∣82D3/2,mJ = 3/2
〉
, the two atoms are aligned along

the quantization axis and separated by R= 12.4 µm. The Rabi frequencies are ΩA = ΩB =
2π × 1.57 MHz. The solid lines are the fits used to extract VvdW.

energy (∆E� ~Ω), which explains its robustness. With the level of control we have
on our setup, we can also consistently study the excitation of the system in the more
sensitive regime where ~Ω'∆E. In this regime, L. Béguin measured the van der
Waals interaction between two atoms aligned along the quantization axis [Béguin
(2013)]. Here, we recall the method used, and measure the interaction energy for two
atoms excited to the state

∣∣82D3/2

〉
, with θ= 0. In Section 7.4, we apply the same

method to measure the anisotropy of the van der Waals interaction.

7.3.1 Principle of the experiment

We consider two atoms aligned along the quantization axis z. For each atom A

and B, the excitation lasers resonantly couple |g〉 to |r〉, with couplings ΩA and ΩB.
Figure 7.6a shows the relevant energy levels for the two-atom system. The four pair-
states {|gg〉 , |rg〉 , |gr〉 , |rr〉} are represented, where the doubly-excited state |rr〉 is
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shifted by an energy VvdW due to the van der Waals interaction. Our goal is to measure
the excitation dynamics of the system with VvdW' ~ΩA,B. This particular regime is
intermediate between the situation where the atoms behave totally independently,
allowing the coherent excitation of |rr〉, and the situation where the double excitation
is blockaded. The excitation laser is not exactly resonant with the doubly excited
state due to the dipole-dipole interaction, but has a sufficiently large Rabi frequency
to partially populate |rr〉. As a consequence, we refer to this situation as partial
blockade. In this case, a characteristic beating between the two frequency components
VvdW/~ and Ω appears in the excitation dynamics of the system, showing the influence
of the interaction [Béguin et al. (2013)].

7.3.2 Excitation dynamics of the two-atom system in the

partial blockade regime

We now perform the excitation of two atoms in the partial blockade regime. In this
experiment, the excitation lasers are resonant with the state |r〉=

∣∣82D3/2,MJ = 3/2
〉
.

In order to reach the partial blockade regime, we need an interaction energy compa-
rable to the Rabi frequency. With an interatomic distance of R' 12.4 µm, we expect
an interaction energy of:

1

h
VvdW =

1

h

C6,th

R6
' 2.4 MHz , (7.26)

which is of the order of our typical Rabi frequency. By careful alignment of the
system, we achieve couplings Ω≡ΩA'ΩB ' 2π × 1.57 MHz that are equal within
5%. This places us in the regime where VvdW' ~ΩA,B. We turn the trap off for 2 µs,
and we shine an excitation laser pulse of duration τ on the atoms. We then measure
the evolution of the populations Pij (i, j ∈{0; 1}) as a function of the excitation time.

Figure 7.6b shows the result of the experiment. We observe the coherent evolution
of the populations as a function of the excitation pulse area Ωτ . The excitation of
the doubly-excited state is not fully blockaded, but is limited by the dipole-dipole
interaction since P00 only goes up to ' 20%. In the partial blockade regime, the
excitation dynamics are influenced by the two frequency components Ω and VvdW.
Our goal is to extract from this measurement a value for the interaction.
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7.3.3 Measurement of the interaction energy

We fit the data using VvdW as the only fitting parameter. Our fitting functions
are obtained by solving the optical Bloch equations using similar Hamiltonian and
dissipator as in Equation 7.23 and Equation 7.24, written in the two-atom case. All
input parameters (Rabi frequencies Ωi and damping rates γi) were independently
measured for each single atoms taken individually. We also include the detection
error ε so as to compute the observed values P11, P01, P10 and P11:





P11 = (1− ε)2Pgg

P01 = (1− ε)(Prg + εPgg)

P10 = (1− ε)(Pgr + εPgg)

P00 = Prr + ε(Prg + Pgr) + ε2Pgg .

(7.27)

The only remaining free parameter in the model is the coefficient VvdW. For different
values of VvdW, we compare the calculated populations Pij (i, j ∈{0; 1}) with the
data. We apply the minimum chi-square method [Bevington and Robinson (2003)]
to obtain the interaction energy:

VvdW

h
= 2.5± 0.5 MHz , (7.28)

where the error represents one standard deviation confidence interval in the fit.
The solid lines in Figure 7.6b show the result of the best fit superimposed with
the experimental data. The result is in good agreement with the theoretical value
VvdW,th/h= 2.4 MHz.

7.4 Angular dependence of the van der Waals

interaction

We now vary the angle θ between the internuclear axis and the quantization axis
z. For θ 6= 0◦, we have seen in Section 7.1 that extra terms appear in the dipole-
dipole Hamiltonian, which leads to a more complex situation than in the case θ= 0◦.
However, in the low excitation limit, we can define an effective potential Veff(θ), which
allows to describe the effect of the interaction by a shift of the doubly excited state by
a quantity Veff(θ), as it is the case for θ= 0◦. Here, we measure this effective potential
as a function of θ.
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Figure 7.7: Angular dependence of the effective interaction energy Veff for two
atoms. The interatomic distance is R= 12.4 µm, and θ is the angle between the internu-
clear axis and the quantization axis z. a, Angular dependence of the interaction for the∣∣82D3/2,mJ = 3/2

〉
state. V13, V23, and V12 indicate the measured energy shifts used for

the simulation of the three-atom system. b, The angular dependence of the interaction
for the spherically symmetric

∣∣82S1/2,MJ = 1/2
〉
state is shown for comparison. Error bars

represent one standard deviation confidence intervals in the fits.

7.4.1 Experimental procedure

The experimental procedure we use is exactly the same as the one described in Sec-
tion 7.3, where we replace VvdW by Veff(θ) in the level configuration in Figure 7.6a.
The interatomic distance is fixed to R= 12.4 µm, and we very the angle θ by chang-
ing the phase displayed on the SLM. In the partial blockade regime, we measure the
excitation dynamics of the two-atom system and fit them with the solution of the
optical Bloch equations with Veff(θ) as the only fitting parameter.

7.4.2 Measurement of the anisotropy of the interaction

The result of this approach is shown in Figure 7.7a for the
∣∣82D3/2,MJ = 3/2

〉
state.

The measured interaction energies show a clear anisotropy as a function of the angle.
As expected, the energy shift is maximum around θ= 0 and decreases for larger
angles: we measure a relative change of interaction strength7 by a factor ' 3 when θ
varies from θ= 0◦ to θ= 60◦.

We observe an unexpected, slight asymmetry in the angular dependence of Veff ,
probably due to small systematic effects. We have ruled out several possible system-
atic effects, such as imperfections in the generation of the traps or longitudinal shifts

7V13, V23, and V12 indicate the measured energy shifts used to extrapolate the interaction energies
at a distance R= 8 µm in the simulation of the three-atom system Section 7.2.
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between the two trap foci. One possible reason for this asymmetry comes from the
fact that the theoretical derivation of the effective potential is only justified in a limit
where the double-excitation probability Prr vanishes (see Section 7.1). However, our
measurement method requires Prr 6= 0. For the negative angles in Figure 7.7a, we
adapted the Rabi frequency Ω to keep the double excitation lower than ' 30% every-
where. However, for the positive angles, we generally used larger Rabi frequencies,
leading to double excitation probabilities as high as ' 60%, which could be a source
of asymmetry. Those effects, along with a detailed study of the angular dependence
of the van der Waals interaction including all 16 Zeeman sublevels with their van der
Waals couplings, are under investigation by B. Vermersch, a postdoctoral researcher
in the group of P. Zoller in Innsbruck. Nonetheless, the observed degree of asymmetry
has a negligible impact on what follows.

We have finally measured the effective interaction for the spherically symmetric∣∣82S1/2,MJ = 1/2
〉
state8. For comparison, the result is shown in Figure 7.7b and

shows, as expected, almost no anisotropy of the interaction energy.

7.4.3 Effects of the anisotropy of the interaction on a

three-atom system in the partial blockade regime

The angular dependence of Veff manifests itself in our system as soon as we use 2D
arrays of atoms. In Section 7.2, we have demonstrated that the Rydberg blockade
is robust to anisotropies of the interaction. However, in the partial blockade regime,
one should directly observe anisotropic effects in the excitation dynamics of the three-
atom system. Now that we have characterized the interactions between pairs of atoms
in all directions, one natural thing to do is to use the additivity of van der Waals
interactions to describe interacting systems containing more atoms. However, even
in the case of N = 3, some situations have been identified where many body effects
in the presence of resonant dipole-dipole interactions lead to the non-additivity of
interaction potentials [Pohl and Berman (2009); Cano and Fortágh (2012)]. In the
particular situation of the van der Waals regime investigated here, we will check
on a three-atom system that the physics can be understood in terms of pairwise
interactions.
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Figure 7.8: Partial blockade dynamics of three interacting atoms for
Ω/(2π)' 0.8 MHz. Populations Pijk of the three-atom system versus excitation pulse
area Ωτ for driving Rabi frequencies Ωi/(2π)' 0.8 MHz. The distance between the
traps is R= 12.4 µm. The ratio between the effective pairwise interaction energies is
V13/V12'V13/V23' 3 for θ= 60◦. Solid lines are the solution of the OBEs for the three-atom
system without any adjustable parameter.
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Figure 7.9: Partial blockade dynamics of three interacting atoms for
Ω/(2π)' 1.6 MHz. Same as Figure 7.8, where we increase the Rabi frequency to
Ωi/(2π)' 1.6 MHz, allowing to partially excite the state |rrr〉.
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Experimental observations

We thus come back to an equilateral triangle configuration as in Section 7.2. The
excitation lasers are resonant with the state |r〉=

∣∣82D3/2,MJ = 3/2
〉
. Compared to

the blockaded situation, we reach the partial blockade regime by increasing the sides
of the triangle to R' 12.4 µm. The effective interaction energies present in the system
are directly obtained from Figure 7.7, and read (V12, V23, V13)'h×(0.9, 1.1, 2.6) MHz.
For two different Rabi frequencies Ω, we shine an excitation pulse of duration τ on
the atoms, and we measure the eight recapture probabilities Pijk (i, j, k∈{0; 1}) as
a function of τ .

• Figure 7.8 shows a first dataset with:

Ω = 2π × 0.8 MHz'V12/~'V23/~<V13/~ . (7.29)

We observe that ~Ω is of the order of the interactions V12 and V23 for the atom
pairs that form an angle θ=±60◦ with the quantization axis. However, the Rabi
frequency is more than three times smaller than the interaction between the
two atoms that are aligned along the quantization axis. Due to the anisotropy
of the interaction, one pair of atoms is consequently in the blockade regime,
whereas the two other pairs are in the partial blockade regime. This effect is
directly observed on the excitation dynamics of the system shown in Figure 7.8,
in particular when looking at the probabilities P100, P010 and P001 to lose two
atoms. The probability P010 remains below 5%, due to the blockade of the
double excitation for the two atoms aligned along the quantization axis, whereas
the probabilities P001 and P100 show up to 30% excitation of double excitation for
the other pairs of atoms. Note that the anisotropy of the interaction also affects
the single excitation probabilities, as we can observe on the probabilities P011,
P101 and P110 measured experimentally: P011 and P110 show similar behavior,
whereas P101 shows faster dynamics.

• Figure 7.9 shows a second dataset with:

V12/~'V23/~.Ω = 2π × 1.6 MHz.V13/~ . (7.30)

We observe that the Rabi frequency is intermediate between the interactions
V12'V23 and V13, allowing all the pairs to be in the partial blockade regime,

8For excitation to the S-state, we changed the polarization of the 474 nm laser to σ−.
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but with slightly different interactions. In Section 7.3, we have seen that the
excitation dynamics of a system in the partial blockade regime strongly depend
on the interaction strength, a property which allowed to measure the van der
Waals interaction between pairs of atoms. As a consequence we expect again
to observe different dynamics between the different pairs of atoms. Indeed, we
observe in Figure 7.9 that P100 and P001 (resp. P110 and P011) show a similar
behavior, which differs from P010 (resp P101). Compared to Figure 7.8, we
observe that the double excitation of the atoms aligned along the quantization
axis and therefore the triple excitation are not blockaded anymore, as P010 and
P000 can be as high as ' 15%.

Note that the fact that the populations P100 and P001 show a similar behavior in
Figure 7.8 and Figure 7.9 supports that the observed asymmetry in our measurement
of the angular dependence of the van der Waals interaction (see Figure 7.7) comes
from a bias of our measurement.

Comparison with the simulations

To refine our understanding of the evolution of the populations during the excitation
and to investigate the validity of the description of the system from pairwise interac-
tions, we perform a simulation using the optical Bloch equations for the three-atom
system, as described in Section 7.2. We use the Hamiltonian of Equation 7.23 and the
dissipator of Equation 7.24. In this model with no adjustable parameters, the single-
atom Rabi frequencies Ωi and damping coefficients γi are obtained from single-atom
Rabi oscillations. A fit of the data gives the same Rabi frequencies Ωi≡Ω for the
three atoms within 5% and same γi for the three atoms within 10%. The interaction
energies measured at θ= 0◦ and θ=±60◦ in Figure 7.7a are introduced. We finally
include in the simulation the ε= 5% probability of detection errors.

The result of the simulation is shown by the solid lines in Figure 7.8 and Figure 7.9.
Using the effective energy shifts measured for each pair of atoms, it is possible to
reproduce the three-atom dynamics with high accuracy. In particular, the fact that
the simulation can accurately describe the evolution of the triply excited state P000

in Figure 7.9 suggests that, for our choice of parameters, the pairwise addition of van
der Waals level shifts V123 =V12 +V13 +V23 is valid to a good approximation (we have
not tried to put an upper limit on a possible non-additive shift of the |rrr〉 state).
This result demonstrates our good understanding of the excitation of our system in
the van der Waals regime, and suggests that the anisotropy of the interaction could
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be used to tailor the interactions in systems containing a larger number of atoms.

7.5 Conclusion

In summary, we have investigated the excitation dynamics of systems of two and three
Rydberg atoms in the van der Waals regime [Walker and Saffman (2008)]. Using sys-
tems containing three atoms, we have checked that, for a proper choice of parameters,
the Rydberg blockade is robust with respect to anisotropies of the interaction, which
is a prerequisite for the scalability of quantum information processing proposals using
2D arrays of dipole traps [Saffman, Walker, and Mølmer (2010)]. The level of control
reached in our system on the relative distances and angles between atoms enabled
us to investigate the effects of the van der Waals interaction in the more sensitive
regime where the blockade is only partial, allowing the measurement of the angular
dependence of the interaction.

We concentrated on the van der Waals interaction between atoms excited to the
same Rydberg state in this Chapter. This does not require any control of the interac-
tion. In this case, we have shown that we can describe accurately the system from the
pairwise addition of van der Waals level shifts. However, this additivity of the poten-
tial may not hold in the case of resonant dipole-dipole interactions [Cano and Fortágh
(2012)], where interesting effects like the “breaking” of the Rydberg blockade [Pohl
and Berman (2009)] or the formation of trimers bound by the dipole-dipole interac-
tion [Kiffner, Li, and Jaksch (2013)] have been predicted recently. Moreover, from the
point of view of quantum engineering in large arrays of atoms, resonant dipole-dipole
interactions are interesting since they show a larger strength and a longer range than
in the van der Waals regime. This motivated the study, in our system, of this other
regime of dipole-dipole interactions, as we will discuss in Chapter 8 and Chapter 9.
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We have used, in the previous Chapter, two atoms excited to the same Rydberg
state |r〉 to investigate the van der Waals interaction between two particles. In this
case, the interaction is a consequence of the off-resonant coupling of the two-atom
state |rr〉 to many other pair states |φAφB〉. This leads to an energy shift of the
state |rr〉 by a quantity VvdW arising from non-degenerate second-order perturbation
theory (see Chapter 7):

VvdW =
C6

R6
. (8.1)

We investigate, in this Chapter, the situation where the two atoms are excited to two
different Rydberg states |r〉 and |r′〉 that show a non-zero transition dipole moment.
As a consequence, the two degenerate pair states |rr′〉 and |r′r〉 are coupled by the
interaction, leading to a non-zero average energy 〈r′r| V̂dip |rr′〉. In this case, the
interaction energy is ∝ 1/R3, and is referred to as “resonant dipole-dipole interaction”.

This type of resonant dipole-dipole interaction naturally occurs in chemical or
biological photosystems for instance. For example, photosynthesis in plants relies on
the resonant transfer of excitations from light-gathering molecules (chromophores) to
the photosynthetic reaction centers (see Figure 8.1). The particularly high efficiency
of light-harvesting in plants triggered some interest for the study of resonant dipole
interactions in the early days of quantum mechanics1 [Oppenheimer (1941); Förster
(1948); Arnold and Oppenheimer (1950)]. Today, resonant energy transfers have
found applications in microscopy and biophysics [Lakowicz (2007)], where their use
as a “spectroscopic ruler” [Stryer and Haugland (1967)] allows the measurement of

1For a historical review, see [Clegg (2006)].
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Figure 8.1: Role of resonant energy transfers in photosynthesis (adapted from
[Freeman (2005)]). One chromophore receives a light excitation. The excitation is then
resonantly transferred from chromophore to chromophore to reach the reaction center, where
the chemical reactions of photosynthesis takes place.

nanoscale distances or binding energies in macromolecules like DNA. Still, the deep
understanding of energy transport in photosynthetic systems remains an active field
of research [Engel et al. (2007); Panitchayangkoon et al. (2010); Collini et al. (2010)],
also motivated by the technological challenge of manufacturing efficient artificial light
harvesting complexes like solar cells [Hardin et al. (2009); Huang et al. (2013)]. In
particular, the origin of the coherence observed is still an open question [Briggs and
Eisfeld (2011); Miller (2012)], showing that the potential role of quantum coherence
[Olaya-Castro et al. (2008); Wilde, McCracken, and Mizel (2010)] or entanglement
[Sarovar et al. (2010); Fassioli and Olaya-Castro (2010); Whaley, Sarovar, and Ishizaki
(2011)] in natural light harvesting complexes is still not well understood.

In the early days of quantum mechanics, F. Perrin [Perrin (1933)] gave a first
theoretical explanation for the resonant energy transfer between two single particles
with the same resonance frequency. In this model, each particle is viewed as an oscil-
lating dipole, so that the two-particle system is the quantum analog of two coupled
classical pendula. An oscillating particle creates a field with a 1/R3 contribution in
the near field and a 1/R radiation part. When a second particle is located in the
near field (1/R3 contribution), an excitation can be transferred from the first particle
to the other particle through the exchange of virtual photons (“non-radiative energy
transfer”). According to F. Perrin’s theoretical predictions, the transfer should occur
at distances as large as R0 ∼ 100 nm. However, this prediction did not in agree with
observations made by experimentalists [Cario and Franck (1922); Beutler and Jose-
phy (1929)], who measured energy transfers between two chemical species in mixtures
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Vdip 

Figure 8.2: Förster model of resonant energy transfers. a, In most systems found
in nature, the two particles are not exactly resonant. However the spectral broadening of
each particle can result in an overlap between the emission (Em) spectrum of the first one
(donor) and the absorption (Abs) spectrum of the second one (acceptor). b, A resonant
energy transfer is therefore a consequence of the interaction between a state and a continuum
of energy. One can obtain the transfer rate by applying a Fermi golden rule.

of vapors over much shorter distances (R0∼ 10 nm). Förster later refined the model
to a more general situation [Förster (1948)] that did not require an exact match of
the energy levels of the two particles, but only an overlap between broad emission
and absorption spectra (see Figure 8.2a). In this case, the resonant energy transfer
results from the contribution of a continuum of states (see Figure 8.2b). Applying
Fermi’s golden rule allowed Förster to obtain the rate of energy transfer:

kET =
1

τe

(
R0

R

)6

, (8.2)

where τe is the lifetime of the donor in its excited state and R0 is the distance where
the rate of energy transfer is equal to the rate of fluorescence emission. This formula
gave excellent agreement with the experimental observations [Stryer and Haugland
(1967)].

