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Abstract: An interlacing procedure enabling to construct spatially invariant models of
ELT-sized AO systems and atmospheric turbulence involving different spatial resolutions
is presented. This approach enables to perform highly parallelizable off-line and on-line
computations. © 2020 The Author(s)
OCIS codes: (010.1080) Active or adaptive Optics; (010.1330) Atmospheric turbulence

1. Spatially invariant models and the curse of dimensionality

The control algorithms of the Adaptive Optics systems intended to equip the upcoming Extremely Large Tele-
scopes (ELTs) will have to cope with numbers of Deformable mirror (DM) commands, wavefront sensor (WFS)
measurements larger by an order of magnitude than for AO systems currently operational on existing VLT-class
instruments. As a result, high-performance control algorithms based on matrix-vector multiplications simply can-
not be scaled up to ELT-sized AO systems, at least using available computing technology. To overcome this ‘curse
of dimensionality’, it has been proposed to switch to an approach based on assumptions of spatial invariance. This
would enable to replace matrix-vector multiplications with Fourier-domain computations, spatial convolutions or
some combination of the two techniques [1, 2].

However, these spatially invariant approaches exhibit several significant drawbacks. These include the need to
mitigate edge effects, but also the fact that in order to achieve efficient disturbance compensation, the incoming
turbulent wavefront need to be discretized at a resolution higher than the DM/WFS spatial density. The snatch
is that selecting a higher resolution makes it impossible to construct a model of the AO loop – including the
DM and WFS subsystems – which would be both accurate and spatially invariant. In addition, in tomographic
configurations, high performance AO control may require different spatial resolutions at different altitudes [3].

In this contribution, we show how to overcome this conundrum by resorting to an interlacing procedure which
enables to combine stochastic disturbance models with DM and WFS models at different resolutions into a single
spatially invariant model, albeit involving vectors of infinite 2D screens and matrices of spatial convolutions.
These interlaced models, which are inherently very easy to parallelize efficiently, can the be used to perform a
number of useful on-line and off-line calculations, such as computing optimal projections and interpolations or
evaluating the DM fitting error variance.

2. Interlaced phase screens, matrix-valued convolution operators and Gaussian random fields

Consider first an infinite 2D phase screen φ discretized over a spatial grid with resolution ds, with φ(i, j) denoting
its value at spatial coordinates (dsi,ds j). Let us assume for the sake of simplicity that the DM and WFS share
the same spatial resolution dsub = nsds, so that each WFS subaperture contains n2

s points. We first assign a tag
1 ≤ k ≤ n2

s to each of the n2
s relative positions in a given subaperture. The interlaced version of φ , denoted as φe,

will then be defined as a vector of n2
s infinite screens at DM/WFS resolution. For example, for ns = 2:

φe(i, j) =


φe,1(i, j)
φe,2(i, j)
φe,3(i, j)
φe,4(i, j)

=


φ(2i,2 j)

φ(2i,2 j+1)
φ(2i+1,2 j)

φ(2i+1,2 j+1)

 (1)
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Consider first a spatially invariant operator H at resolution ds, so that the product z = Hφ can be equivalently
expressed as the convolution product z = h∗φ or as the pointwise multiplication z(ν) = H(ν)φ(ν)in the Fourier
domain. The interlaced version of h is then a square matrix of convolution operators with resolution dpup, acting on
φe. For example, when dsub = 2ds, the interlaced versions of the high-resolution one-step horizontal and vertical
shifts Sx and Sy are respectively

sx,e =


0 sx 0 0
I 0 0 0
0 0 0 sx
0 0 I 0

 sy,e =


0 0 sy 0
0 0 0 sy
I 0 0 0
0 I 0 0

 (2)

This procedure enables to handle operators which juggle between the two spatial resolutions ds and dpup. Thus, the
under-sampling operator which extracts the phase values from the upper left corners of every subaperture will be
represented by the 1×n2

s line vector Ue =
(

I 0 . . . 0
)
. Conversely, the DM influence function which maps

a grid of commands at resolution dsub onto a phase at the resolution of the DM command grid will be represented
by an n2

s × 1 column vector N =
(

N1 N2 . . . Nn2
s

)T
. Finally, when φ is Gaussian zero-mean stationary

random field, i.e. a 2D stationary Gaussian process with spatial covariance Σφ (i, j) = var(φ(p+ i,q+ j),φ(p,q)),
the spatial covariance Σφ ,e of its interlaced version φe takes the form of a n2

s ×n2
s matrix of convolution operators

at the coarser scale dsub.

3. Optimal projection onto DM and phase interpolation, fitting error and interpolation variance evalua-
tion

The optimal (minimum variance) projection of a high-resolution phase φ onto the DM is obtained as the matrix
convolutive version of the standard matrix-vector orthogonal projector, namely Pu = (NtN)−1Nt, where Nt is
the transpose of N. In practice, each of the n2

s convolution kernels in this interlaced operator can be accurately
computed by evaluating their discrete-time Fourier transform over a sufficiently large square grid. Likewise, the
optimal interpolator Intopt which enables to compute the conditional expectation Intoptφe,1 = E(φe|φe,1) is given
by the standard formula Intopt =U t

eΣφ ,e(U t
eΣφ ,eUe)

−1.

4. Illustrative ELT-sized simulation

As an illustrative application, we compute the convolutive operators N and Pu in a scenario representative of
an E-ELT AO system, with a subaperture size dpup = 0.5 m, a Gaussian DM influence function with coupling
factor 0.3 and an oversampling factor ns = 8. Convolutive calculations were performed with a spatial covariance
Σφ limited to an 80 m wide square domain, assuming standard Kolmogorov statistics, outer scale L0 = 25 m
and Fried parameter r0 = 12 cm. Using the fact that the DM fitting error σ2

fit corresponds exactly to the mean
of the variances of the coordinates of the interlaced phase screen (I −NPuUe)φe, this error budget term was
evaluated by generating a 80 m wide phase screen φ at the fine spatial resolution, interlacing it, then computing
and desinterlacing (I−NPuUe)φe. The result of this Monte-Carlo simulation gives a fitting error evaluation in only
a few minutes on an ordinary laptop computer without any parallelization.
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