Line-field confocal optical coherence tomography based on tandem interferometry with a focus-tunable lens - Institut d'Optique Graduate School Access content directly
Journal Articles Biomedical optics express Year : 2024

Line-field confocal optical coherence tomography based on tandem interferometry with a focus-tunable lens

Jonas Ogien

Abstract

This article introduces an innovative line-field confocal optical coherence tomography (LC-OCT) system based on tandem interferometry, featuring a focus-tunable lens for dynamic focusing. The principle of tandem interferometry is first recalled, and an analytical expression of the interferometric signal detected is established in order to identify the influence of key experimental parameters. The LC-OCT system is based on a Linnik-type imaging interferometer with a focus-tunable lens for focus scanning, coupled to a Michelson-type compensating interferometer using a piezoelectric linear translation stage for coherence plane scanning. The system achieves axial and lateral image resolutions of approximately 1 µm over the entire imaging depth (400 µm), in line with conventional LC-OCT. Vertical section images (B-scans) of skin acquired at 14.3 fps reveal distinguishable structures within the epidermis and dermis. Using refocusing and stitching, images of a tissue phantom were obtained with an imaging depth superior to 1.4 mm. The system holds promise for LC-OCT miniaturization, along with enhanced imaging speed and extended imaging depth.
Fichier principal
Vignette du fichier
Biomedical optics express (LC-OCT based on tandem interferometry ...).pdf (5.79 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-04683446 , version 1 (02-09-2024)

Identifiers

Cite

Flora Latriglia, Jonas Ogien, Arnaud Dubois. Line-field confocal optical coherence tomography based on tandem interferometry with a focus-tunable lens. Biomedical optics express, 2024, 15 (9), pp.5384. ⟨10.1364/BOE.530717⟩. ⟨hal-04683446⟩
0 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More