Even if the final energy transfer rate is ∝ 1/R6, the underlying mechanism at play
here is indeed the one described by Perrin, arising from dipole-dipole interaction be-
tween the two particles. In this Chapter, we use two Rydberg atoms to implement the
Perrin model in its most pristine form. After describing the theoretical background
of the resonant interactions between two Rydberg atoms, we study the resonant en-
ergy transfer between two Rydberg atoms, and we use the coherence properties of
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the system to measure the interaction energy between two atoms separated by up to
50 microns. We then extend the system to a linear chain of three atoms and mea-
sure the resonant dynamics of the system. We finally show that simulations with no
adjustable parameters agree well with our measurements.

8.1 Resonant interaction between two Rydberg

atoms

We show in this Section how our system can be used to implement Perrin’s model of
the resonant dipole-dipole interaction.

8.1.1 Finding a resonance

One way to obtain resonant interactions between two Rydberg atoms is to prepare
them in two distinct states |nL〉 and |n′L′〉 that show a non-zero transition dipole
moment (〈nL| d̂ |n′L′〉 6= 0). The degenerate two-atom states |nL;n′L′〉 and |n′L′;nL〉
are then coupled by the dipole-dipole interaction Hamiltonian2. As a consequence,
the two atoms interact to first order through the channel (see Figure 8.3)

nL+ n′L′←→n′L′ + nL . (8.3)

After preparation in the non-stationary state |nL, n′L′〉 for example, the system oscil-
lates back and forth between its two degenerate configurations at a frequency given
by the interaction energy. This can be seen as the hopping of one n′L′ excitation
from one site to the other as represented in Figure 8.3.

Transitions between Rydberg states typically lie in the microwave domain, with
wavelengths λ∼ 1cm much longer than the typical separation distance R between
the atoms in our experiment (R∼ 10 µm). This ensures that the atoms are located
in the near field of the transition nL→n′L′. This places us exactly in the situation
described by Perrin, where energy is transferred non-radiatively between the atoms
(through the exchange of virtual photons).

2Another way to obtain resonant interactions between two Rydberg atoms is to apply an electric
field so as to reach a Förster resonance, as we will demonstrate in Chapter 9.
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Figure 8.3: Principle of the experiment. When we excite the system to the pair state
|nL, n′L′〉, it is exactly on resonance with |n′L′, nL〉 independently of external fields. The
system starts oscillating under the influence of the dipole-dipole coupling Vdip.

8.1.2 Resonant interaction between two Rydberg atoms

aligned along the quantization axis

We suppose in this Section that two Rydberg atoms are excited to the states |nL〉 and
|n′L′〉 and that the degenerate two-atom states |nL, n′L′〉 and |n′L′, nL〉 are coupled
by the dipole-dipole Hamiltonian3 with a dipolar coupling given by

〈nL, n′L′| V̂dip |n′L′, nL〉=
C3

R3
. (8.4)

The total Hamiltonian of the system is, in the basis {|nL, n′L′〉 ; |n′L′, nL〉},

Ĥ =

(
0 C3/R

3

C3/R
3 0

)
. (8.5)

The diagonalization of this Hamiltonian gives the eigenenergies E± of the system :

E±=±|C3|
R3

. (8.6)

The interaction mixes the states, as shown in Figure 8.4, and the eigenstates of the
interacting system are :





|+〉 =
1√
2

(|nL, n′L′〉+ |n′L′, nL〉)

|−〉 =
1√
2

(|nL, n′L′〉 − |n′L′, nL〉) .

(8.7)

3Note that the two pair states |nL, nL〉 and |n′L′, n′L′〉 are also coupled by the dipole-dipole
interaction Hamiltonian. However, those pair states are separated in energy by a few tens of GHz,
and thus the effect of the dipolar coupling is negligible. We therefore restrict the two-atom basis to
{|nL, n′L′〉 ; |n′L′, nL〉}.
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E

Figure 8.4: Eigenvectors of the two-atom interacting system. The pair states
|nL, n′L′〉 and |n′L′, nL〉 are degenerate. Because of the dipole-dipole coupling, those pair
states are not eigenstates of the two-atom interacting system. The eigenstates of the inter-
acting system are the superposition states |+〉 and |−〉, shifted in energy by the quantity
C3/R

3.

We first observe that the eigenvalues are shifted in energy by a quantity ∝ 1/R3.
We recover the first-order interaction characteristic to the case of resonant dipole-
dipole interactions. The two degenerate states |nL, n′L′〉 and |n′L′, nL〉 are not eigen-
states of the interacting system. The stationary states are the symmetric and anti-
symmetric combinations |+〉 and |−〉. If we prepare the pair of atoms in the state
|nL, n′L′〉 at an instant t= 0, the evolution of the system as a function of time is
non-stationary. The system oscillates between the two configurations |nL, n′L′〉 and
|n′L′, nL〉 at a frequency given by the difference in energy between the two eigen-
states, namely 2C3/R

3. After a time t, the probability to find the system in the state
|nL, n′L〉 is

P|nL,n′L′〉(t) = cos2

(
2π
C3

R3
t

)
=

1

2

[
1 + cos

(
2π

2C3

R3
t

)]
. (8.8)

8.1.3 Resonant interaction for the simulation of spin systems

Interestingly, the hopping of one excitation from site to site is a mechanism taking
part in the dynamics of interacting, localized spin systems. In the presence of resonant
interactions, our system naturally implements a spin-exchange Hamiltonian. In the
basis {|nL, n′L′〉 ; |n′L′, nL〉}, the resonant dipole-dipole interaction Hamiltonian can
be written as:

Ĥint =
C3

R3
(|n′L′, nL〉 〈nL, n′L′|+ |nL, n′L′〉 〈n′L′, nL|) . (8.9)

If we encode two spin states in |↑〉= |nL〉 and |↓〉= |n′L′〉, the dipole-dipole interaction
between the atoms is given by the Hamiltonian

H =
1

2

∑

i,j

Vij(σ
+
i σ
−
j + σ−i σ

+
j ) , (8.10)
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where σ±=σx ± iσy are spin-flip operators and Vij ∼ |ri − rj|−3. We thus realize a
spin-exchange, or XY spin-Hamiltonian [Bettelli et al. (2013); Günter et al. (2013)].
Note that this situation is different from the one discussed in the case of van der
Waals interactions (see Chapter 7), for which we have shown that our system can be
described by an Ising-type Hamiltonian [Weimer et al. (2008); Lesanovsky (2011)]:

H =
1

2

∑

i,j

Vijσ
z
i σ

z
j , (8.11)

where σz is the z-Pauli matrix and Vij ∼ |ri − rj|−6. Working with resonant inter-
actions offers the possibility to implement another type of spin Hamiltonian, with
long-range interactions ∝ 1/R3. In the rest of this Chapter, our experiments can be
seen as the implementation of XY Hamiltonians in elementary spin systems of 2 and
3 spins. We will show in particular that the long-range character of the interaction in
our system plays a crucial role in the interacting dynamics of the atoms, which are not
only influenced by the interactions between nearest neighbors. An accurate descrip-
tion of the system requires to take into account the interactions between next-nearest
neighbors.

8.2 Choice of the Rydberg states

We want to excite two neighboring atoms to two different Rydberg states in order to
have them interact resonantly. We realized this situation experimentally by combining
single-site addressability (see Chapter 6) and microwave coupling between Rydberg
states, as we will demonstrate in Section 8.3. In this Section, we detail our choice of
Rydberg states.

8.2.1 Microwave transition

Using an optical excitation, we can excite one atom from the ground state to a Ryd-
berg state (see Chapter 6). This state can then be coupled to other Rydberg states,
that satisfy ∆L=±1 and ∆MJ = 0,±1. Starting from an optically excited D state,
we can access to P or F states. P states present the advantage of having a fine-
structure splitting of the order of a few hundreds of MHz for the typical principal
quantum numbers used in our experiments. This value is large compared to our typi-
cal excitation linewidths, which ensures that the nP1/2 and nP3/2 states are separated
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Figure 8.5: Choice of the Rydberg states. a, Energy separation (in GHz) between
the states nD3/2 and (n + 1)P1/2 as a function of n. We note that the scaling law 1/n3 is
well verified. b, Excitation level scheme. The optical excitation couples the ground state∣∣5S1/2

〉
and the Rydberg state

∣∣62D3/2

〉
with an effective Rabi frequency Ω. A microwave

field of Rabi frequency ΩMW couples the
∣∣62D3/2

〉
and the

∣∣63P1/2

〉
states.

enough from each other4. We can work either with nP3/2 or with nP1/2. We decided
to use nP1/2 states because they only have two Zeeman sub-levels, which eases the
isolation of a two-level system. Transitions between Rydberg states typically lie in
the microwave domain and can be addressed experimentally using a microwave (MW)
synthesizer.

We calculate the position of the Rydberg states using the quantum defects (see
Chapter 5). The closest state from nD3/2 is the level (n+ 1)P1/2. Figure 8.5a shows
the difference in energy ∆E/h between those two states, expressed as a function of
n. For principal quantum numbers smaller than 56, the transition frequency is larger
than 12.75 GHz, the highest frequency that can be produced by our MW synthesizer.
For n' 60, the transition frequency ' 10 GHz corresponds perfectly to what we
can do experimentally. We chose to work with the states

∣∣62D3/2

〉
and

∣∣63P1/2

〉
.

Figure 8.5b shows the chosen energy levels. In the absence of magnetic field, the
calculated separation in energy between

∣∣62D3/2

〉
and

∣∣63P1/2

〉
is 9.1235 GHz.
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Figure 8.6: Isolating a two-level system. The full sub-Zeeman structure of the chosen
states contains 6 levels. Applying a 6.6 G magnetic field, we shift the different Zeeman
sub-levels. Because of the differential Zeeman effect, only two levels are resonant with the
microwave field.

8.2.2 Two-level system

Both 62D3/2 and 63P1/2 levels present a Zeeman sub-structure, and care has to be
taken in order to select only two levels out of the six levels in Figure 8.6. We do not
control well the polarization of the microwave field: its polarization at the position of
the atoms is mainly a combination of σ+, σ−, and to a lesser extent π polarizations,
as we will see in Section 8.3. As a result, several transitions are addressed by the
microwave field. In the absence of magnetic field to lift the degeneracy, the states∣∣62D3/2,mJ =3/2

〉
and

∣∣63P1/2,mJ =1/2
〉

as well as the states
∣∣63P1/2,mJ =1/2

〉
and

∣∣62D3/2,mJ =−1/2
〉

are coupled by the microwave. This would place us out-
side the framework of the model of F. Perrin since at least three levels have to be
considered.

We therefore apply a magnetic field to shift some of the levels out of resonance
from the microwave field. Because of a differential Zeeman effect5, the transition
frequency between the states

∣∣62D3/2,mJ =−1/2
〉

and
∣∣63P1/2,mJ =1/2

〉
shifts by a

quantity Δ from the transition frequency between the states
∣∣62D3/2,mJ =3/2

〉
and∣∣63P1/2,mJ =1/2

〉
. In order to be resonant with only one transition, the linewidth

of the microwave excitation has to be smaller than the energy separation between
the two states (ΩMW/(2π)�Δ). Similarly to our optical transitions, our microwave
transitions have a typical strength of ΩMW =2π × 5 MHz. With a 6.6 G magnetic
field, we obtain Δ� 14.8 MHz>ΩMW/(2π). Using the Rabi formula, we obtain an
upper bound on the probability to populate the state

∣∣62D3/2,mJ =−1/2
〉

due to of

4F -states have fine-structure splittings of a few MHz or less, which is of the same order as our
typical excitation linewidths. This makes the situation more complex, since in this case we would
off-resonantly couple to several levels.

5The Landé factor for the |d〉 (resp. |p〉) state is gJ =4/5 (resp. gJ =2/3).
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off-resonant coupling after a microwave π-pulse:

P ≤ (ΩMW/
√

3)2

(ΩMW/
√

3)2 + ∆2
= 3.7% , (8.12)

where Ω/
√

3 is the Rabi frequency corresponding to the transition between the
states

∣∣62D3/2,mJ = 3/2
〉
and

∣∣63P1/2,mJ = 1/2
〉
(see Figure 8.6). We can ignore

the effect of the other Zeeman sub-levels. In the rest of this Chapter, we are in-
terested in the transition between the stretched states |d〉≡

∣∣62D3/2,mJ = 3/2
〉
and

|p〉≡
∣∣63P1/2,mJ = 1/2

〉
. Taking into account the 6.6 G magnetic field, we calculate

that the transition frequency between |d〉 and |p〉 is 9.1315 GHz. This will be verified
experimentally in Section 8.3.

8.2.3 Estimating the needed microwave power

We now concentrate on the transition between the states |d〉 and |p〉 that are separated
by 9.1315 GHz. The dipole coupling between |d〉 and |p〉 is given by the dipole matrix
element (calculated numerically)

〈
62D3/2,mj = 3/2

∣∣ d̂+

∣∣63P1/2,mj = 1/2
〉
' 2858ea0 . (8.13)

This dipole element is large, meaning that the amount of MW power needed to
transfer one atom from |d〉 to |p〉 is low. We quantify this by calculating an order
of magnitude of the power needed to obtain a microwave Rabi frequency ΩMW =

2π × 5 MHz. We make the approximation that the radiation pattern emitted from
the antenna is isotropic and that the atoms are located at a distance z∼ 20 cm

away from the antenna. We suppose that only half of the emitted power is in the
polarization σ+, and that we have 3 dB losses in the one meter RG58 cable. In the
far field, the amplitude of the microwave field is approximately

EMW'
1

2

√
PMW

2πz2cε0

, (8.14)

and the Rabi frequency is given by

~ΩMW =−〈d| d̂+ |p〉EMW . (8.15)

In order to obtain the typical Rabi frequency ΩMW = 2π × 5 MHz, we estimate that
we need ∼ 40 µW of MW power (−14 dBm). This number will be confirmed experi-
mentally in Section 8.3.4.
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Figure 8.7: Experimental setup. A RG58 cable facing the atoms outside the vacuum
chamber is connected to a MW synthesizer. We apply pulses of microwave field on the
atoms to couple |d〉 to |p〉.

8.3 Coherent manipulation of Rydberg states using

microwave fields

We have demonstrated in Chapter 6 that we are able to coherently excite a single
atom from |g〉 to a Rydberg state |d〉 by sending resonant optical photons on the
atoms. We now demonstrate our ability to perform transitions between Rydberg
states, lying in the microwave domain.

8.3.1 Setup

We perform transitions between Rydberg states using a microwave field produced
by a MW synthesizer SMB 100A from Rohde&Schwartz that we connect to a RG58
cable. One end of the cable has been stripped over a ∼ 5 mm range, producing an
electric dipole antenna that we place horizontally ∼ 20 cm away from the atoms (see
Figure 8.7). The antenna is placed outside the vacuum chamber, above a big viewport.
After free-space propagation, we would expect the polarization of the microwave field
to be an equal combination of σ+ and σ− polarizations at the position of the atoms.
Due to the presence of the metallic parts of the vacuum system, a standing wave
pattern probably forms inside the chamber and the polarization at the position of
the atoms is more complicated.
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Figure 8.8: Microwave spectroscopy of |p〉. a, We optically excite the atom from |g〉 to
|d〉. After optical excitation we turn on the microwave for a duration τMW. The microwave
field couples |d〉 to |p〉. We read out the state of the system by applying a de-excitation
pulse that couples back |d〉 to |g〉 and leaves |p〉 unchanged. b, Evolution of P1 (circles)
as a function of νMW. The solid line is a fit by the formula used in Chapter 6 to fit our
single-atom optical excitation spectra (see Equation 6.8).

8.3.2 Experimental sequence

We first perform a spectroscopic measurement on a single atom to find the transi-
tion frequency to the |p〉 state. Figure 8.8a shows the experimental sequence. Our
excitation lasers couple |g〉 to |d〉, with an excitation pulse of duration tπ to prepare
the system in |d〉. We then send a pulse of microwave field (of fixed duration τMW)
that couples |d〉 to |p〉. Our detection scheme described in Chapter 6 is based on the
loss of Rydberg atoms, and does not allow to discriminate between an atom in |p〉
and an atom in |d〉. In order to read out the state of the system at the end of the
sequence, we apply a de-excitation laser π-pulse identical to the ones used during the
preparation for Rydberg excitation to |d〉. The read-out pulse couples |d〉 down to |g〉
while leaving |p〉 unchanged. We then reconstruct the probability P1 to detect fluo-
rescence at the end of the sequence. If we make the assumption that our excitation
and detection are perfect, the probability P1 thus coincides with the probability Pd
for the atom to be in the |d〉 state.

8.3.3 Microwave spectroscopy

Figure 8.8b shows the evolution of P1 as a function the absolute MW frequency νMW.
We observe the excitation spectrum of |p〉: when νMW is far from resonance, the atoms
are not affected by the microwave field, and there is a high probability of recapturing
the atoms at the end of the sequence. When the microwave field is resonant with the
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Figure 8.9: Single atom Rabi oscillation between |d〉 and |p〉. The data points
(circles) show the evolution of P1 as a function of τMW. The solid line is a fit by a sine.

transition |d〉↔ |p〉, population moves to |p〉, leading to atom losses at the end of the
sequence. When P1 is minimum, all the population has been transferred to |p〉. To
extract the position of the resonance we fit the spectrum by the Rabi formula given
in Equation 6.8 (see Chapter 6). We obtain a line centered on

νMW = 9.1316± 0.0002 GHz , (8.16)

in agreement with our theoretical expectations. The fact that the Rabi formula
reproduces well our data is an indication that, for this duration of excitation (τMW =

100 ns), the linewidth of the spectrum is essentially set by the Rabi frequency, and
that other sources of broadening (if any) are negligible. From the fit, we obtain a
Rabi frequency of:

ΩMW/(2π) = 4.5± 0.4 MHz , (8.17)

where the error bar is the one-sigma confidence interval from the fit.

8.3.4 Excitation dynamics of a single atom

We then measure the excitation dynamics of a single atom. The sequence is identical
to the one in Figure 8.8a. The frequency νMW is fixed at the position of the resonance,
and we vary the duration τMW of the microwave pulse. We measure the probability
Pi (i∈{0; 1}) to recapture or lose the atom at the end of the sequence. We observe
in Figure 8.9 the Rabi oscillation of the system, with P1 oscillating as a function
of the pulse duration τMW. For a duration of the excitation τ = τπ,MW, the transfer
of population to the Rydberg state |p〉 is maximum. We measure up to 17 Rabi
cycles with no appreciable damping, showing the coherent character of our excitation
scheme from |d〉 to |p〉. The solid line in Figure 8.9 shows a fit of the data by a
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damped sine. We make the two following observations:

• For ' 31.6 µW of MW power, we measure a Rabi frequency of:

ΩMW/(2π) = 4.560± 0.001MHz , (8.18)

which is in agreement with our estimate from Equation 8.15. This value is
in agreement with the one obtained by fitting the spectrum in Figure 8.8b,
which confirms that our spectra are power-broadened, and that other sources
of broadening (e.g. fluctuating electric fields) have a negligible impact for our
range of Rabi frequencies.

• The data also shows almost no damping, contrary to what we observed in the
case of the optical excitation. Moreover, the measured contrast of the oscilla-
tion is ' 80%, which approximately corresponds to the efficiency of our optical
excitation to the |d〉 state. Indeed, transitions in the Rydberg manifold are done
using a one-photon excitation process between two long-lived states, which frees
ourselves from spontaneous emission during the process. Our microwave source
is also stable to better than a Hz, leading to less dephasing than for the laser
excitation. As a consequence, in the rest of this Chapter, we will consider the
microwave excitation ideal.

These results therefore show our ability to coherently control the state of a single
Rydberg atom using a microwave field. We use this new feature of our setup to study
resonant dipole-dipole interaction in systems of two and three atoms.

8.4 Coherent resonant energy transfer between two

Rydberg atoms

We demonstrate experimentally the excitation of a pair of atoms to the two-atom
state |dp〉 in this Section. This state is exactly resonant with |pd〉, and the two
atoms interact resonantly. For the transition studied here, we have ∆Mtot = 0. The
dipole-dipole Hamiltonian reads

V̂dip =
1

4πε0

1

R3

(
d̂A,+d̂B,− + d̂A,−d̂B,+ + 2d̂A,0d̂B,0

)
, (8.19)

and the two atoms show a non-zero interaction at θ= 0. We concentrate on the case
where the atoms are aligned along the quantization axis. The calculated interaction
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Figure 8.10: Experimental sequence for the preparation of the pair state |dp〉.
By combining single site addressing demonstrated in Section 6.6 and microwave excitation
form |d〉 to |p〉, we are able to prepare the state |dp〉 under the condition that ~ΩL�C3/R

3.

energy is

C3 =

∣∣∣〈d| d̂+ |p〉
∣∣∣
2

4πε0

' 7965 MHz.µm3 .
(8.20)

We measure experimentally interaction energies between two atoms that are separated
by distances as large as 50 µm, which illustrates the long-range character of the
resonant dipole-dipole interaction.

8.4.1 Preparation of the system

We excite the system to the two-atom state |dp〉, in order to observe resonant inter-
actions between two atoms.

Excitation of |dp〉

Experimentally, we prepare the system by combining the microwave excitation from
|d〉 to |p〉 with single site addressing demonstrated in Chapter 6. Figure 8.10 shows
our excitation scheme. The two-atom system is initially in the state |gg〉. After
turning off the trap, we shine the addressing beam on the first atom while optically
exciting the second atom (π-pulse). The presence of the addressing beam prevents
the excitation of the first atom, allowing us to reach the state |gd〉. A microwave
π-pulse then transfers the system to the state |gp〉. We finally send a second optical
excitation pulse that couples |gp〉 to |dp〉. One can immediately notice that some care
has to be taken during this last optical pulse since |dp〉 and |pd〉 are not eigenstates of
the interacting system, as discussed in Section 8.1.2. Due to the resonant interaction
between the atoms, the eigenstates are the superposition states |+〉 and |−〉 that are
detuned from the excitation laser by a quantity C3/R

3. We intuitively understand
that the dipole-dipole interaction between the atoms influences the preparation of
the system.



8.4 Coherent resonant energy transfer between two Rydberg atoms 169

Figure 8.11: Influence of the dipole-dipole interaction on the preparation of the
state |dp〉. a, Schematic of the energy levels that enter in the preparation and how the
dipole-dipole interaction affects them (see text for details). b, Excitation probability Pdp

at the end of the preparation sequence as a function of (C3/R3) /(�ΩL), showing that for
C3/R

3� �ΩL, the preparation of the state |dp〉 is efficient (note that the horizontal axis is
logarithmic). In the experiments that follow, we have (C3/R3) /(�ΩL)≤ 0.3.

Influence of the interaction during the preparation

Figure 8.11a shows a diagram of the energy levels and couplings during the last
preparation step. We assume that all the population has been placed in the state
|gp〉 thanks to the first two steps of the preparation. The excitation lasers then couple
|gp〉 to |dp〉 (and |pg〉 to |pd〉) with a Rabi frequency ΩL. As we are trying to excite
the system, the states |dp〉 and |pd〉 are also coupled by the dipole-dipole interaction,
of strength C3/R

3. As a consequence, the interaction affects the preparation of the
state |dp〉. Three different regimes can be identified:

• When C3/R
3 � �ΩL, the linewidth of the excitation laser is smaller than the

frequency shifts of the states |+〉 and |−〉 that are due to the resonant dipole-
dipole interaction. As a consequence, the excitation lasers can not couple to
|+〉 or |−〉, and the preparation of the system is blockaded.

• When C3/R
3 � �ΩL, the laser linewidth is bigger than the separation between

the states |+〉 and |−〉 allowing to couple efficiently to the |dp〉 component of
the states |+〉 and |−〉. The interaction dynamics can be considered frozen
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during the optical excitation, which allows us to prepare the state |dp〉 with a
good fidelity.

• When C3/R
3' ~ΩL, the duration of the optical excitation (tπ = π/ΩL) is com-

parable to the interaction time needed by the system to evolve from |dp〉 to |pd〉
under the influence of the resonant dipole-dipole interaction. As a result, we
excite a superposition of the states |dp〉 and |pd〉.

As a consequence, we will try to prepare the system in the regime where C3/R
3� ~ΩL.

Simulation of the preparation

We estimate the influence of the dipole-dipole interaction on the fidelity of our prepa-
ration scheme, by solving the Schrödinger equation for the four-level system in Fig-
ure 8.11a. In the basis {|gp〉 ; |pg〉 ; |dp〉 ; |pd〉}, the total Hamiltonian reads

Ĥ = ~




0 0 ΩL/2 0

0 0 0 ΩL/2

ΩL/2 0 0 C3/R
3

0 ΩL/2 C3/R
3 0




. (8.21)

We assume that the first two steps of the preparation (optical pulse and microwave
pulse) are perfect since their limitations have nothing to do with the dipole-dipole
interaction, meaning that initially Pgp = 1. We use an optical Rabi frequency ΩL =

2π × 5 MHz that corresponds to our typical experimental parameters. Figure 8.11b
shows the probability Pdp of having excited |dp〉 at the end of the preparation sequence
as a function of (C3/R

3) /(~ΩL). When (C3/R
3) /(~ΩL)≤ 0.1, we prepare |dp〉 with

an efficiency > 95%. For (C3/R
3) /(~ΩL)≥ 1 we prepare a superposition of the four

states {|gp〉 , |pg〉 , |dp〉 , |pd〉}, leading to a more complicated situation.

8.4.2 Interaction Dynamics of a two-atom system at

resonance

Once in the state |dp〉, the two-atom system evolves freely under the influence of the
dipole-dipole interaction. Because the system is at resonance, we expect it to evolve
back and forth between the states |dp〉 and |pd〉 at the frequency fosc = 2C3/(hR

3)

(see Equation 8.8).
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Figure 8.12: Experimental sequence for measuring the interaction dynamics.
After preparing the system as described in Section 8.4.1, we let the system interact for a
duration τ . We finally read out the state of the system.

Full experimental sequence

We use the experimental sequence shown in Figure 8.12, in order to observe these
dynamics experimentally. After preparing the system as described in the previous
paragraph, we let the system evolve for a duration τ . At the end this interaction time,
we read out the state of the system. We apply a de-excitation laser π-pulse identical
to the ones used during the preparation for Rydberg excitation to |d〉. The read-out
pulse couples |dp〉 to |gp〉 (|pd〉 to |pg〉). Note that identically to what happens during
the preparation, the system still interacts during the read-out pulse. However, as
long as we are in the situation ~ΩL�C3/R

3, we can assume that the dipole-dipole
interaction dynamics are frozen during the read out pulse (see Figure 8.11). We
repeat the sequence ' 100 times to reconstruct the probabilities Pij (i, j ∈{0; 1})
after the read out. Assuming perfect Rydberg excitation, the probabilities P10 and
P01 measured at the end of the sequence would coincide with the populations in Pdp
and Ppd.

Experimental results

Figure 8.13a shows the measured evolution of P10 and P01 as a function of τ for
different distances R ranging from 17.5 µm up to 50.1 µm. We observe the oscillations
of P10 and P01, a consequence of the excitation hopping between the pair states |pd〉
and |dp〉. The oscillation frequency depends on the distance R between the atoms,
which confirms that we are witnessing the interaction-induced energy transfer between
two particles. The presence of only two-atoms at a controlled distance is fundamental
to the observation of the coherence of the energy transfer. In other systems, only
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Figure 8.13: Coherent excitation transfer between two atoms. a, Experimental
data for P10 (blue) and P10 (red) for two Rydberg atoms separated by a distance R as
a function of interaction time τ . The solid lines are fits to sines. b, Simulation of the
interaction dynamics solving the Schrödinger equation, where the first two steps of the
preparation are supposed to be perfect (see Section 8.4.3).
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Figure 8.14: Experimental determination of C3. Double logarithmic plot of the fitted
oscillation frequency fosc as a function of the distance R. To obtain the oscillation frequency,
we fit P10 and P10 by damped sines of the form P (τ) =A+Be−γτ cos (2πfosc(τ − τ0)). The
error bars represent the 1σ confidence interval on the fit. The solid line is a fit by a power
law, which gives a fitted exponent of −2.93± 0.16.

indirect effects of this coherence could be observed [Nipper et al. (2012a,b)], due to
the distribution of interatomic distances that scrambles the interaction dynamics6.

For a distance as large asR= 50.1 µm, we observe that the p-excitation has hopped
from one site to the other after ' 3.95±0.20 µs. This corresponds to an oscillation at
the frequency fosc = 126±6 kHz, in excellent agreement with the expected oscillation
at the frequency 2C3/R

3 = 126.4 kHz. The possibility to measure a ' 100 kHz inter-
atomic interaction for distances as large as ' 50 µm illustrates well the strength of
the resonant dipole-dipole interaction. It contrasts with the case of the van der Waals
interaction studied in Chapter 7 for two atoms in the state 82D3/2. Despite the fact
that an atom in the state

∣∣82D3/2

〉
has an electric dipole nearly twice as large as an

atom in the state 62D3/2, a 50 µm separation distance in Chapter 7 would have led to
an interaction energy smaller than 1 kHz that we cannot resolve experimentally. In
the present situation, the interaction is two orders of magnitude larger. In principle,
one could observe coherent energy transfer for even larger distances. Currently, our
limitations come from the finite size of our excitation laser beams which prevents
efficient laser excitation for larger interatomic distances, and temperature effects that
lead to large atom losses for long interrogation times (τ ≥ 8 µs), as we will discuss in
Section 8.6.
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Measurement of the C3 coefficient

When we decrease R, we observe that the oscillation frequency increases. Figure 8.14
shows a double logarithmic plot of the fitted oscillation frequency as a function of
the distance R. The data features a power-law behavior of exponent −2.93 ± 0.16,
in excellent agreement with the expected R−3 behavior. Fixing the exponent to −3,
we determine C3 experimentally:

C3 = 7.95± 0.11 GHz ·µm3 , (8.22)

where the error represents one standard deviation confidence interval in the fit. Note
that we also have a systematic 5% uncertainty on the determination of R. This value
is also in very good agreement with the expected value C3,th = 7.97 GHz ·µm3.

8.4.3 Simulation of the dynamics

Experimentally, we measure oscillations with a contrast of about 60%. If the prepa-
ration and detection were perfect, we would expect a 100% contrast. To get more
insight into what actually limits us, we simulate the interaction dynamics of the sys-
tem. For this simulation, we assume that the first optical and microwave transfers to
Rydberg states during the preparation are perfect. This allows us to restrict ourselves
to the four-level system {|gp〉 , |pg〉 , |dp〉 , |pd〉} in Figure 8.11, with Pgp = 1 for initial
condition. The system is described by the Hamiltonian of Equation 8.21, where we
include in the simulation the laser excitation pulse from |gp〉 to |dp〉 and the read-out
pulse that are separated by a varying interaction time τ .

Figure 8.13b shows the result of simulations obtained by solving numerically the
Schrödinger equation for the four levels:

• For large separation distances between the atoms (R≥ 30 µm), we observe that
the simulation shows an almost 100% transfer from |dp〉 to |pd〉. This is expected
since we have considered the case of ideal optical and microwave excitations (see
Equation 8.8). For large distances, the observed reduction of the contrast in
the measured oscillations is thus mainly due to technical limitations during the
preparation and the read out, as we will detail in Section 8.4.4.

6In studies performed with disordered systems, the presence of an ensemble of atoms with dis-
ordered positions washes out the back and forth transfer of the excitation, leading to the diffusion
of the excitation [Anderson, Veale, and Gallagher (1998); Mourachko et al. (1998); Günter et al.
(2013)]. Those studies, in connection with Förster resonances will be discussed in Chapter 9.
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• For smaller separation distances between the atoms (T ≤ 30 µm), we observe
in Figure 8.13b that the contrast of the simulated oscillations is lower than
100%. We also observe the presence of a phase shift and some beating in the
simulated oscillations as we decrease the interatomic distance. Since we have
considered our optical and microwave excitations perfect, these effects can only
be related to the presence of the dipole-dipole interaction during the preparation
and read out. Indeed, for the smallest distances used here we are close to the
regime ~ΩL∼C3/R

3 where the dipole-dipole interaction affects the preparation
and read out as explained in Section 8.4.1. We will detail those limitations in
Section 8.4.5.

As a consequence, we observe that several effects contribute to the reduction of the
contrast. In what follows, we first discuss the technical limitations that affect the
contrast independently of the interatomic distance. We then discuss the effects that
are specific to small interaction distances and that are due to the dipole-dipole inter-
action.

8.4.4 Origin of the reduced contrast

We measure that, for large distances, the contrast of the measured oscillations is of
the order of ' 60%, which is smaller than the expected 100% contrast. This shows
that the system has been placed in states that do not take part in the interaction
dynamics, with a ' 40% probability. Those imperfections in the preparation of |dp〉
are mainly due to dissipation, that reduces the optical excitation of an atom from |g〉
to |d〉 as discussed in Chapter 6.

Influence of dissipation

Our optical Rydberg excitation from |g〉 to |d〉 is limited by dissipation due to spon-
taneous emission, and by some dephasing due to fluctuations in our laser system (see
Chapter 6). On the other hand, we have shown in Section 8.3.4 that the microwave
excitation could be considered ideal, due to the fact that we only couple long-lived
states and also due to the stability of our microwave source. An independent mea-
surement of the microwave single-atom Rabi oscillation from |d〉 to |p〉 shows a ' 80%

contrast, which indicates that we have optically excited the |d〉 state with a ' 0.8 ef-
ficiency. As a consequence, our preparation of the state |dp〉 is limited. At the end
of the preparation, we estimate the population in |dp〉 by calculating the product of
the different transfer efficiencies:
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Pdp =Pgg→gd Pgd→gp Pgp→dg' 0.8× 1.0× 0.8 = 0.64 . (8.23)

This number shows good agreement with our experimental observations.

Offset between the two curves

Experimentally, we also observe that the curve P10 shows an offset with respect to the
curve P01. As mentioned earlier, our read out procedure does not allow to measure
Pdp and Ppd directly. During the read out pulse, different transitions between pair
states can contribute to P10 and P01. The measured probabilities are the sum of the
transitions probabilities:

P10 =Pdp→gp + Pgp→gp + Pgd→gd + Pdg→gd + Pgg→gd + Pdd→gd ,

P01 =Ppd→pg + Ppg→pg + Pdg→dg + Pgd→dg + Pgg→dg + Pdd→dg .
(8.24)

The first term (in red) in each sum of Equation 8.24 (Pdp→gp and Ppd→pg) is the
oscillating term that corresponds to the interaction dynamics we want to measure. All
the other terms are small contributions to P01 and P10, that are due to imperfections in
our optical excitation. The contributions in black are of the same order of magnitude,
of the order of a few percent. However, due to the way we prepare the system,
the terms in blue (Pgp→gp and Ppg→pg) are not of the same order. Indeed, since we
specifically excite the second atom to |p〉 using our addressing beam, some population
can remain in |gp〉, due to spontaneous emission during the last optical excitation
pulse of the preparation. However, exciting the system in |pg〉 is extremely unlikely.
As a consequence, Pgp→gp>Ppg→pg and the P10 is shifted with respect to P01.

8.4.5 Influence of the interaction during the preparation for

smaller distances

We observe experimentally, for our smallest values of R (R= 20.6 µm and R=

17.5 µm), that the contrast of the oscillations is further reduced and that the os-
cillations start with a non-zero phase. These features can also be observed on the
simulated oscillations and are due to the dipole-dipole interaction itself as discussed
earlier (see Figure 8.13b). In order to deconvolve those effects from the more tech-
nical limitations discussed in Section 8.4.4, we consider here that the optical and
microwave excitations are perfect, and that we can place 100% of the population in
|gp〉 after the microwave excitation.
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Phase shift of the oscillations

For R≤ 30 µm, we enter in the regime ΩL∼C3/R
3 where the interaction dynamics

between the atoms cannot be considered frozen during the preparation of the system
(see Figure 8.11). Some transfer of population from |dp〉 to |pd〉 occurs during the
preparation itself, which translates to a phase shift in our measurement since the
dynamics have already started at τ = 0 µs.

Further reduced contrast

Another effect related to the interaction during the preparation and readout affects
the dynamics of the system. During those steps, the excitation light is indeed detuned
from the states |+〉 and |−〉 by a quantity C3/R

3 as already mentioned earlier in
Section 8.4.1. Our excitation scheme leads to the excitation of a superposition of
the states {|dp〉 ; |gp〉 ; |pd〉 ; |pg〉}. The fact that we do not place all the population
in |dp〉 leads to the reduction of the contrast of the oscillations. Since we keep the
Rabi frequency constant in those experiments, the effect is more noticeable for small
interatomic distances, where the interaction is larger.

Beating in the oscillations

Another consequence of the off-resonant excitation to |dp〉 can be seen in Figure 8.13b.
For R= 20.6 µm and R= 17.5 µm, we observe some beating in the interaction dy-
namics of the two-atom system, which reveals the presence of an extra frequency
component in the oscillations. This is an interference effect occurring between the
last preparation pulse and the read out pulse due to the fact that the excitation
laser is detuned with respect to the transition between the states |dp〉 and |+〉 (and
similarly |dp〉 and |−〉) by a frequency C3/(hR

3). As a result, during the interaction
time τ , the two states accumulate a relative phase ∆φ (in the frame rotating at the
frequency of the laser):

∆φ=
C3

R3

τ

~
. (8.25)

As a result, upon reading out the state of the system, an interference effect similar
to the one observed in a Ramsey sequence occurs7. This leads to a modulation of the
measured populations at a frequency C3/(hR

3), on top of the expected oscillation at
frequency C3/(2hR

3).

7The difference with a Ramsey sequence is that our preparation and read-out pulses are π-pulses
and not π

2 -pulses. As a consequence, the amplitude of the modulation is not maximal.
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Note that this interference effect is a “one-atom” effect that differs fundamentally
from the interaction dynamics we are interested in. We illustrate this point by show-
ing that the same effect arises when exciting a single atom from |g〉 to |d〉 with the
excitation laser detuned from the transition by a frequency C3/R

3. At resonance,
one can theoretically excite the atom to |d〉 with a 100% probability by shining an
excitation pulse of duration tπ on the atom. Here, we shine an excitation pulse of
duration tπ on the atoms, but the laser excitation is detuned from the transition, and
we excite a superposition:

Ψ1at(tπ) =α |g〉+ β |r〉 , (8.26)

where α and β are coefficients given by the Rabi formula, that depend on the Rabi
frequency and the detuning. We then wait for a variable duration τ , during which
the atom and the laser accumulate a phase ∆φ:

Ψ1at(tπ + τ) =α |g〉+ βei∆φ |r〉 . (8.27)

The state becomes, after shining the second laser pulse:

Ψ1at(2tπ + τ) = α(α |g〉+ β |r〉) + βei∆φ(α |r〉 − β |g〉)
= (α2 − β2ei∆φ) |g〉+ αβ(1 + ei∆φ) |r〉 .

(8.28)

The final probability Pg to find the atom in |g〉 depends on ∆φ, and on τ :

Pg =
∣∣α2 − β2ei∆φ

∣∣2 =α4 + β4 − 2α2β2 cos (∆φ) . (8.29)

Finally, in our situation of two interacting atoms, this interference occurs between the
last excitation pulse and the read out pulse. As a consequence, a small modulation
at the frequency C3/(hR

3) adds up on top of the interaction dynamics, which results
in some beating. Fortunately, in the regime ΩL�C3/R

3, we theoretically excite |dp〉
with a fidelity > 95% (see Section 8.4.1) the amplitude of this extra modulation re-
mains small compared to the amplitude of the interaction dynamics we are interested
in.

Working with smaller distances

We have seen here that working with distances smaller than 20 µm exposes us to
parasitic effects that perturb the interaction dynamics of the two-atom system. In
the limit ΩL�C3/R

3, the excitation of the system is even blockaded, preventing
the preparation of the system. In principle, working with smaller distances would
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be possible as long as we have enough available laser power to increase the Rabi
frequency ΩL. However, more laser power leads to more spontaneous emission during
the preparation, and a decreased contrast. For the states

∣∣62D3/2

〉
and

∣∣61P1/2

〉

studied in this Chapter, we can hardly work with smaller interatomic distances. In
order to extend this kind of study to large arrays of atoms (which necessarily means
smaller interatomic distances), a better option would be to chose states that show a
smaller dipole-dipole coupling (a smaller C3 coefficient).

8.4.6 Creation of entanglement

Let us call |Ψ(t)〉 the state of the interacting two-atom system. Ideally, during the
interaction time, the state of the two-atom system |Ψ(t)〉 evolves under the influence
of the dipole-dipole interaction Hamiltonian, so that:

|Ψ(τ)〉= 1√
2

(
exp (iE+τ) |+〉+ exp (iE−τ) |−〉

)

= cos

(
1

~
C3

R3
τ

)
|dp〉+ i sin

(
1

~
C3

R3
τ

)
|pd〉 .

(8.30)

After a time τEnt = π~R3/(4C3), the system has evolved to the entangled state8

Ψ(τEnt) = (|dp〉+i |pd〉)/
√

2. This offers a way to produce entanglement in our system.
The full characterization of this entangled state requires to measure the fidelity of this
entanglement procedure [Wilk et al. (2010)] by applying rotations on the state. Such
a measurement was not possible to perform in the current status of the experiment.

8.5 Coherent resonant energy transfer in a chain of

Rydberg atoms

We have observed the coherent energy transfer of an excitation between two single
atoms. In this Section, we study the propagation of an excitation along a three-atom
chain.

8.5.1 Linear chain of three Rydberg atoms

To get some insight into the propagation of an excitation in a three-atom spin chain,
we first generalize the simple approach of Section 8.4 to the case of three atoms

8Note that one needs to stop the evolution after τEnt. One possibility is to apply a read out pulse
so as to map this state down to the state (eik ·RA |gp〉+ ieik ·RB |pg〉)/

√
2.
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Figure 8.15: Propagation of an excitation along a chain of three Rydberg atoms.
The system is initially prepared in the state |dpp〉. A calculation of the evolution of the
system under the influence of Ĥint is shown. We observe the oscillations of the probabilities
Pdpp, Ppdp and Pppd, as a consequence of the hopping of the d-excitation from site to site.
The observed beating is due to the presence of several frequency components, resulting from
the interplay of nearest and next-nearest neighbor interaction.

in a line. The separation distance between two neighboring atoms is chosen to be
R= 20.5 µm. The distance between the two outermost atoms is 2R= 41 µm for
which we have also demonstrated the coherent oscillation in the case of two atoms in
Fig 8.13a.

Hamiltonian of the system

We consider one d-excitation propagating in a chain of atoms in the state |p〉. Con-
servation of the excitation number allows to restrict the study to the three states
|dpp〉, |pdp〉 and |ppd〉 which are degenerate in energy. Those levels are resonantly
coupled by the dipole-dipole interaction, and the interaction Hamiltonian reads
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Ĥint =h
C3

R3
(|dpp〉 〈pdp|+ |pdp〉 〈dpp|) + h

C3

R3
(|pdp〉 〈ppd|+ |ppd〉 〈pdp|)

+ h
C3

(2R)3
(|dpp〉 〈ppd|+ |ppd〉 〈dpp|) .

(8.31)

The factors C3/R
3 in front of the first two terms correspond to the nearest-neighbor

interaction. The factor C3/(2R)3 in front of the last term is the next-nearest-neighbor
term. The interaction between the two outermost atoms is eight times smaller than
the interaction between two neighboring atoms:

Ĥint =h
C3

R3




0 1 1/8

1 0 1

1/8 1 0


 . (8.32)

The diagonalization of Ĥint gives the eigenvalues λ1, λ2 and λ3:




λ1 = h
C3

R3

1

16

(
1 + 3

√
57
)

λ2 = h
C3

R3

1

16

(
1− 3

√
57
)

λ3 = −hC3

R3

1

8
.

(8.33)

The dynamics of the three-atom system is governed by the three different frequency
components λ1−λ2, λ2−λ3 and λ1−λ3, which are incommensurate. As a consequence,
the evolution of the populations is aperiodic and results from the beating of those
frequency components. For an interatomic separation R= 20.5 µm in the experiment,
we expect the following frequency components:





ν1 = 2.62 MHz

ν2 = 1.48 MHz

ν3 = 1.14 MHz .

(8.34)

Simulation of the three-atom system

Figure 8.15 shows the result of the numerical simulation of this system. We solve
the Schrödinger equation for the Hamiltonian Ĥint, where we suppose that all the
population is initially in |dpp〉. The curves Pdpp, Ppdp and Pppd exhibit an oscilla-
tory behavior as the d-excitation is transferred from site to site. After ' 0.2 µs, the
system has evolved from the state |dpp〉 to a state very close to |ppd〉, showing the
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Figure 8.16: Energy transport along a chain of three Rydberg atoms. We prepare
the system in the state |dpp〉. The evolution of the system after excitation is shown. We
observe the oscillations of the populations P100, P010 and P001, a consequence of the hopping
of the d-excitation.

transfer of the d-excitation between the two outermost sites located 41 µm away.
Note that this transfer time is much faster than the one measured in the case of only
two atoms separated by 41 µm (' 2 µs in Figure 8.13), as the middle atom mediates
the energy transfer, with Ppdp showing fast oscillations between 0 and 1/2. We also
observe that the probabilities Pdpp and Pppd are aperiodic and show the presence of
multiple frequency components resulting from the modulation of the energy trans-
fer by a slowly varying envelope. This beating is an other clear illustration of the
long-range character of the resonant dipole-dipole interaction, where the interplay be-
tween the couplings C3/R

3 and C3/(2R)3 makes the eigenvalues of the Hamiltonian
incommensurate, leading to the observed aperiodic behavior.
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8.5.2 Experimental implementation

The experimental sequence used for the implementation of the three-atom spin chain
is similar to the one presented in Figure 8.12 for two atoms.

Experimental sequence

To prepare the system in |dpp〉 we start by addressing the first atom in order to op-
tically excite the state |gdd〉. The large separation distance between two neighboring
atoms (R= 20.5 µm) ensures that the excitation to |gdd〉 is not blockaded by the van
der Waals interaction between the two atoms in |d〉 (their van der Waals interaction
is ' 10 kHz, much smaller than the optical Rabi frequency). We then transfer the
system to the state |gpp〉 using a microwave pulse and we finally optically excite the
first atom to reach the state |dpp〉. After an interaction time τ , we read out the state
of the system by applying an optical pulse that couples |d〉 back to |g〉. We repeat
the sequence ' 100 times to reconstruct the probabilities Pijk (i, j, k∈{0; 1}). As-
suming perfect excitation and read out, the probabilities P100, P010 and P001 coincide
with Pdpp, Ppdp and Pppd.

Experimental results

Figure 8.16 shows the experimental measurement of P100, P010 and P001. We observe
a qualitative agreement with the behavior observed in Figure 8.15, in particular the
transfer of the D-excitation as a function of time, with P100 and P001 reaching suc-
cessive maxima and minima. We also observe the beating that is the signature of the
long-range interaction. A sum of the Fourier transforms of P100, P010 and P001 gives
the spectrum shown Figure 8.17. As expected, we clearly see the presence of three fre-
quency components in the dynamics of the system. The measured frequencies agree
to better than 6% with the ones expected from the diagonalization of Ĥint. Discrep-
ancies probably come from a systematic error on the calibration of the interatomic
distance.

Limitations

We finally observe that the contrast of the measured oscillations is smaller than
the theoretical one. This is expected since we are subject to the same limitations as
discussed in the two-atom case. Dissipation during the optical excitation due to spon-
taneous emission limits our excitation efficiency. Moreover, the preparation is also af-
fected by the resonant dipole-dipole interaction since C3/R

3∼ ~ΩL (see Section 8.4.1),
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Figure 8.17: Sum of the Fourier transforms of P100, P010 and P001. The Fourier
transform shows the presence of three frequency components in the dynamics of the system.
Those frequencies agree well with the expected ones, marked with red dashed lines.

which leads to some significant population in |pdp〉 as soon as the oscillation starts.
We also observe the presence of some damping, which becomes significant beyond an
interaction time of ∼ 4 µs. This effect essentially comes from the finite temperature
of the atoms, which leads to changes in the distances between the atoms, and thus in
the couplings from run to run. To go beyond this qualitative understanding of our
limitations, we study the system in detail in the next Section, by incorporating all
the known imperfections in the simulation.

8.6 Full numerical simulation of the three-atom

system

We investigate the different contributions of the effects leading to the reduced contrast
and the damping of the oscillations, by performing a simulation including all the
known imperfections of the experiment. For each atom, we consider the three states
{|g〉 , |d〉 , |p〉} and we include all the steps of the experimental sequence, from the
preparation to the final read out.

8.6.1 Hamiltonian of the system

In the presence of both the laser and the microwave fields, and in the rotating wave
approximation, the one-atom Hamiltonian for atom i is:
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Ĥi = ~




0 Ω
(i)
L /2 Ω

(i)
MW/2

Ω
(i)
L /2 δ

(i)
L 0

Ω
(i)
MW/2 0 δ

(i)
L + δ

(i)
MW


 (8.35)

where Ω
(i)
L is the optical Rabi frequency and Ω

(i)
MW is the microwave Rabi frequency

for atom i. δ
(i)
L is the detuning of the laser frequency from the optical transition

|g〉→ |d〉, and δ
(i)
MW is the detuning of the microwave frequency from the transition

|d〉→ |p〉. Slight variations of Rabi frequencies Ω and detunings δ can occur from site
to site due to inhomogeneities in the excitation fields. In practice, we measure all
these parameters experimentally:

• Independent measurements of δ(i)
MW and Ω

(i)
MW performed on each atom taken in-

dividually gave results that are identical to better than a percent, showing that
microwave field inhomogeneities can be neglected. In the rest of this Chapter,
we consequently consider Ω

(i)
MW = ΩMW and δ(i)

MW = 0.

• As for the laser excitation, the finite extension of the laser Gaussian beams leads
to non-negligible inhomogeneities in Ω

(i)
L and δ

(i)
L (which takes into account

the light shifts), especially when working with large distances. We measure
independently the laser detunings δ(i)

L and the single-atom Rabi frequencies Ω
(i)
L

by performing a spectroscopic measurement of the Rydberg line and the Rabi
oscillation on each atom taken individually (see Section 6.3).

The Hamiltonian describing the coupling of the light and microwave field to the atoms
reads, in the N -atom case:

ĤL + ĤMW =
∑

i

~Ω
(i)
L

2
(σ̂

(i)
dg + σ̂

(i)
gd ) +

~ΩMW

2
(σ̂

(i)
pd + σ̂

(i)
dp ) + ~δ(i)

L (σ̂
(i)
dd + σ̂(i)

pp ) , (8.36)

and the interaction Hamiltonian is given by:

Ĥint =
h

2

∑

i6=j

C3

R3
i,j

(σ̂
(i)
pd σ̂

(j)
dp + σ̂

(i)
dp σ̂

(j)
pd ) , (8.37)

where σ̂(i)
ll′ =

∣∣l(i)
〉 〈
l′(i)
∣∣ are transition and projector operators for atom at site i, where

l and l′ can take the values g, d and p. The total Hamiltonian of the system is:

Ĥtot = ĤL + ĤMW + Ĥint . (8.38)
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8.6.2 Imperfection of the state preparation

Similarly to what we described in Section 8.4.1, the presence of the interaction during
the last preparation step and the read out affects the measured interaction dynam-
ics. In this experiment, we work with an optical Rabi frequency ΩL/(2π)' 5 MHz

providing short optical pulses (tπ' 100 ns), while keeping a reasonable level of spon-
taneous emission. For the interatomic distance used here (R= 20.5 µm), we have
C3/R

3' ~ΩL/(10π), which places us in the regime where the interaction dynamics
due to the dipole-dipole interaction has already started during the last excitation and
read out pulses. This shows up in the data as a phase in the oscillations, since, at
τ = 0, some population has already been transferred from |dpp〉 to |pdp〉9. To model
this effect, we include in the simulation the full experimental sequence, from the
beginning of the preparation to the final read out pulse.

8.6.3 Optical Bloch equations

Another source of imperfections in our system is dissipation. As discussed in Chap-
ter 6, dissipation mainly comes from spontaneous emission through the intermediate
state

∣∣5P1/2

〉
during the optical pulses and fluctuations in the laser system. Fig-

ure 8.16 shows interaction times as long as τ = 7 µs, and therefore we also take the
finite lifetime of Rydberg states into account. We include those effects in the simula-
tion as a single decay channel to the state |g〉, by solving the optical Bloch equations
(see in Section 6.4.2).

Dissipator

To account for experimental damping γ(i) of the single-atom oscillations mainly due to
off-resonant spontaneous emission through the intermediate state

∣∣5P1/2

〉
(see Chap-

ter 6), we add a sum of independent single atom dissipators:

L[ρ] =
1

2

∑

i

γ(i)(2σ̂
(i)
gdρσ̂

(i)
dg − σ̂

(i)
ddρ− ρσ̂

(i)
dd ) , (8.39)

where the parameters γ(i) and similarly are obtained independently from single-atom
measurements. Typical values are 1/γ(i)∼ 1 µs. To account for the finite lifetime of
the Rydberg states, we add the sum of dissipators

9Our optical pulse is short enough to avoid any transfer to the third resonant state |ppd〉 at τ = 0.
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Figure 8.18: Solution of the Bloch equations for a three-atom chain. The curve
shows the evolution of the population P001 as a function of the interaction time. The
limited preparation efficiency and the dissipation lead to a reduction of the amplitude of
the oscillations.

L[ρ] =
1

2

∑

i

γd(2σ̂
(i)
gdρσ̂

(i)
dg − σ̂

(i)
ddρ− ρσ̂

(i)
dd ) + γp(2σ̂

(i)
gp ρσ̂

(i)
pg − σ̂(i)

pp ρ− ρσ̂(i)
pp ) . (8.40)

where we use the effective values 1/γd∼ 101 µs and 1/γp∼ 135 µs given in [Beterov
et al. (2009)]10.

Results of the simulation

Figure 8.18 shows the result of the simulation for three atoms with a 20.5 µm sep-
aration between each atom (see Section 8.5). The only input of the simulation are
the parameters Ω

(i)
L , δ(i)

L , γ(i) and ΩMW obtained independently from single-atom
measurements. The probability P001 shows the expected oscillating behavior, with
successive collapses and revivals in the dynamics. Compared to Figure 8.15 where
no dissipation was included, the effect of the dissipation is to reduce the contrast of
the oscillation. Indeed, dissipation during the preparation limits the efficiency of the
preparation in |dpp〉, which thus reduces the contrast of the oscillations. For short
interaction times, the simulation fits reasonably well the data. However, for larger
interaction times, the simulation does not reproduce the damping of the oscillation
observed experimentally.

10Note that those values are large compared to the maximal duration of the sequence ≤ 8 µs. As
a consequence, for the number of atoms used here and on the timescale of this experiment, the effect
of the Rydberg states lifetimes is small.
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8.6.4 Finite temperature of the atoms

The damping observed experimentally essentially arises from this dephasing due to
the finite temperature of the atoms of ' 50 µK. Indeed, every time we repeat the
experiment, the atoms are randomly distributed inside the traps. The interatomic
distance and the coupling between the atoms changes slightly. This effect alters the
interaction strength between the different states during the experiment, and an effec-
tive damping of the observed oscillation thus arises from the averaging of oscillations
with different frequencies.

Fluctuating interatomic distances

Under the assumption of thermal equilibrium, the distribution of positions of an atom
of massm in an harmonic trap of radial trapping frequency ω is a Gaussian of standard
deviation

√
kBT/(mω2). With a radial trap frequency of ωr/(2π)' 86.5 kHz and a

temperature of 50 µK (see Chapter 6), the spreads of the initial positions of an atom
are approximately, in the radial directions, σz =σy' 120 nm. In the simulation, we
only consider the displacements along the z-axis, since they contribute the most to the
variation of the interatomic distance R. Small displacements along the other axes only
contribute to second order to the variation of R, as long as R is large compared to the
standard deviations σx and σy. This is verified experimentally since σy' 120 nm�R

and σx =
√
kBT/(mω2

x)∼ 1 µm�R. As a consequence, the distribution of distances
between two atoms is a Gaussian centered on R, of standard deviation

σR =
√

2

√
kBT

mω2
r

. (8.41)

Thermal velocity of the atoms

The thermal velocity of an atom is, at a 50 µK temperature:

vth =
√
kBT/m' 70 nm.µs−1 . (8.42)

The traps are turned off during the interaction time, and therefore the position of
the atom varies during the sequence. During its free flight, the atom undergoes a
displacement vzt along the z-axis, where the distribution of velocities vz is a Gaussian
centered on 0, of standard deviation vth.
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Figure 8.19: Evolution of the interatomic distance during the sequence. We plot
the influence of the finite temperature of the atoms due to shot-to-shot fluctuations of the
initial positions (green line) and due to the thermal velocity of the atoms (red curve). The
effect of interatomic forces is shown in blue, for a separation distance R= 20.5 µm. For
the durations τ we used experimentally (τ < 7 µs), the forces between the atoms can be
neglected.

Forces between the atoms

Because of their finite temperature, the atoms move when the trap is turned off
during the experimental sequence. In order to follow their trajectories, one needs to
consider interatomic forces that are due to the interaction. Here, we use a classical
model to estimate the effect of the force. A full quantum treatment is complicated
since the forces are only present when the atoms are in the Rydberg state, which
leads in general to entanglement between external and internal degrees of freedom of
the atoms. The force between the atoms derives from the interaction energy:

Fdip =− d

dR

(
h
C3

R3

)
=

3h

R

C3

R3
. (8.43)

The equation of motion reads:

µ
d2R

dt2
= 3h

C3

R4
, (8.44)

where the reduced mass µ is equal to half the mass of 87Rb. The blue curve in
Figure 8.19 shows the solution of Equation 8.44 for two atoms separated by 20.5 µm

and with a zero initial velocity. The variation of the interatomic distance δR is
represented as a function of the time t. For comparison, we also represented the
typical fluctuations of the initial positions σR (green line) and the typical displacement√

2vtht due to the thermal velocity of the atoms during the free flight (red line).
The graph shows that for our sequence durations the effect of the forces can be
neglected compared to the thermal effects. For τ = 7 µs, the maximal duration used
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Figure 8.20: Effect of the finite temperature of the atoms. Simulated probability
P001 for traps that are separated by 20.5 µm. The black dashed line corresponds to T = 0.
The solid red line corresponds to T = 50 µK, giving a dispersion on the initial positions of
the atoms ∼ 120 nm and a rms velocity of ∼ 7 cm/s.

experimentally, forces between the atoms induce a δR as low as 30 nm, whereas the
thermal effects induce variations of a few hundreds of nm in the interatomic distance.
In what follows we neglect the effects due to forces between the atoms.

Model

A more accurate description of the system requires to take into account in the simu-
lation the variations of interatomic distances between the atoms between and during
each shot:

R(t) =R + ∆z0 + ∆vzt , (8.45)

where ∆z0 is a random variable of Gaussian distribution centered around 0 with
standard deviation σR, and ∆vz is a random variable of Gaussian distribution cen-
tered around 0 with standard deviation

√
2vth. We draw initial positions and initial

velocities and solve the optical Bloch equations as in Figure 8.18. We average the
calculated populations over 100 realizations of the simulation. We observe in Fig-
ure 8.20 that the effect of the temperature shows as a damping in the oscillations of
P001. The effect becomes important after an interaction time of ' 4µs, which agrees
well with the experimental observations.

8.6.5 Detection errors

Finally, the detection errors need to be taken into account (see Section 6.4.3). Some
atoms leave the trapping region during the experiment and are detected as a lost
independently of their actual state. Because of our loss-based detection scheme,
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Figure 8.21: Measurement of the detection error ε(τ). a, The data points show the
evolution of the populations P111, P011 + P101 + P110, P001 + P010 + P100 and P000 when we
switch of the trap for a variable duration of time. The dashed line is a polynomial fit of
P111, from which we extract ε(τ). b, Extracted ε(τ) from the measured probabilities.

there exists a probability to falsely detect an atom to be in Rydberg state state. As
discussed earlier, this effect arises from the finite temperature of the atoms and also
from collisions with background gas. As a consequence, detection errors increase with
the length of the sequence. In Chapter 6, we measured an ε' 5% detection error for
experimental sequences that are shorter than ' 4 µs. Here, we switch off the trap for
durations which are as large as τ = 7 µs, and it is thus necessary to take into account
the variation of ε as we increase the duration of the sequence.

Measurement of ε(τ)

We perform a release and recapture experiment to measure ε(τ). We trap three
ground state atoms in a line, in the same configuration as in Section 8.5 (20.5 µm

separation distance between the atoms). We switch the trap off for a variable du-
ration τ and we measure the recapture probabilities at the end of the sequence (see
Figure 8.21). We extract ε(τ) from a polynomial fit of the measured P111 (see dashed
line in Figure 8.21a), where

P111 = (1− ε(τ))3 . (8.46)
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Figure 8.22: Effect of the detection errors on the simulation for the three atom
chain. The solid curve shows the solution of the Bloch equations for the population P001

as a function of the interaction time τ , the detection error ε(τ) is taken in to account. For
comparison, the dashed line shows P001 obtained from the optical Bloch equations only.

Using the fitted ε(τ), we evaluate the evolution of the rest of the recapture probabil-
ities using the relations between the measured probabilities and the actual ones (see
Chapter 7):





P011 + P101 + P110=3ε(τ)[1− ε(τ)]2

P100 + P010 + P001=3ε(τ)2[1− ε(τ)]

P000=ε(τ)3 .

(8.47)

The comparison of the calculated recapture probabilities (see solid lines in Fig-
ure 8.21a) with the experimentally measured populations supports the consistency of
our loss model. For τ = 7 µs, ε can be as large as 20%, showing the importance of
this calibration measurement for our simulation.

Consequences in the simulation

We now include the detection errors in the simulation of the interaction dynamics for
the three-atoms chain. As an example, we compute the measured probability P001

using the formula:

P001 = (1− ε(τ)) [Pddg + Pdpg + Ppdg + Pppg

+ ε(τ)(Pdgg + Ppgg + Pgdg + Pgpg) + ε(τ)2Pggg] .
(8.48)

Figure 8.22 shows the solution of the Bloch equations for P001, when taking into ac-
count the detection errors (solid curve) compared to the solution of the Bloch equation
only (dashed curve). Significant effects start to be visible for interaction times ≥ 4 µs,
and contributes to the explanation of the damping observed experimentally.



8.6 Full numerical simulation of the three-atom system 193

Figure 8.23: Energy transport along a chain of three Rydberg atoms: compari-
son with the simulation. All the probabilities Pijk (i, j, k∈{0; 1}) are represented as a
function of the interaction time. The points show the experimental data, and the solid lines
show the results of the simulation with no adjustable parameters.
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8.6.6 Comparison with the data

We finally simulate the three-atom dynamics using the optical Bloch equations and in-
cluding all the effects described above (temperature effects, dissipation and detection
errors). The results of the simulation are shown as solid lines in Figure 8.23, without
any adjustable parameter. The simulation compares well with the experimental ob-
servations. We clearly see the coherent evolution of the system for interaction times
as large as τ = 7 µs, and the simulation reproduces well the limited contrast (mainly
due to dissipation) and the observed damping (mainly due to temperature effects and
detection errors). Small remaining discrepancies, in particular in the contrast of P001

could be due to other effects that we ignored here, like imperfections in our optical
pumping or addressing for instance, or to a 5% uncertainty in our calibration of the
interatomic distances.

8.7 Conclusion

We have demonstrated fast coherent manipulation of a single Rydberg atom with
a microwave field. Using this tool, we measured the coupling between two atoms,
separated by distances as large as 50 µm. The coupling strength follows the C3/R

3

dependence of the resonant dipole-dipole interaction, and the measured values agree
well with the calculated value of the C3 coefficient. Adding a third atom, we simulate
the evolution dynamics of an elementary chain of three interacting spins. The results
agree well with our simulation, showing that we have a good understanding of our
system.

One of the main technical limitation in this experiment is the finite tempera-
ture of the atoms. Reducing the temperature [Kaufman, Lester, and Regal (2012);
Thompson et al. (2013)] could allow us to probe the coherence of the system for even
longer timescales, which might be useful to extend this kind of study to larger and
more complex ensembles. In an attempt to investigate the limitations of the finite
temperature, we simulate the evolution of the system at T = 10 µK. To estimate ε(τ)

at T = 10 µK, we perform Monte-Carlo simulations of the trajectories of the single
atoms, taking into account the expected energy distribution of an atom in the trap
[Tuchendler et al. (2008)]. The result is shown in Figure 8.24, where we compare the
simulation for T = 10 µK (solid lines) with the curves obtained at T = 50µK (dashed
lines). In this case, the damping of the oscillations are drastically reduced for inter-
action times longer than ∼ 4 µs. This suggests that a reduction of the temperature of
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Figure 8.24: Decreasing the temperature of the atoms. Simulation of the prob-
abilities P100, P010 and P001 for a T = 10 µK temperature of the atoms (solid line). For
comparison, the dashed line shows the dynamics obtained for a temperature T = 50 µK.
Decreasing the temperature by a factor five could already improve significantly the quality
of the data.

the atoms by only one order of magnitude would be enough to make motional effects
negligible on the timescales used in the experiment, so as to enable the nearly ideal
quantum simulation of larger spin systems.

Another more fundamental imperfection comes from the fact that we can not
switch the interaction off during the sequence. This perturbs our preparation and
read out steps, especially at small distances. In the extreme limit of small separation
distances such that C3/R

3� ~ΩMW, multiple excitations would even blockaded by the
resonant interaction, preventing the excitation of the system. In the next Chapter,
we demonstrate a way to overcome this problem by controlling the interactions in
the system using electric fields so as to switch the system on and off from resonance.
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We have studied in Chapter 8 the resonant interactions between two atoms excited
to two different Rydberg states that are coupled by the dipole-dipole interaction. Our
system allows preparing in a controllable fashion the atoms to two different Rydberg
states by combining three tools: the single-site addressability, the optical excitation
to Rydberg states and the microwave transfer in the Rydberg manifold. Because
it only requires the excitation of the atoms to a single Rydberg state, a preferred
way to initiate resonant energy transfers in most experimental systems is to use a
so-called “Förster resonance” [Gallagher (2005); Walker and Saffman (2005)]. For
two atoms excited to the same Rydberg state |r〉, we have seen in Chapter 7 that the
most general interaction is the van der Waals interaction, arising from second-order
perturbation theory:

VvdW =
1

R6

∑

|φAφB〉

∣∣∣〈φAφB| d̂A · d̂B |rr〉 − 3 〈φAφB| (d̂A ·n)(d̂B ·n) |rr〉
∣∣∣
2

(4πε0)2(2Er − EφA − EφB)
. (9.1)

It is apparent from Equation 9.1 that a singularity occurs when there exists a de-
generacy in energy between two pair states (2Er =EφA + EφB), thus canceling the
denominator. Indeed, if there exists a situation where two coupled pair states are
exactly resonant, the system is then subject to resonant dipole-dipole interactions as
described in Chapter8. Figure 9.1 shows the example of a state |r〉, which energy
is located midway between the energies of two other states |φA〉 and |φB〉. The pair
states |rr〉 and |φAφB〉 (which are coupled by the dipole-dipole interaction Hamil-
tonian V̂dip) are degenerate, leading to a resonant interaction: one atom undergoes
a transition from |r〉 to |φA〉 while the other one undergoes a transition from |r〉 to
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Figure 9.1: Principle of the experiment. The pair states |rr〉 and |φAφB〉, which are
coupled by the dipole-dipole interaction Hamiltonian, are degenerate. As a consequence,
they are subject to a resonant dipole-dipole interaction. This type of resonance is called
“Förster resonance”.

|φB〉. In practice, for a given atom, rare accidental degeneracies exist, but more im-
portantly, two atoms can be Stark-tuned to exact resonance by applying small electric
fields [Gallagher (2005); Safinya et al. (1981); Anderson, Veale, and Gallagher (1998);
Mourachko et al. (1998)]. This mechanism has been named Förster resonance [Walker
and Saffman (2005)] by analogy with resonant energy transfers observed in biology
or photochemistry [Förster (1948); Andrews and Demidov (1999); Clegg (2006)].

First studies were performed in effusive thermal beams of Sodium [Safinya et al.
(1981)], where the atoms resonantly interacted through the channel

nS + nS −→ nP + (n− 1)P , (9.2)

which was viewed as a resonant collision between internal degrees of freedom of two
Rydberg atoms. Due to the long range character of the resonant interaction, the
collision showed large interaction times (∼ 1 ns) and cross sections ∼ 103 larger than
in the absence of resonance. Generalizations of those studies to cold atom systems
[Anderson, Veale, and Gallagher (1998); Mourachko et al. (1998)] led to the obser-
vation of resonant dipole-dipole interactions in frozen gases where the atoms could
be considered as motionless, far from the original picture of collisions. For example,
Mourachko et al. in [Mourachko et al. (1998)] studied the Förster resonance

nP3/2 + nP3/2 −→ nS + (n+ 1)S (9.3)

between Cesium atoms. In the frozen gas limit, they noticed that correlations between
particles could build up on timescales that are faster than the motion of the atoms,
leading to the observation of many-body effects. As a matter of fact, once created
using the Förster resonance, the nS and (n + 1)S excitations could diffuse in the
medium through resonant energy transfers governed by the interaction channels
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nP3/2 + nS −→ nS + nP3/2

nP3/2 + (n+ 1)S −→ (n+ 1)S + nP3/2 ,
(9.4)

as described in Chapter 8. After those pioneering studies, the long-range character of
the interaction at a Förster resonance led to the observation of a strong, electrically-
tuned Rydberg blockade in cold atom ensembles [Vogt et al. (2006, 2007); Reinhard,
Younge, and Raithel (2008)]. The incoherent transfer of excitations between two
spatially resolved locations was also observed in 2008 [van Ditzhuijzen et al. (2008)].
However, in all those experiments the coherent nature of the interaction could not be
observed due to the presence of a distribution of interatomic distances in disordered
systems, the motion of the atoms induced by the interaction and the diffusion of the
excitations through the interaction channels in Equation 9.4 [Anderson et al. (2002);
Mudrich et al. (2005); Westermann et al. (2006); Ryabtsev et al. (2010a,b); Nipper
et al. (2012a,b); Vogt et al. (2007); Reinhard, Younge, and Raithel (2008); Ryabtsev
et al. (2010a); Nipper et al. (2012a,b)].

We study in this chapter the interactions between two Rydberg atoms separated
by a controlled distance and tuned to a Förster resonance similar to the one in
Equation 9.3. The presence of only two atoms allows concentrating on the Förster
interaction process itself, deconvolved from any other interaction channels that lead
to diffusion, as in Equation 9.4. We study, both spectroscopically and in the time
domain, the coherent, dipolar induced exchange of electronic excitations between the
two-atoms, and verify that the coherent oscillation occurs at a frequency that scales
as the inverse third power of the interatomic distance [Walker and Saffman (2005)].
The system can be tuned to resonance using our control of electric fields, which allows
switching off the interaction during the preparation and read out of the system, and
shows our ability to actively switch on and off strong interactions in the system.
Finally, we measure the angular dependence of resonant dipole-dipole interactions.

9.1 Finding a Förster resonance between two

Rydberg atoms

We have demonstrated in Chapter 6 that we can optically excite
∣∣nD3/2

〉
Rydberg

states. Starting from this state, selection rules (see Chapter 7) show that direct
dipolar couplings are allowed between the pair state

∣∣nD3/2;nD3/2

〉
and all the pair

states that combine the one-atom states
∣∣nP1/2

〉
,
∣∣nP3/2

〉
and

∣∣nF5/2

〉
. In view of
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Figure 9.2: Choice of the Rydberg states. a, Förster defects for the interaction
channel in Equation 9.5 as a function of the principal quantum number n in the absence
of electric field. Despite the large energy separations ∼ 10 GHz between Rydberg states,
the pair states of interest are separated by less than 200 MHz for n≥ 50. For n= 59, the
Förster defect is 8.5 MHz. We will use those pair states to benefit from this accidental
quasi-degeneracy. b, Levels of interest in this Chapter. In the absence of electric field, the
state

∣∣59D3/2

〉
is located almost midway between the states

∣∣61P1/2

〉
and

∣∣57F5/2

〉
.

working at a Förster resonance with rubidium atoms, one interesting interaction
channel that has been studied before theoretically [Walker and Saffman (2005)] and
experimentally [Gaëtan (2009)] is:

nD3/2 + nD3/2 ←→ (n+ 2)P3/2 + (n− 2)F5/2 . (9.5)

9.1.1 Accidental degeneracy

We need to tune the two pair states
∣∣nD3/2;nD3/2

〉
and

∣∣(n+ 2)P3/2; (n− 2)F5/2

〉
to

exact resonance in order to observe the Förster resonance described by Equation 9.5.
An important parameter is the energy difference between those two pair states. This
energy difference ∆0 is called “Förster defect”:

∆0 =E
[
(n+ 2)P3/2

]
+ E

[
(n− 2)F5/2

]
− 2E

[
nD3/2

]
. (9.6)

We have seen in Chapter 8 that the typical energy separation between Rydberg states
is as large as a few GHz (in frequency units). On the other hand, by combining
one-atom states with different energies, one can create pair states which are much
closer in energy. Figure 9.2a shows the “Förster defect” (see Equation 9.6) between
the pair states

∣∣nD3/2;nD3/2

〉
and

∣∣(n+ 2)P3/2; (n− 2)F5/2

〉
as a function of the

principal quantum number n in the absence of electric field. One interest of the
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interaction channel in Equation 9.5 is that it involves pair states
∣∣nD3/2;nD3/2

〉
and∣∣(n+ 2)P3/2; (n− 2)F5/2

〉
, that are separated by less than 200 MHz for principal

quantum number that are larger than n= 50. In particular for n= 59, the Förster
defect is as low as ∆0/h= 8.5 MHz. Indeed, in the absence of electric field, the
one-atom state

∣∣59D3/2

〉
is almost exactly midway between the states

∣∣61P1/2

〉
and∣∣57F5/2

〉
(see Figure 9.2b), leading to the observed accidental quasi-degeneracy. In

the rest of this Chapter we use these Rydberg states to study the Förster resonance
between two atoms1.

9.1.2 Interacting pair states

The excitation lasers couple |g〉 to the stretched state
∣∣59D3/2,MJ = 3/2

〉
. We are

initially interested in the Förster interaction between two atoms aligned along the
quantization axis. In this case, the Zeeman sub-levels taking part in the interaction
are the ones fulfilling the condition ∆MTot = 0, as explained in Section 7.1. When
θ= 0◦, the Zeeman sub-levels that are directly coupled by the dipole-dipole interaction
satisfy MTot = 3:

|dd〉 ≡
∣∣59D3/2,MJ = 3/2 ; 59D3/2,MJ = 3/2

〉
,

|pf〉 ≡
∣∣61P1/2,MJ = 1/2 ; 57F5/2,MJ = 5/2

〉
,

|fp〉 ≡
∣∣57F5/2,MJ = 5/2 ; 61P1/2,MJ = 1/2

〉
.

(9.7)

Note that |dd〉 couples to the two degenerate states |pf〉 and |fp〉 that consist of a
permutation of the same pair states, and show the same properties.

9.1.3 Tuning the system to resonance

We have seen that in the absence of electric field, the Förster defect between the
states |dd〉 and |pf〉 (or |fp〉) is ∆0/(2π) = 8.5 MHz. One way to tune the system to
exact resonance is to use electric fields. Table 9.1 shows the polarizabilities of those
pair-states. Because P -states, D-states and F -states have different sensitivities to the
electric field, the pair states have different polarizabilities. As a consequence, when
increasing the vertical electric field Fz, the states are subject to a differential Stark
effect. The state |dd〉 shifts as αddF 2

z /2, whereas the state |pf〉 shifts as αpfF 2
z /2. As

a consequence, the two states are degenerate for an electric field of:

1Note that the Förster defect for the state
∣∣58D3/2

〉
is even smaller. However, it is negative which

does not allow tuning the system to exact resonance using electric fields as we will demonstrate in
Section 9.1.3.
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Table 9.1: Polarizabilities for the pair states |dd〉, |pf〉 and |fp〉. The polarizabilities
were calculated using second-order perturbation theory as described in Chapter 5. They are
given in (kHz.(mV/cm)−2).

State α

|dd〉 1.1

|pf〉 16.45

|fp〉 16.45

Fz =Fres' 33 mV/cm , (9.8)

which corresponds to the position of the resonance. Note that the choice n= 59 allows
working with a small vertical electric field for which the states can be considered
unperturbed. At resonance, the states |dd〉, |pf〉 and |fp〉 are degenerate, and the
system interacts resonantly through the exchange of virtual photons as shown in
Equation 9.5:

59D3/2 + 59D3/2 ←→ 61P1/2 + 57F5/2 . (9.9)

9.2 Interaction between two Rydberg atoms at a

Förster resonance

We first consider the case of two atoms aligned along the quantization axis. The
dipolar coupling between the state |dd〉 and the states |pf〉 and |fp〉 is given by

〈dd| V̂dip |pf〉= 〈dd| V̂dip |fp〉=
C3

R3
, (9.10)

where V̂dip is the interaction Hamiltonian in Equation 7.8. Numerical calculations
give a theoretical C3 coefficient of:

C3,th

h
' 2.54 GHz.µm3 . (9.11)

Since the state |dd〉 can couple to |pf〉 or |fp〉 with equal strength, it is convenient
to work in the basis {|dd〉 ; |p̃f〉; |f̃p〉} containing the symmetric and antisymmetric
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combinations of |pf〉 and |fp〉:

|p̃f〉≡ |pf〉+ |fp〉√
2

,

|f̃p〉≡ |pf〉 − |fp〉√
2

.

(9.12)

The dipolar coupling between |dd〉 and the symmetric state |p̃f〉 is:

〈dd| V̂dip|p̃f〉=
√

2
C3

R3
, (9.13)

whereas the states |dd〉 and |f̃p〉 do not show any dipolar coupling:

〈dd| V̂dip|f̃p〉= 0 . (9.14)

For two atoms that are aligned along the quantization axis, this allows to restrict the
basis to {|dd〉 ; |p̃f〉}. Couplings of |dd〉 to other non-resonant states also contribute
to second-order to the interaction. However, here we only consider the resonant
interaction channel of Equation 9.9 and ignore other couplings.

9.2.1 Single interaction channel model

In the basis {|dd〉 ; |p̃f〉}, the total Hamiltonian of the system reads :

Ĥ =

(
0

√
2C3/R

3

√
2C3/R

3 ∆

)
. (9.15)

The diagonalization of this Hamiltonian gives the eigenenergies E± of the system :

E±=
∆

2
±

√√√√
(

∆

2

)2

+

(√
2C3

R3

)2

. (9.16)

The interaction mixes the states and the eigenstates are :



|+〉 = sin θ |dd〉+ cos θ|p̃f〉

|−〉 = cos θ |dd〉 − sin θ|p̃f〉 ,
(9.17)

where tan 2θ= 2(
√

2C3/R
3)/∆. The Förster interaction corresponds to the limit

where |∆|� |C3|/R3.
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Figure 9.3: Eigenenergies of the system as a function of the electric field. In the
absence of coupling, the two pair-state energy levels (dotted lines) vary when an external
electric field Fz is applied, and cross each other for Fz =Fres. The coupled system (solid
lines) undergoes an avoided crossing at the resonance indicated by a vertical dashed line.

9.2.2 Förster interaction limit

We first focus on the limiting case of the Förster interaction, when |∆|� |C3|/R3. In
this case, the eigenenergies of the system are:

E±=±
√

2
|C3|
R3

, (9.18)

and the eigenstates of the system are the superposition states:

|±〉= |dd〉 ± |p̃f〉√
2

. (9.19)

As observed in Section 8.1.2, the eigenvalues of the system are shifted in energy
by a quantity ∝ 1/R3, which is characteristic of resonant dipole-dipole interactions.
Moreover, the interaction mixes the states |dd〉 and |p̃f〉. At resonance, the stationary
states are the symmetric and antisymmetric combinations |+〉 and |−〉. Figure 9.3
shows the evolution of the eigenstates of the system when scanning ∆ across the
resonance. The dashed lines in Figure 9.3 show Edd and Epf in the absence of dipole-
dipole interaction. The system reaches the resonance at the position where the two
curves cross, for a value Fres of the vertical electric field. The solid lines show the
evolution of the eigenenergies E± of the coupled system in the presence of interactions,
where the colorscale represents the |dd〉 contribution to the eigenstates. We observe
that the system undergoes an avoided crossing. At resonance, if we prepare initially
the system in the non-stationary state |dd〉, it starts oscillating between the two
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configurations |dd〉 and |p̃f〉 at a frequency given by the difference in energy between
the two eigenstates 2

√
2C3/R

3. After a time t, the probability to find the system in
the state |dd〉 is

Pdd(t) = cos2

(
2π

√
2C3

hR3
t

)
=

1

2

[
1 + cos

(
2π

2
√

2C3

hR3
t

)]
. (9.20)

We therefore expect similar dynamics as in Chapter 8.

9.2.3 Van der Waals interaction limit

For the sake of completeness, we next recall the other limit, where the Förster defect
is large compared to the interaction (2

√
2C3/R

3�|∆|). In this case the eigenenergies
of the system are

1

~
E±=

∆

2
± |∆|

2

(
1 +

4C2
3

∆2R6

)
, (9.21)

and the eigenstates remain almost unperturbed (|−〉' |dd〉 and |+〉' |p̃f〉 to first
order). We observe that the eigenenergies show a 1/R6 behavior. This regime corre-
sponds to the van der Waals interaction, where the shift in energy of the state |dd〉
is given by VvdW =C6/R

6, with :

C6 =−
(√

2C3

)2

∆
. (9.22)

9.2.4 Four-level system

We concentrate, in the rest of this Chapter, on the case of the Förster interaction
close to resonance. Figure 9.4 shows the relevant energy levels for our experimental
configuration at resonance. Our excitation laser couples |g〉 to |d〉 with a Rabi fre-
quency Ω, and therefore couples |gg〉 to |d̃g〉≡ (|dg〉+ |gd〉)/

√
2 with a Rabi frequency√

2Ω. Finally, the excitation laser couples |d̃g〉 to |dd〉 with a Rabi frequency
√

2Ω,
and thus partially couples |d̃g〉 to |+〉 and |−〉.
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Figure 9.4: Structure of the coupled levels at resonance. We scan the excitation
laser (green arrow) to perform a two-atom excitation from |gg〉 to |dd〉 via the intermediate
state |d̃g〉. The detuning between the laser frequency and the position of |dd〉 in the absence
of interactions (black horizontal dashed line) is called δ.

9.3 Spectroscopy of two interacting atoms at a

Förster resonance

We first find the position of the Förster resonance by performing a spectroscopic
measurement of the two interacting atoms.

9.3.1 Experimental sequence

For different values of the vertical electric Fz, we scan the laser detuning δ (defined
as in Figure 9.4) and perform a spectroscopic measurement of the interacting system.
We turn the trap off for ' 2 µs and shine the excitation lasers on the two atoms for a
fixed duration τ . We repeat the sequence ' 100 times to reconstruct the probabilities
Pij (i, j ∈{0; 1}). If our excitation and detection were perfect, the probability P00

would coincide with the double excitation probability Prr.

9.3.2 Varying the electric field: observation of the avoided

crossing

As a calibration for this experiment, we first measure the position of the one-atom
Rydberg line and the one-atom Rabi frequency Ω independently on a single-atom.
The position of the one-atom line corresponds to δ= 0 in our spectra (see Figure 9.4).
We then fix the interatomic distance to R= 8.1 µm. Due to the dipole-dipole inter-
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action, the position of the doubly excited state shifts. Scanning the laser allows us to
tune the excitation laser to resonance for the two-atom state. Far from the Förster
resonance, we expect to observe one line shifted by the van der Waals interaction
energy between the two atoms. At the Förster resonance, we expect to observe two
lines separated by the energy ∆E= ~ × 2

√
2C3/R

3. Having a fixed set of parame-
ters to probe those different regimes requires a proper choice of the one-atom Rabi
frequency Ω and excitation time τ , as detailed below.

Choice of the Rabi frequency

At the position of the Förster resonance, we expect to observe two excitation peaks
that are separated by the interaction energy ∆E/h' 13.7 MHz, where we used the
calculated C3,th coefficient (see Equation 9.11). In order to resolve the two peaks we
use an excitation linewidth that is smaller than the interaction energy (~Ω≤∆E).
For Rabi frequencies that are too small (~Ω�∆E), we have noticed experimentally
that the double-excitation probability is smaller than . 20%. Instead, we prefer
working in a regime with ~Ω.∆E, where the double excitation through the inter-
mediate state |d̃g〉 experimentally showed efficiencies that are larger than 60%. For
a separation distance R= 8.1 µm, we chose a Rabi frequency Ω/(2π) = 2.9 MHz, as
∆E/~' 13.7 MHz.

Choice of the excitation time

In the absence of interaction, we would maximize the two-atom excitation prob-
ability for a duration of the excitation that corresponds to the one-atom π-pulse
(τπ = π/Ω' 172 ns). In the presence of interactions, we have seen that the excitation
laser is detuned from the intermediate state |d̃g〉. At the Förster resonance, the os-
cillation between |dd〉 and |pf〉 starts occurring while optically exciting the system.
Experimentally, we optimized the duration of the excitation pulse to observe compa-
rable maximized double excitation probabilities at all fields. In this experiment, we
used τ ' 210 ns at all Fz.

Experimental results

Figure 9.5a shows a plot of the excitation spectra obtained for electric fields that vary
between 0 mV/cm and 70 mV/cm. When scanning the electric field, we observe the
expected avoided crossing between the states |dd〉 and |p̃f〉 that is due to the Förster
resonance. For Fz = 0, we observe a single line centered on δ/(2π)≈−5 MHz. This
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Figure 9.5: Spectroscopy at the Förster resonance. a, Two-atom excitation spec-
trum where the population of double loss P00 is plotted as a function of δ and Fz. We
observe the avoided crossing between the resonant pair states. The white vertical dashed
line indicates the position of the Förster resonance. The white curved dashed lines repre-
sents the Stark map calculated in the presence of interactions with C3/(2π)= 2.26 GHz.μm3

(see Section 9.3.3) b, Spectrum P00(δ) at resonance for R=8.1μm. The solid line is a fit
by a a sum of two Gaussian functions. c, The populations P01 + P10 and P11 are given for
completeness.
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number gives the strength of the van der Waals attraction between the two atoms in a
zero electric field. For Fz ≈ 20 mV/cm we observe on the spectrum the apparition of
a repulsive potential branch. Increasing the field even further allows scanning across
the avoided crossing until only one peak is visible again. The system is at the Förster
resonance when we observe two symmetric peaks that are separated by a minimal
distance. We measure:

Fres = 32± 4 mV.cm−1 , (9.23)

which is in good agreement with the expected value (see Equation 9.8). The spectrum
at resonance is shown in Figure 9.5b. A fit of this spectrum by a sum of two Gaussians
gives a separation distance of ∆Efit/h' 10 ± 0.4 MHz. The discrepancy with the
expected value (13.7 MHz) comes from a bias in the measurement introduced when
fitting the spectrum by a sum of two Gaussians (see Section 9.3.5), and from a possible
systematic error on R due to a ' 5% uncertainty on the calibration of the distance.

9.3.3 Varying the distance: measurement of the C3 coefficient

We then measure the evolution of the spectra at resonance when varying the inter-
atomic distance R.

Measurement of the C3 coefficient

For each distance, we adapt the one-atom Rabi frequency Ω and the excitation time
τ , so as to obtain large excitation probabilities while still being able to resolve the
two excitation peaks. We observe in Figure 9.6 the expected trend of the splitting
between the two double-excitation peaks with the distance R. When increasing R,
the interaction between the atoms decreases and thus the distance between the peaks
decreases. We fit each spectrum by a sum of two Gaussian functions in order to
extract the splitting in energy ∆Efit. Figure 9.7 shows a double-logarithmic plot
of ∆Efit versus R. The data shows a power-law behavior of exponent −3.2 ± 0.2,
consistent with the expected C3/R

3 law. Fixing the exponent to −3, we obtain:

C3,fit = 2.1± 0.1 GHz ·µm3 . (9.24)

The mismatch between the measured value and the expected one comes from a bias in
the measurement introduced by fitting the spectra by two Gaussians (see simulation
in Section 9.3.5), and a possible systematic error on R due to a ' 5% uncertainty on
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Figure 9.6: Spectra at resonance for different interatomic distances. Blue circles
show the measurement of P00 for different interatomic distances R. As expected, we observe
that the distance between the two double-excitation peaks increases when we increase the
interaction (or decrease R). Blue lines are fits by a sum of two Gaussian functions, used
to measure the frequency splitting ∆Efit between the two peaks. The Rabi frequency and
excitation duration used for each measurement are indicated on the right.
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Figure 9.7: Experimental determination of C3. Double logarithmic plot of the split-
ting ∆E between the peaks at resonance, as a function of R. The solid line is a fit by a
power law, which gives an exponent of −3.2 ± 0.2. Fixing the exponent to −3 gives the
fitted coefficient C3,fit = 2.1± 0.1 GHz ·µm3.

the calibration of the camera.

Discussion of the observed shifts

We observe in Figure 9.6 that the spectra at resonance are not centered exactly
around the same frequency. We would expect to observe a symmetric evolution of
the spectra around one central position as we vary the interatomic distance2. The
measurements in Figure 9.6 were performed with different Rabi frequencies Ω, leading
to differential light shifts between the measurements. To rescale the frequency axis,
we have calibrated the one-atom light shift by measuring the position of the one-
atom line for a few values of Ω. However, we have not systematically measured the
position of the one-atom line for each scan. The observed residual shifts between
the spectra come from calibration errors, most probably due to long-term drifts in
the laser power seen by the atoms over the entirety of the measurement, leading to
errors in our estimation of Ω. However, our measurement of the C3 coefficient is not
affected by these global shifts since we are only interested in the frequency difference
between the two peaks.

2As a reminder, the frequency δ/(2π) = 0 in Figure 9.6 corresponds to the position of the one-
atom line in a zero electric field. As a consequence, we do not expect the central position to be
δ/(2π) = 0, due to the presence of Stark shifts for the electric field Fz =Fres used at resonance.
Moreover, dipole couplings to other, non-resonant states also results in a van der Waals shift of the
lines. Finally, possible residual light shifts in the two-photon spectroscopy might also play a role.
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9.3.4 Switch of the interaction

An interesting feature of the Förster resonance is that it allows us to use the electric
field Fz as a switch for the interatomic interaction. This can be seen directly in
Figure 9.5, where we observe the transition from the Förster regime for Fz =Fres

to the van der Waals regime for larger values of Fz. In the Förster regime, the
system shows strong interactions that scale as 1/R3, whereas in the van der Waals
regime the system shows weaker interactions with a 1/R6 dependency. To illustrate
this fact, we measure the one-atom and two-atom excitation spectra for an electric
field Fz ' 64 mV/cm. For this value of the electric field, we expect a Förster defect
of ∆/(2π)'−31 MHz, placing the atoms far from the Förster resonance. We first
measure the position of the one-atom line by performing a spectroscopy on a single
atom. This measurement allows us to calibrate the frequency axis, where δ= 0 now
corresponds to the position one-atom Rydberg line3 for Fz = 64 mV/cm. Under the
same experimental conditions, we then perform the two-atom spectroscopy for two
atoms that are separated by R= 9.1 µm. Figure 9.8 plots the probability of double-
loss P00 as a function of the laser detuning. We observe the presence of a single
excitation peak, which confirms that we are far from the Förster resonance. To
extract the position of the center of the line in a simple way, we fit the spectrum by
a Gaussian. We observe that the line is shifted by an energy ∆E, with:

∆E

h
= 882± 222 kHz . (9.25)

We have seen in Chapter 7 that the shift of the double-excitation line corresponds to
the van der Waals interaction energy between the two atoms. The measured value is
compatible with the expected van der Waals shift obtained using Equation 9.22 for
a Förster defect of ∆/(2π)'−31 MHz:

VvdW

h
=−(

√
2C3)2

∆

1

R6
= 733 kHz . (9.26)

This contrasts with the 7.1 MHz interaction energy we have measured at the Förster
resonance (see Figure 9.7). Changing the field by ' 30 mV/cm thus allows to change
to interaction by a factor of 10. We will use this ability to tune the interactions in
Section 9.4.

3Note that this convention is different from the one used in the rest of this Chapter where δ= 0
corresponds to the position of the one-atom line for Fz = 0 mV/cm. We exceptionally change the
convention in this paragraph to simplify the interpretation of the two-atom spectrum.
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Figure 9.8: Switching the interaction. Two-atom spectrum obtained for an electric
field Fz = 64 mV/cm. The probability P00 shows only one peak, which confirms that we
have placed the system in the van der Waals regime. The interaction energy between the
two atoms is given by the energy shift of the two-atom line compared to the one-atom line.
The frequency δ/(2π) = 0 corresponds to the position one-atom line. The solid line is a fit
of the spectrum by a Gaussian [Pérez Galván, Zhao, and Orozco (2008)], which allows us to
measure that the two-atom line is centered at the position δ/(2π) = 882± 222 kHz.

9.3.5 Simulation using the Schrödinger equation

A difficulty of the spectroscopic measurement resides in the fact that we measure
double excitation probabilities for different interaction strengths, both in the van der
Waals and in the Förster regime. Out of resonance, our excitation lasers directly
couple |gg〉 to |dd〉, whereas on resonance the lasers only partially couple |gg〉 to |+〉
and |−〉. Moreover, we have seen that the excitations lasers are detuned from the
intermediate level |d̃g〉 by an energy which is of the same order as ~Ω, so that the
state |d̃g〉 also has to be considered in the excitation dynamics of the system. Finally,
the atoms interact during the excitation, which complicates even more the excitation
of the system. To get a better understanding of our two atom spectra, we simulate
them numerically.

Hamiltonian of the system

The two-atom system is described, in the basis {|gg〉 , |d̃g〉, |dd〉 , |p̃f〉}, by the Hamil-
tonian:

Ĥ = ~




∆Egg
√

2Ω/2 0 0√
2Ω/2 ∆Edg − δ/2

√
2Ω/2 0

0
√

2Ω/2 ∆Edd − δ 2
√

2C3,th/R
3

0 0 2
√

2C3,th/R
3 ∆0 + ∆Epf − δ




(9.27)

where ∆Eij =−αijF 2
z /2 is the Stark shift for the pair state |ij〉, ∆0 is the Förster

defect in a zero electric field and δ is the laser detuning. For different parameters R,
Ω, τ that we used experimentally (see Figure 9.6), we simply solve numerically the
Schrödinger equation without taking into account dissipation or detection efficiency.
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Figure 9.9: Numerical simulation of the spectroscopy at the Förster resonance.
a, Two-atom excitation spectrum where the population in the doubly-excited state Prr is
plotted as a function of δ and Fz. We observe the avoided crossing between the resonant pair
states. The white vertical dashed line indicates the position of the Förster resonance. The
white curved dashed lines represents the Stark map calculated in the presence of interactions
with C3=C3,th. b, Spectrum Prr(δ) at resonance for R=8.1μm. The solid line is a fit by
a sum of two Gaussian functions. c, The populations Pgg and Pgr + Prg are given for
completeness. They show qualitative agreement with the experimental observations (see
Figure 9.5).
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Figure 9.10: Bias introduced by the fitting procedure. For the interatomic distance
R= 8.1 µm and for the parameters Ω and τ used experimentally, we simulate the double
excitation spectrum (black disks). To extract the distance between the two peaks in a simple
way, we fit the spectrum by a sum of two Gaussian functions. The fit gives ∆Efit/h=
12.8 ± 0.1 MHz. We use the simulation to evaluate the bias introduced by this fitting
procedure on the measurement of ∆E.

Results of the simulation

The results of the simulation of the spectroscopy are shown in Figure 9.9 and qualita-
tively reproduce the observations made experimentally (see Figure 9.5). As expected,
the double excitation spectrum Prr shows the avoided crossing between the two reso-
nant states |dd〉 and |p̃f〉. We also observe qualitative agreement for the populations
Pgg and Pgr + Prg (see Figure 9.9c). Finally, Figure 9.9b plots the spectrum at reso-
nance (black disks), where the solid line is a fit by a sum of two Gaussian functions,
used to measure the distance between the two peaks. As expected, this phenomeno-
logical fit does not reproduce completely the structure of the spectrum at resonance.
In particular, the simulated spectra show secondary side lobes next to the two main
peaks. As a consequence, we use the simulation to test the validity of our fitting
procedure.

Bias introduced by the fitting procedure

Figure 9.10 shows the simulated spectrum at the Förster resonance using the same
experimental parameters, Ω and τ as in Figure 9.5 and for a separation distance R'
8.1 µm. From the fit by a sum of two Gaussian functions (solid line in Figure 9.10),
we extract a splitting ∆Efit/h= 12.8±0.1 MHz between the two peaks. At a distance
R= 8.1 µm, we expect the states |+〉 and |−〉 to be separated by:

∆E

h
=

1

2π

2
√

2C3,th

R3
= 13.7 MHz . (9.28)

As a consequence, the fit of ∆Efit gives a slight underestimate of the energy splitting
∆E. Reproducing the same simulation for all the different values of R, Ω and τ used
experimentally in Figure 9.6 gives similar results. In the end we observe that:
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Figure 9.11: Experimental sequence for observing the Förster oscillation be-
tween two atoms. After exciting the atoms to |dd〉 (first π pulse), we switch on the
resonant interaction for a variable amount of time τ by tuning the electric field to Fres. The
system oscillates back and forth between the two pair states |dd〉 and |p̃f〉 for the duration
τ . A second optical π-pulse allows reading out the state of the system.

∆E= (1.08± 0.02)×∆Efit . (9.29)

We thus take this correction factor into account in the spectroscopic measurement of
the C3 coefficient presented in Section 9.3.3:

C3,Spectro = 1.08× C3,fit = 2.26± 0.15 GHz ·µm3 . (9.30)

The remaining discrepancy with the expected value C3,th' 2.54 GHz ·µm3 probably
comes from a systematic error on our measurement of R due to a ' 5% uncertainty
on the calibration of the camera.

9.4 Observation of Förster oscillations

In this Section, we study the coherence properties of the system at the Förster reso-
nance.

9.4.1 Experimental sequence

Figure 9.11 shows the experimental sequence. We first turn the traps off for ' 2 µs.
We shine a 100 ns optical π-pulse on the atoms to prepare the system in the state
|dd〉. We perform the optical excitation in a F ' 64 mV/cm electric field, thus placing
the atoms out of resonance, where they interact in the van der Waals regime as
observed in Section 9.3.4. During the preparation, the small interatomic interactions
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between the atoms of ∼ 100 kHz allow us to easily overcome the Rydberg blockade,
and to place the two atoms in a pure |dd〉 state. We then switch rapidly (risetime
below 10 ns) the electric field to Fz =Fres for a variable duration τ to turn on the
resonant interaction in the system. Switching the electric field back to its initial value
Fz ' 64 mV/cm then allows us to freeze the interaction. We finally read out the state
of the system by applying a second optical π-pulse that couples |dd〉 back to |gg〉,
while leaving |p̃f〉 unchanged. We repeat so sequence ∼ 100 times and reconstruct
the recapture probabilities Pij (i, j ∈{0; 1}). Assuming perfect excitation and read
out, the probability P00 (resp. P11) coincides with Ppf (resp. Pdd).

9.4.2 Experimental results

Figure. 9.12 shows the measured evolution of P11 as a function of τ for different
interatomic distances R ranging from 7.4 µm to 13.4 µm. We observe the expected
oscillations of P11, which is a direct consequence of the resonant interactions between
the two atoms (see Equation 8.8). The oscillation frequencies νosc depend on the
distance R, which further confirms that we are observing the interaction-induced
coherent oscillation between |dd〉 and |p̃f〉 at the Förster resonance. A fit of the data
for R= 8.07 µm gives the oscillation frequency:

νosc = 12.3± 0.8 MHz , (9.31)

where the error bar comes from the fit and a 150 nm statistical error in the determina-
tion of R. This value is close to the expected oscillation frequency 2

√
2C3/(2πR3) =

13.7 MHz. We attribute the observed deviation to a systematic error on the mea-
surement of R. As mentioned in Chapter 8, the presence of only two atoms separated
by a controlled distance is fundamental to this observation. In disordered systems
of atoms, oscillations with different frequencies average out due to the presence of
a distribution of interatomic distances, which prevents this direct observation of the
coherence of the interaction.

9.4.3 Measurement of the C3 coefficient

To extract the oscillation frequency νosc, we fit the dynamics by damped sines4 (see
Figure 9.12). Figure 9.13 shows a double-logarithmic plot of the obtained values of
νosc for the different separation distances R. The data shows a power-law behavior of

4Simulations of the dynamics using the total Hamiltonian in Equation 9.27 show that this fitting
procedure allows extracting the correct value for C3, with no need for a correction factor.
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Figure 9.12: Observation of Förster oscillations between two atoms. Evolution of
P11 as a function of the interaction time for different interatomic distances. P11 oscillates at
a frequency νosc that depends on R. For information, the populations P00 (black), P01 and
P10 (blue) are also given for the R= 10.4 µm distance. The solid lines are fits by damped
sines.
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Figure 9.13: Experimental determination of C3. Double logarithmic plot of the
oscillation frequency νosc as a function of R. The error bars come from the fit of the
oscillation frequencies as well as from the initial dispersion in interatomic distances due
to the temperature of the atoms (σR = 170 nm). A fit by a power law gives an exponent
−2.9±0.1. This value of the exponent is in good agreement with the expected 1/R3 behavior.
Fixing the exponent to −3, the fit gives C3 = 2.44± 0.06 GHz ·µm3 (solid line).

exponent −2.9 ± 0.1, again in excellent agreement with the expected R−3 behavior.
Fixing the exponent to −3, we obtain:

C3,osc = 2.44± 0.06 GHz ·µm3 . (9.32)

This value is compatible with C3,Spectro, obtained in Section 9.3.5 from the spec-
troscopic measurement. This value is also close to the theoretical value, where the
observed mismatch is explained by a ' 5% systematic error on R due to calibration
errors.

9.4.4 Discussion of the limitations

The measured oscillations show a contrast that is smaller than 100%, as well as some
damping. Most of the limitations discussed in Chapter 8 are also present in this
experiment. In particular, dissipation during the optical pulses reduces the efficiency
of the preparation and read-out steps, leading to a reduction of the contrast of the
oscillations. Temperature effects lead to some dephasing which results in damping.
Other limitations discussed in Chapter 8 related to the presence of resonant interac-
tions during the preparation and read out of the system are not present here since we
have the possibility to switch off the resonant interactions by pulsing the electric field.
However, fluctuations in the applied electric field are another source of dephasing in
the system. We discuss those limitations in this Section.
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Temperature effects

We have seen in Section 8.6.4 that the finite temperature leads to fluctuations in the
interatomic distance that are summarized in Equation 8.45:

R(t) =R0 + ∆z0 + ∆vzt , (9.33)

The random variable ∆z0 accounts for shot-to-shot fluctuations of R with a standard
deviation σR' 170 nm. The random variable ∆vz accounts for the thermal motion
vth' 70 nm.µs−1 of the atoms during the sequence. Note that the maximal interaction
time in Figure 9.12 is τ = 600 ns. At the end of this interaction time, the thermal
motion of the atoms has led to a variation ∆R of the separation distance between
the atoms, that we estimate to be of the order of:

∆R∼
√

2vthτ ' 60 nm . (9.34)

For τ = 600 ns, we also estimate that the variation in R due to forces between the
atoms is (see Section 8.6.4):

∆R∼ 3

2

~C3

meffR4
τ 2' 4 nm , (9.35)

where we have taken R= 7.4 µm (the shortest interactomic distance in Figure 9.12).
As a consequence, we first consider only shot to shot fluctuations (R=R0 + ∆z0).
Those fluctuations in R lead to fluctuations in the interaction energy between the
two atoms so that Pdd is the average of oscillations with different frequencies:

Pdd =

〈
cos2
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2π

√
2C3

R3
τ

)〉
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=
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2
+
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〈
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(9.36)

For our range of experimental parameters, ∆z0�R0. In this limit, we obtain an
approximate value for the integral in Equation 9.36 by expanding around R0 the term
∝ 1/R3, and by using the properties of Fourier transform for Gaussian distributions:

Pdd =
1

2
+

1

2
exp


−1

2

(
2π

3σR
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2
√

2C3

R3
0
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)2

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(
2π

2
√

2C3
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0

τ

)
. (9.37)
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Figure 9.14: Effect of the finite temperature of the atoms. Fluctuations in the
distance R lead to some dephasing. The solid lines show the solution of the Schrödinger
equations averaged over 1000 realizations of the experiment for R= 8.1 µm and R= 11.3 µm.
The grey dashed lines plot the decaying envelopes calculated in Equation 9.37.

We observe that the shot-to-shot fluctuations in the R lead to a Gaussian damping
of the oscillations. The decaying envelopes for the Förster oscillation obtained in
Equation 9.37 are plotted in Figure 9.14 for different distances (grey dashed lines).

Solutions of the Schrödinger equations

We now compare the result of the previous calculation to a numerical simulation of
the system. We simulate the two-atom system by solving numerically the Schrödinger
equations. We consider that we have prepared the system in |dd〉 with a 100% effi-
ciency. At the Förster resonance, the Hamiltonian of the interacting system written
in the basis {|dd〉 ; |p̃f〉} is:

Ĥ = ~




0

√
2C3

(R0 + ∆z0 + ∆vzt)
3

√
2C3

(R0 + ∆z0 + ∆vzt)
3 0


 , (9.38)

where ∆z0 and vz are random variables with Gaussian distributions and standard
deviations σR and

√
2vth, as described in Section 8.6.4. We average the solutions of

the Schrödinger equations over 1000 realizations of the experiment. The results are
shown in Figure 9.14 forR= 8.1 µm and forR= 11.3 µm (solid lines). As expected, we
observe that shot-to-shot fluctuations in the positions of the atoms lead to a damping
in the Förster oscillations. The decaying envelopes of the oscillations agree well with
the ones predicted in Equation 9.37 (grey dashed lines), which confirms that the effect
of the thermal velocity of the atoms on the damping is small for the short interaction
times we are probing in this experiment (τ ≤ 600 ns). Finally, we observe that due
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Figure 9.15: Effect of fluctuations of the electric field on the oscillations. Fluctu-
ations of the electric field leads to more dephasing. The solid lines show the solution of the
Schrödinger equations averaged over 1000 realizations of the experiment for R= 8.1 µm and
R= 11.3 µm. We observe that the effect dominates for the largest interatomic distances.

to the 1/R3 dependence of the interaction energy, the temperature effects dominate
at small distances. Indeed, we observe a significant damping for the R= 8.1 µm

distance. However, for the R= 11.3 µm distance, we qualitatively observe that the
calculation does not reproduce the damping observed experimentally in Figure 9.12.
Indeed, another effect contributes to the damping at larger distances.

Fluctuations of the electric field

Electric noise in the voltage sources we use to pulse the electric field to resonance leads
to fluctuations of Fz, with a standard deviation that we estimate to be of the order
of a few mV.cm−1 (σF ' 4 mV.cm−1). To take those fluctuations into account in our
model, we introduce the Förster defect ∆ in the Hamiltonian describing the system.
We first simulate the effect of the fluctuations of the electric field in the absence of
temperature effects. In this case, the interatomic distance is fixed to R=R0, and the
Hamiltonian of the system reads:

Ĥ = ~




0

√
2C3

R3
0√

2C3

R3
0

∆


 , (9.39)

where ∆ is a random variable centered around 0 MHz, with a standard deviation:

σ∆ = (αpf − αdd)Fres σF ' 2 MHz . (9.40)
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As a consequence, the system is not tuned to exact resonance at all times. The
interaction energy between the two atoms fluctuates from shot-to-shot, which is a
source of dephasing since the interaction dynamics of the system result from the
averaging of Förster oscillations with slightly different frequencies5. Figure 9.15 shows
the solutions of the Schrödinger equations averaged over 1000 realizations of the
experiment for R= 8.1 µm and for R= 11.3 µm (solid lines). In this case, we note
that the effect dominates at large distances:

• For R= 8.1 µm, the interaction energy between the atoms (∼ 13 MHz) is large
compared to the fluctuations of the Förster defect (2

√
2C3/R

3�∆), and we
observe only a slight damping of the oscillations in Figure 9.15.

• For larger interatomic distances, the interaction energy between the atoms de-
creases, and the system is more sensitive to fluctuations of ∆. In the case
R= 11.3 µm for example, the interaction energy between the atoms (∼ 5 MHz)
is of the same order as σ∆. As a consequence, we observe in Figure 9.15 a more
significant damping of the oscillations.

Fluctuations of the electric field thus contribute to the damping of the oscillations
observed for large interatomic distances.

Qualitative comparison to the data

We have seen that dephasing in the system mainly comes from the thermal motion
of the atoms at small distances, and from fluctuations of the electric field at larger
distances. Note that in principle, both sources of damping can be strongly decreased
by technical improvements in the setup, using colder atoms [Kaufman, Lester, and
Regal (2012); Thompson et al. (2013)] and more stable voltage sources. We now
perform a simulation that includes those two effects by averaging the solutions of
the Schrödinger equation over 1000 realizations of the experiment, for the system
described by the total Hamiltonian:

Ĥ = ~




0

√
2C3

(R0 + ∆z0 + ∆vzt)
3

√
2C3

(R0 + ∆z0 + ∆vzt)
3 ∆


 . (9.41)

5When ∆ 6= 0, the system is out of resonance. Because the noise on the electrodes has a fre-
quency � 1 MHz, this leads to shot-to-shot fluctuations in the frequency of the Förster oscillation.
Out of resonance, the contrast of the oscillation is also reduced, and thus the transfer of popula-
tion from |dd〉 to |p̃f〉 is not maximal. As the consequence, the damping of the oscillations due to
fluctuations of the electric field is asymmetric.
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Figure 9.16: Qualitative comparison to the data. The solid lines show the average
of 1000 realizations of the simulation including temperature effects and fluctuations in the
electric field. The curves are multiplied by the phenomenological factor 0.8 to take into ac-
count limitations in the preparation of the system. The simulation qualitatively reproduces
the data (red circles).

We include in this model the effect of the dissipation during the preparation in a
phenomenological way by adapting the initial conditions in the Schrödinger equation.
Due to the presence of dissipation during our optical excitation (see Chapter 6), we
have measured that we prepare the system in |dd〉 with a 80% probability (see the
maximal double excitation in the independent measurement of the two-atom spec-
trum in Figure 9.8). We use for initial conditions Pdd = 0.8 and Ppf = 0. We observe
in Figure 9.16 that the simulation qualitatively reproduces the observed damping,
which suggests that our sources of damping are well understood. However, a more
quantitative study would require to solve the optical Bloch equations for the system
in order to take into account dissipation during the preparation as well as during
the read out. Other systematic effects like a constant residual Förster defect (de-
tuning the electric field from the Förster resonance by 2 mV.cm−1 leads to a Förster
defect of ' 1 MHz) or small gradients in the electric field might also contribute to
the reduction of the contrast of the Förster oscillations. Finally, we have not taken
into account the presence of the magnetic field or the coupling to other non-resonant
states that also contribute to the interaction, as we will see in Section 9.5.

9.5 Angular dependence of the interaction

We now extend the study of the resonance between |dd〉 and |pf〉 to the case where the
internuclear axis is not aligned with the quantization axis, and measure the angular
dependence of the interaction [Reinhard et al. (2007); Carroll et al. (2004)], in view
of tailoring even further the interactions between two particles. In the most general
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Table 9.2: Polarizabilities of the pair states of interest in this Chapter. The
polarizabilities are obtained in the weak field limit as described in Chapter 5. They are
given in kHz.(mV/cm)−2.

State α

|dd〉 1.1

|p̃f 1〉 16.45

|p̃f 2〉 26.7

|p̃f 3〉 32.5

case, the interaction Hamiltonian reads (see Chapter 7):

V̂dip =
1

4πε0

1

R3

[
1− 3 cos2 θ

2

(
d̂A,+d̂B,− + d̂A,−d̂B,+ + 2d̂A,0d̂B,0

)

+
3√
2

sin θ cos θ
(
d̂A,+d̂B,0 − d̂A,−d̂B,0 + d̂A,0d̂B,+ − d̂A,0d̂B,−

)
(9.42)

− 3

2
sin2 θ

(
d̂A,+d̂B,+ + d̂A,−d̂B,−

)]
,

where θ is the angle between the quantization axis and the internuclear axis. For
θ 6= 0◦, V̂dip induces some couplings to other Zeeman sub-levels (∆Mtot = 0,±1,±2),
which influence the interaction.

9.5.1 Several Förster resonances

For θ= 0◦, we have seen that there exists a Förster resonance between the states |dd〉
and |p̃f〉, which corresponds to ∆MTot = 0. For θ 6= 0◦, the interaction Hamiltonian
V̂dip couples |dd〉 to the states |pfi〉 and |fpi〉, where:





|pf1〉 ≡
∣∣61P1/2,MJ = 1/2; 57F5/2,MJ = 5/2

〉
(∆MTot = 0)

|pf2〉 ≡
∣∣61P1/2,MJ = 1/2; 57F5/2,MJ = 3/2

〉
(∆MTot = 1)

|pf3〉 ≡
∣∣61P1/2,MJ = 1/2; 57F5/2,MJ = 1/2

〉
(∆MTot = 2) .

(9.43)

We define the symmetrized states |p̃f i〉:
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|p̃f i〉≡
|pfi〉+ |fpi〉√

2
. (9.44)

The polarizabilities of the pair states {|dd〉 ; |p̃f i〉} are given in Table 9.2. They are
obtained by summing the one-atom polarizabilities calculated in the weak field limit
as described in Chapter 5.

We notice that the polarizability α depends on MJ . Figure 9.17 shows the evo-
lution of the energies of the different states as a function of the electric field, in the
absence of dipole-dipole interactions. We observe that the pair state |dd〉 can be
brought in resonance with the three pair states |p̃f i〉 (i∈{1; 2; 3}) for three different
values of the electric field. In the absence of magnetic field, we thus expect three
Förster resonances for the system. We note that each resonance corresponds to a
different value of ∆MTot and is thus associated with one particular angular prefactor
in the dipole-dipole interaction Hamiltonian in Equation 9.42. Here, we are inter-
ested in the resonant dipole-dipole interaction between |dd〉 and |p̃f 1〉, as studied in
Section 9.3 and Section 9.4. If we tune the field to this particular resonance, the
other states |p̃f 2〉 and |p̃f 3〉 are slightly off-resonant. In a first approximation, the
resonant dipole-dipole interaction Hamiltonian is given by:

V̂dip =
1

4πε0

1

R3

1− 3 cos2 θ

2

(
d̂A,+d̂B,− + d̂A,−d̂B,+ + 2d̂A,0d̂B,0

)
, (9.45)

where we neglected the terms in the Hamiltonian that corresponds to states that are
not exactly resonant. At the Förster resonance between |dd〉 and |p̃f 1〉, we expect
the interaction energy to vary as (1− 3 cos2 θ)/2.

9.5.2 Measurement of the angular dependence

We now measure the angular dependence of the resonant interaction between the
atoms for an electric field Fz ' 32 mV/cm, which corresponds to the position of the
resonance between |dd〉 and |p̃f 1〉.

Experimental procedure

We reproduce the experimental sequence presented in Figure 9.11, and measure the
coherent evolution of the two-atom system. The interatomic distance is fixed to
R= 9.14 µm, and we vary the angle between −90◦ and 90◦. For every angle, the
strength of the interaction is given by the frequency νosc of the oscillation between
|dd〉 and |p̃f 1〉.
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Figure 9.17: Stark effect of the pair states |p̃f i〉. The Förster resonances occur at the
crossing between the blue curves and the red curve. Because the polarizability α depends
on MJ , the different crossings occur for different electric fields Fz. We thus obtain three
Förster resonances, each having its own angular dependence. The green circle indicates the
position of the Förster resonance under study in this Chapter.

Experimental results

Figure 9.18 shows the coherent oscillations obtained for a few different angles. The
anisotropy of the interaction is evident on the data, as the frequency of the Förster
oscillation depends on θ. For θ= 0◦ we observe the coherent oscillation at resonance,
as described in Section 9.4. As θ increases, the frequency of the oscillation decreases.
Around θ= 55◦, we do not observe any oscillation, but we only observe the decrease
in the population Pdd due to dephasing in the system (see Section 9.4.4). This angle
corresponds to the so-called “magic angle” (θ= 54.7◦), where the angular prefactor
(1− 3 cos2 θ)/2 (and thus the interaction) cancels. Increasing the angle even further
allows us to observe again a coherent interaction with increasing frequencies. We
measure the oscillation frequency νosc as a function of θ by fitting the data by a
damped sine. Figure 9.19a shows the result of this approach, where the sign of
the interaction has not been determined experimentally, but has been inferred so
as to match the the theoretical expectations. A polar representation of the same
results is shown in Figure 9.19b, where we recognize the main features of the function
(1−3 cos2 θ)/2, and in particular the cancellation for the angle 54.7◦. We next analyze
the measured angular dependence in more detail.

Analysis of the results

We fit the measured angular dependence shown in Figure 9.19 using the function:

f(θ) =K
1− 3 cos2 θ

2
, (9.46)
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Figure 9.18: Förster oscillations for different angles θ. In this experiment the
interatomic distance is fixed to R= 9.1 µm. The Figure shows the Förster oscillations
obtained for various angle θ. We observe that the frequency of the oscillation depends on θ,
which shows the anisotropy of the interaction. In particular the interaction cancels around
the “magic angle” θ= 54.7◦.
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Figure 9.19: Angular dependence of the interaction. a, Fits of the Förster oscilla-
tions by damped sines allow measuring the evolution of the strength of the interaction. The
graph plots νosc as a function of θ. The solid line is a fit by function K(1− 3 cos2 θ)/2. The
fit gives K = 8.1±0.1 MHz, with a reduced chi-squared χred' 5. b, Representation in polar
coordinates of the same set of data. The points for the angles θ and θ + 180◦ are identical.
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we obtain:

K = 8.1± 0.1 MHz , (9.47)

with a reduced chi-squared χred' 5 (solid line in Figure 9.19). The fit shows a sig-
nificant deviation from χred = 1, showing that the chosen fitting function does not
fully agree with the measured angular dependence. This might be an indication that
the other neighboring Förster resonances also contribute to the interaction, so that
the system can not be described by only two levels at resonance, as we considered
in a first approximation. Moreover, for the angles θ= 14.2◦ and θ= 33.7◦, we ob-
serve in Figure 9.18 that the Förster oscillations show a more pronounced damping,
which could also indicate the presence of a beatnote between several frequencies. As
a consequence, we perform the spectroscopy of the system for θ 6= 0◦.

9.5.3 Spectroscopy of the system for θ= 30◦

We now fix the angle to θ= 30◦, and perform a spectroscopic measurement of the
system as described in Section 9.3.

Experimental procedure

In this experiment, we fix the interatomic distance to R= 9.1 µm. For electric fields
that vary between 4 mV/cm and 44 mV/cm, we scan the laser detuning δ and mea-
sure the probability P00 of loosing both atoms. In order to obtain a better spectral
resolution than in Section 9.3, we narrow down our excitation linewidth and increase
the interrogation time. Here, Ω/2π= 0.76 MHz and τ = 1000 ns.

Experimental results

Figure 9.20a shows the result of this spectroscopic measurement. The experimen-
tal spectrum shows several avoided crossings, which confirms the presence of other
Förster resonances for the system, between |dd〉 and the different |p̃f i〉 Zeeman sub-
levels. We resolve the avoided crossing at F ' 32 mV/cm corresponding to the reso-
nance between |dd〉 and |p̃f 1〉 studied earlier for θ= 0◦ (see Section 9.1). Compared
to the situation at θ= 0◦, the separation between the two peaks at resonance (and
the strength of the interaction) is reduced, which is another piece of evidence of the
fact that the interatomic interaction is smaller for θ= 30◦ than for θ= 0◦. However,
the proximity of the different Förster resonances suggest that for a given field, several
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Figure 9.20: Spectroscopy at the Förster resonance for θ=30◦. a, Experimental
excitation spectrum for two atoms separated by R=9.1 μm. The population of double loss
P00 is plotted as a function of δ and Fz. We observe several avoided crossings between the
different resonant pair states. The white vertical dashed line indicates the position of the
Förster resonance we studied. The white curved dashed lines represent the Stark map of the
pair states, calculated in the presence of interactions using the measured C3,osc coefficient
(see Section 9.4). b, Simulated two-atom excitation spectrum where the population in the
doubly-excited state Prr is plotted as a function of δ and Fz. We include the 3.3 G magnetic
field in the simulation, as we will describe in Section 9.6.1.
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levels can contribute to the interaction energy, leading to complicated angular depen-
dence of the interaction. Note that the relative position between the different Zeeman
sub-levels |p̃f i〉, and between the different resonances can be varied by changing the
strength of the magnetic field we apply on the atoms (see Chapter 5). Using the Zee-
man effect, we have the possibility to tailor even further the angular dependence of
the dipole-dipole interaction. In the next Section, we simulate the system by taking
into account the magnetic field.

9.6 Förster resonance in a magnetic field

So far, we have not considered the effect of the magnetic field in our simulations.
However, when θ 6= 0◦, several Zeeman sublevels contribute to the interaction. The
relative position of the different states depends on the value of the magnetic field.
The magnetic field offers a degree of freedom in the system to tailor the angular
dependence of the interaction. In this Section, we include the Zeeman effect in our
simulations.

9.6.1 Zeeman Hamiltonian

The Landé factors for the different states of interest in this Chapter are given in
Table 5.2. For S-states, P -states and D-states, we have seen in Section 5.3.1 that the
perturbative approach is valid, due to their large fine-structure splittings. For two-
atom states that are combinations of |g〉, |p〉 or |d〉, the effect of the magnetic field
is to shift the eigenenergies of the system by a quantity ∆EB without disturbing the
eigenstates. However, the situation is different for F -states, where we have to consider
the couplings to states of different J introduced by the Zeeman Hamiltonian. Indeed,
ĤB couples the states

∣∣57F5/2,MJ

〉
with the states

∣∣57F7/2,MJ

〉
, that are split by a

fine structure splitting of less than 1 MHz, which is of the same order or smaller as
our typical Zeeman shifts. In total, we have to consider in our simulation the nine
pair states {|gg〉 , |g̃d〉, |dd〉 , |p̃f i〉}, where i ranges from 1 to 6, and where we have
defined:





|pf4〉 ≡
∣∣61P1/2,MJ = 1/2; 57F7/2,MJ = 5/2

〉

|pf5〉 ≡
∣∣61P1/2,MJ = 1/2; 57F7/2,MJ = 3/2

〉

|pf6〉 ≡
∣∣61P1/2,MJ = 1/2; 57F7/2,MJ = 1/2

〉
.

(9.48)
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Table 9.3: Polarizabilities of the pair states |p̃f i〉 with i∈{4; 5; 6}. The polariz-
abilities are obtained in the weak field limit as describe in Section 5.3.2. They are given
in kHz.(mV/cm)−2.

State α

|p̃f 4〉 25.4

|p̃f 5〉 31

|p̃f 6〉 33.1

The diagonal matrix elements for ĤB are the different Zeeman shifts for every pair
state. We calculate them by summing the one-atom Zeeman shifts obtained using
Equation 5.9. The non-diagonal matrix elements are combinations of Clebsch-Gordan
coefficients, calculated using Equation 5.11. The Hamiltonian ĤB couples states of
same MJ , and we obtain the following coupling coefficients between the states |p̃f i〉:





〈p̃f 1|ĤB|p̃f 4〉 = 〈f1| ĤB |f4〉 = −
√

6/7 µBB

〈p̃f 2|ĤB|p̃f 5〉 = 〈f2| ĤB |f5〉 = −
√

10/7 µBB

〈p̃f 3|ĤB|p̃f 6〉 = 〈f3| ĤB |f6〉 = −2
√

3/7 µBB .

(9.49)

9.6.2 Stark Hamiltonian

We have seen in Section 5.3.2 that for the small fields used in this thesis, the Stark
effect can be treated perturbatively using second-order perturbation theory. To sec-
ond order the electric field shifts the eigenenergies of the system while the eigenstates
stay unperturbed. As a consequence, the Stark Hamiltonian ĤF is diagonal, and its
diagonal elements are given by −αF 2

z /2, where α are the polarizabilities of the differ-
ent pair states. The calculated polarizabilitites for the states {|p̃f i〉 (i∈{4; 5; 6}) are
given in Table 9.3, giving us all the information to compute the Stark Hamiltonian6

(see Section 5.3.2).

6The polarizabilities for the other states were given in Table 9.2. The polarizability for the |gg〉
is ' 0, and the polarizability for the state |g̃d〉 is half the polarizability given for the pair state |dd〉.
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Figure 9.21: Effect of combined electric and magnetic field. When adding a 3.3 G
magnetic field, the states |p̃f i〉 (i∈{1; 2; 3}) respectively mix with the states |p̃f j〉 (j ∈
{4; 5; 6}). We obtain five distinct resonances of various strengths, given by the degree of
admixture of the states. The state |dd〉 is shown in red. For every eigenstate |Ψ〉 of the
hamiltonian Ĥtot, the weights of the states |p̃f1〉, |p̃f2〉 and |p̃f3〉 are given by the color
scales. The green circle indicates the position of the resonance we chose to study in this
Chapter.

9.6.3 Total Hamiltonian

The system is described, in the presence of an electric and a magnetic field, by the
total Hamiltonian

ĤTot = Ĥ0 + ĤF + ĤB , (9.50)

where Ĥ0 is the unperturbed Hamiltonian, and where we have not considered dipole-
dipole interactions. The result of the diagonalization of ĤTot is shown in Figure 9.21.
Because all the states have different polarizabilities, the system exhibits a discrete set
of Förster resonances. The magnetic field shifts the energies of the different states,
which gives the possibility to tune the positions of the different resonances. The
magnetic field also adds some couplings to other states, thus adding extra resonances.
In total, we observe the presence of five resonances, the strength of which depends
on the degree of admixture of the states at the position of the crossing, and can thus
also be tuned by varying the magnetic field. In this Chapter, we studied in detail the
resonance occurring between the states |dd〉 and |p̃f 1〉 that is indicated by a green
circle in Figure 9.21.
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9.6.4 Including the magnetic field in the simulation

We simulate the system by generalizing the approach of Section 9.3 in the nine-state
basis {|gg〉 , |̃dg〉, |̃dd〉, |p̃f i〉} that includes all relevant Zeeman sub-levels. For θ= 0◦,
the only state that contributes directly to the dipole-dipole interaction is |p̃f 1〉. The
state |p̃f 4〉 also contributes indirectly to the dipole-dipole interaction via its Zeeman
coupling to |p̃f 1〉 that mixes the two states. At the position of the resonance, the
mixing between |p̃f 1〉 and |p̃f 4〉 is small enough, and does not change significantly
the conclusions of the simulations discussed earlier. This stays true as long as the
dipole coupling between |dd〉 and |p̃f 1〉 is larger than the magnetic coupling between
|p̃f 1〉 and |p̃f 4〉 (i.e. for R< 16 µm, which is verified in our experiments).

We then fix the angle to θ= 30◦. In this case, V̂dip induces couplings between |dd〉
and the states |p̃f 1〉, |p̃f 2〉 and |p̃f 3〉 verifying respectively ∆Mtot = 0, 1 and 2 (see
Equation 9.42). There exist multiple resonances in the system, each with a particular
angular dependence directly related to ∆Mtot. Because of the presence a 3.3 G mag-
netic field that mixes |p̃f i〉 (i∈{1; 2; 3}) with |p̃f j〉 (j ∈{4; 5; 6} respectively) there
exist five different crossings with |dd〉 (see Figure 9.21). We simulate the spectrum
of the system for an interatomic distance R= 9.14 µm, with Ω = 2π × 0.76 MHz and
τ = 1000 ns (parameters used experimentally in Section 9.5.3). The result of the
simulation is presented in Figure 9.20b. The spectrum shows four avoided crossings,
corresponding to different Förster resonances. Note that the number of resonances
and their positions qualitatively agree with the spectrum observed experimentally
in Figure 9.20a. In particular, the simulation confirms that we do not resolve the
first two resonances shown in Figure 9.21. We finally notice that for our parame-
ters, the resonance between |p̃f 1〉 and |̃dd〉 occurs at the highest electric field and
is well separated from the other resonances. The proximity of the other resonances
only slightly influences the angular dependence of the interaction, which explains the
small deviations from (1− 3 cos2 θ)/2 observed in Section 9.5.

9.7 Conclusion

We directly observed the oscillation between the two degenerate pair states of two
single Rydberg atoms at a Förster resonance, demonstrating the coherent nature of
the mechanism underlying resonant energy transfer. The presence of only two atoms
at a controlled distance, with well defined internal states, was fundamental to this
study. Förster resonances offer the possibility to work with strong and switchable
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interactions, which will prove useful for applications in larger arrays of atoms. We
finally measured the angular dependence for one particular resonance. Controlling
the relative position between several resonances using the Zeeman effect would finally
allow to tailor the angular dependence of the interaction, therefore reaching a full level
of control on the interaction between two atoms. One interesting line of research for
the future will be to extend the system to a few atoms, so as to observe three-body
or four-body interactions [Gurian et al. (2012)] (see Outlook). In larger ensembles of
atoms, Förster resonances will also allow to study the propagation of entanglement
in disordered systems of atoms [Günter et al. (2013)].
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Outlook

This thesis describes my work on two different experimental setups developed for
quantum engineering. I have first described the fabrication and characterization of
tapered optical nanofibers that are promising to interface cold 87Rb atoms with a
superconducting qubit. I have then characterized the interactions between two and
three Rydberg atoms in different regimes, ranging from van der Waals to resonant
dipole-dipole interactions. Here, I briefly describe the latest developments and future
goals for both setups.

JQI setup

Since I left JQI, significant progress has been achieved towards the realization of the
hybrid quantum system. Atom trapping has been demonstrated around the nanofiber,
a new resonator has been fabricated and tested, and the design of the full setup has
evolved to take into account what has been learned from the preliminary studies
presented in this first part:

• The team at JQI have now demonstrated atom trapping using our nanofibers
in a vacuum chamber. Figure 1a shows preliminary data concerning the trans-
mission of a resonant (780 nm) probe through the fiber, when ∼ 500 atoms are
loaded in the optical dipole traps around the nanofiber. We observe a strong
absorption line due to the trapped atoms. The shift, broadening and asymme-
try of the line come from state dependent light shift of the transition frequency
frequency induced by the trapping light.

• Our estimates of losses due to Rayleigh scattering in the nanofiber (see Chap-
ter 3) showed that the amount of light impinging on the resonator in the initial
design would be detrimental for its quality factor. This has led to a new design
of the resonator, where the position of the fiber minimizes the amount of stray
light. The new resonator is shown in Figure 1b. The superconducting circuit is

239
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Figure 1: Latest results and future directions for the JQI setup. a, Absorption
spectrum of a probe beam by atoms trapped around the nanofiber. b, New design of the
resonator. c, Position of the nanofiber with respect to the resonator. d, Current envisioning
of the full setup.
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made of aluminum, and its quality factor has been measured to be greater than
105. As before, it is composed of an inductor and an interdigitated capacitor.
The latter has a larger surface area, making it more prone to the detrimental
effects of stray light. However, the atoms only need to be close to the inductor,
in order to maximize their magnetic coupling to the resonator. The adopted
design has the fiber and the resonator in the same plane, the atoms being close
to the inductor (see Figure 1c). Preliminary tests have shown that in this con-
figuration, the quantity of light absorbed by the resonator is indeed greatly
decreased, by about two orders of magnitude.

• Finally, the next steps will be to integrate the various elements in the cryogenic
environment: the MOT for producing cold atoms in a 3.5 K stage, the super-
conducting resonator in the 10 mK stage, and the nanofiber for transporting
the atoms from the MOT to the resonator. Figure 1d shows the current design.
A 2D MOT, under construction, will serve as a source of slow atoms to load
a pyramid MOT, which has the advantage of being compact and of using only
one beam [Lee et al. (2013)]. The MOT mirrors will be thermally anchored
to the 3.5 K stage of the cryostat, that has a cooling power of the order of a
few watts, at a distance of about 5 to 10 cm from the superconducting chip.
Moreover, with such a design, the MOT coils are far from the chip, and the
MOT magnetic field should not affect the resonator. The final step will be to
transport the trapped atoms from the MOT to the chip using the nanofiber as
an optical conveyer belt over ∼ 10 cm. Recently, such a transport was demon-
strated over millimeter distances [Schneeweiss et al. (2013)]. The challenge will
consist in extending the transport distance by one order of magnitude.

IOGS setup

During my thesis, we have studied in great detail systems of two and three interacting
Rydberg atoms, in both the van der Waals and the resonant dipole-dipole regimes.
This has allowed us to characterize the building blocks of a future Rydberg quantum
simulator. Our long term goal is to extend this approach to larger arrays containing
a few tens of atoms, for instance in order to simulate spin systems. Two important
steps along those lines have already been achieved in the laboratory, and will be
detailed in the thesis of H. Labuhn:
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Figure 2: Towards larger number of atoms on the IOGS setup. a, Example of
arrays of microtraps with geometries that are relevant for quantum simulation [Nogrette
et al. (2014)]. b, Screen capture of the new control software used to acquire the fluorescence
of atoms using the EMCCD camera. Fluorescence images of atoms in a 3× 3 square matrix
are shown on the left. The white traces plot the atom signals for each of the nine sites. We
observe in red the evolution of the number of loaded sites as a function of time. c, Cartoon
of a possible way to obtain a fully-loaded 4×4 square matrix (“target array”). We juxtapose
two versions of the array we want to load. Using our current loading scheme, we obtain
a sparsely-loaded array. The idea is to use our movable optical tweezer to rearrange the
configuration of the atoms.
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• We have demonstrated [Nogrette et al. (2014)] that the SLM allows creating
arrays containing up to 100 microtraps with arbitrary two-dimensional geome-
tries, as exemplified in Figure 2a.

• More recently, we have changed the fluorescence detection system, by replacing
the three fiberized avalanche photodiodes by an EMCCD camera, where each
pixel can be considered as a single photon detector with millisecond time res-
olution. A new software (see screen capture in Figure 2b) has been developed
to acquire and process rapidly (∼ 50 ms) the EMCCD images and trigger the
experimental sequences.

With these tools, some interesting applications can already be implemented with
low number of deterministically positioned atoms. Indeed, for small arrays containing
less than five or six atoms, it is still reasonable to wait for all traps to be loaded at
the same time (for five traps the duty cycle of the experiment is ∼ 10 s). As a
consequence, natural extensions of the work presented in this thesis can be carried
out:

• Production of W-states with up to six atoms using the Rydberg blockade, a
natural extension of the work performed with two atoms [Wilk et al. (2010)].

• Study of the propagation of spin excitations along a small spin chain or around
plaquettes. In particular, for the case of several excitations, the equivalence
between spin excitations and hard-core bosons should lead to correlations in
the dynamics of the excitations.

• Study of few-body Förster resonances as observed recently in group of P. Pillet
in Orsay [Gurian et al. (2012); Cheinet (2014)] for the three-body and four-body
cases.

For some experiments with much larger arrays, the probabilistic loading will in-
troduce randomness in the filling of the array with a filling factor ∼ 1/2, as can be
seen in Figure 2b. This intrinsic randomness can nevertheless be seen as an asset. For
example, microwave spectroscopy of Rydberg atoms randomly loaded in a large array
could shed light on the anomalous diffusion of Rydberg excitations observed in frozen
Rydberg gases [Anderson, Veale, and Gallagher (1998); Mourachko et al. (1998); Gün-
ter et al. (2013)] or allow for the study of dipole-coupled spins in a sparsely loaded
array as done recently with polar molecules in optical lattices [Yan et al. (2013)].
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Finally, for some applications in quantum information processing and quantum
simulation, one would need to work with deterministically loaded arrays of micro-
traps. We will explore possible ways to achieve more deterministic loading. Re-
cent proof-of-principle experiments using either the Rydberg blockade [Saffman and
Walker (2002); Ebert et al. (2014)] or modified light-assisted collisions [Grunzweig
et al. (2010); Carpentier et al. (2013)] have shown increased loading probabilities for
a single trap, of 60% and 90% respectively. Another approach that we might also
try would consist in sparsely loading a larger array, and dynamically rearranging
the configuration of the atoms by using the movable optical tweezer described in
Chapter 6 to move the atoms from filled sites to empty sites, as represented in Fig-
ure 2c, in the spirit of the pioneering experiments described in [Dumke et al. (2002);
Miroshnychenko et al. (2006a,b); Kruse et al. (2010); Schlosser et al. (2011)].

Coupling Rydberg atoms to superconducting circuits

As a final concluding remark, it would be interesting to explore the coupling between
Rydberg atoms and a superconducting circuit, by the way of an on-chip resonant
microwave guide. This route would thus combine the tools developed in the two parts
of this thesis. In this approach, one would use the electric dipole coupling between
the field above the waveguide and the strong dipole of the transition between two
Rydberg states. As the wavelength of the Rydberg transitions around n= 50 lies in
the 10-100 GHz range, the wavelength is on the order of the typical size of a microwave
resonator circuit (∼ 1 mm) and this architecture seems natural. This route is actually
followed by several groups, in particular at ETH Zurich [Hogan et al. (2012)] and at
the University of Tübingen [Cano et al. (2011)]. Among the challenges one has to face
is the presence of surfaces close to the Rydberg atoms, which usually leads to shifts of
the Rydberg lines due to the fluctuating patch charges on the surfaces [Hattermann
et al. (2012)]. Recently, the team of M. Brune has demonstrated a solution to this
problem by saturating the surface by a layer of rubidium [Celistrino Teixeira (2014)].
Another problem if one wants to couple a few, well-defined number of Rydberg atoms
to an on-chip waveguide is to position them close to the surface carrying the guide.
This is where the optical nano-fibered could prove useful. Despite the atoms being
close to the fiber (∼ 100 nm), the small size of the fiber (∼ 100 nm also) could minimize
the amount of dielectric seen by the atoms and therefore the detrimental effect of the
patch charges when they are excited in a Rydberg state. Other problems would have
to be considered, such as the forces between the atoms and the surface, but their
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effect could be minimized by placing the atoms in the Rydberg states only for short
amount of times. Finally, one could use the control over the interactions between
Rydberg atoms demonstrated in this thesis to engineer quantum states of a few-atom
ensembles that could be largely immune to the effect of fluctuating electric fields. A
lot remains to be explored in this direction.
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