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Abstract: I extend to the case of complex matrices, rather than the case of real matrices as in a prior
study, a method of iterating the operation of an “inflating random matrix” onto a state vector to
describe complex growing systems. I show that the process also describes in this complex case a
punctuated growth with quakes and stasis. I assess that under one such inflation step, the vector
will shift to a really different one (quakes) only if the inflated matrix has sufficiently dominant new
eigenvectors. The vector shall prefer stasis (a similar vector) otherwise, similar to the real-valued
matrices discussed in a prior study. Specifically, in order to extend the model relevance, I assess
that under various update schemes of the system’s representative vector, the bimodal distribution
of the changes of the dominant eigenvalue remains the core concept. Overall, I contend that the
punctuations may appropriately address the issue of growth in systems combining a large weight
of history and some sudden quake occurrences, such as economic systems or ecological systems,
with the advantage that unpaired complex eigenvalues provide more degrees of freedom to suit real
systems. Furthermore, random matrices could be the right meeting point for exerting thermodynamic
analogies in a reasonably agnostic manner in such rich contexts, taking into account the profusion
of items (individuals, species, goods, etc.) and their networked, tangled interactions 50+ years after
their seminal use in R.M. May’s famous “interaction induced instability” paradigm. Finally, I suggest
that non-ergodic tools could be further applied for tracking the specifics of large-scale evolution paths
and for checking the model’s relevance to the domains mentioned above.

Keywords: random matrices; growth; economy; ecology; evolution; ergodicity; inflation

1. Introduction

Thermodynamics has the virtue of embedding a myriad of degrees of freedom into a
simple collective response to system boundary conditions, based on maximum likelihood
for equilibrium states. For very global systems, such as the economy or the planet’s
ecological system, however, which are fed by external sources such as the sun, the challenge
is different since non-equilibrium systems must be described, while the variety of their
constituents is huge. The idea of a “simple collective response” thus becomes unlikely.
Rather, a description of the largest events becomes the logical focus, hence a study of the
role of stability and instability. It is now 50+ years since R.M. May [1,2] introduced the use
of random matrices to study the stability of ecological systems, pointing out that the largest
eigenvalues related to the system stability were an interesting “proxy” to tackle stability
issues while ignoring much of the system’s detail (hence, a thermodynamic inspiration).

Nowadays, while May’s approach is still debated (i.e., whether more interactions beget
instability in real ecological systems), the description of our own economic growth as actors
of the Anthropocene relies on extreme simplifications. These are, for instance, the GDP
(gross domestic product) or sectorial analysis limited to a few dozen sectors. Big data, on the
other hand, are intensively exploited in the financial realm. Some prominent contributors
(J.-P. Bouchaud [3] and M. Smerlak [4], for instance, among others) are exploring uncharted
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interdisciplinary territories with all the power of statistical physics and random matrices
theory (RMT).

Almost all of the literature on RMT, however, studies matrices of a given size N
and the asymptotics N → ∞ . For instance, while it is well known that for real matrices
M ∈ RN ×RN (symmetric or from the Ginibre set), the largest eigenvalue λmax is dis-
tributed in an interval whose width scales with N−2/3, given by the Tracy–Widom law
(see [5] for a good analytical approximation). But how the largest eigenvalues and eigen-
vectors evolve when adding an extra row and column ( N → N + 1) is hardly documented
(with a provision for the so-called “cavity method” [6] used for the recursive deduction of
matrix properties, in the case of N + 1→ N ).

In a recent contribution [7], the “matrix inflation” proposal was put forward to describe
the growth of complex systems with a profusion of distinct “elements”. It was most notably
aimed at describing their “punctuated” evolution according to the paradigm proposed
by S.J. Gould for biological evolution: the occurrence of long stasis separated by short
“quakes” [8,9]. The economy is another domain marked by a long series of technical
disruptions. These disruptions were accelerated by the introduction of fossil energies two
centuries ago, with such fuels becoming a conundrum for the future of societies. The core
idea of the “matrix inflation” proposal is that the time-wise addition of a new row and
column to an “iteration matrix” gives the representative vector a kind of “kick” that is
adapted to model the role of successive innovations. The variable role of innovations,
kicking large changes or not, is also a tenet of ecological systems’ evolution. The adoption
of a new paradigm (for either case) occurs when the dominant eigenvalue and eigenvector
make a leap instead of incrementally evolving under this action. This is possible in a
privileged manner in a non-Hermitian setting because the moduli of extreme eigenvalues
can leapfrog each other. In a Hermitian setting, on the contrary, the repulsion of neighbor
eigenvalues translates into a no-leapfrog rule and an anti-crossing eigenvector exchange
scenario (although, if not in an adiabatic limit, one could invoke Landau–Zener tunneling,
for which a study within a non-Hermitian setting has recently appeared [10]).

The issue of what is a “quake” in the economy is not obvious, because some global
quantities still show some continuity in their trends. One example is the correlation of
PEC (primary energy consumption) to GDP. It holds well on the 1820–2020 interval [11]
(linear until 1920, sublinear from 1920 on), in spite of major events (WWI and WWII, flu
epidemics, collectivized economy in the USSR, and the Cold War) and major overhauls in
energy choices. Wood, coal, and oil have been added to the mix, which is still made from
mostly fossil-sourced and carbon-spewing energies. Some minor quakes are apparent [11];
however, it is appropriate to emphasize that technical innovation has no privileged time
scale: while, e.g., in France, cars caused the horse market to fully collapse within a decade
pre-WWI, nuclear power plants and ammonia synthesis to mass-produce fertilizers were
ramped up over three decades in the second half of the 20th century. Thus, it is likely that
each technological disruption has had only a weak individual effect on our thermodynamic
fate. To capture the scale of the changes to be made in our material civilization, and compare
it to known “quakes”, a model of our growth and of its internal dynamics in terms of the
profusion of objects and of the network of interaction would be enlightening. This was,
remotely, the scope of the previous contribution [7].

In this paper, I re-examine the operation of this model with the aim of establishing
more thoroughly to what degree the succession of dominant eigenvalues/eigenvectors is its
principle of operation. It is, thus, an exploration of a less-explored swath of random matrix
theory, with the aim of consolidating its further use to describe large real systems. The
emerging features could also trigger new explorations of our way to cast the complexity of
our society’s path in innovation. This may be useful to tame the trends of energy use that
have been emerging, for which current mitigation strategies have unclear perspectives.

Furthermore, I examine the case of entirely complex matrices, in which eigenvalues
do not come in conjugate pairs, so that some tracking tools like the Rayleigh quotient
have a simpler use. The methodology is, thus, to assess the role of a renewal strategy



Entropy 2023, 25, 1507 3 of 14

when “inflating” and “iterating” the model’s matrices by tracking the eigenvalues and the
Rayleigh quotient. The latter is a good tool to capture the way an eigenvector evolves, with
quakes and stasis, or with a more continuous evolution. One point of this methodology
is to relate a discrete model of matrices, whereby a change in size is the key event within
the more continuous frame of real-world evolution. Thus, I explore how the model works
depending on the way it is iterated in time.

Once such a basis is consolidated, the use of the model to deal with the profusion of
actual objects/goods in economy (or of species/individuals in ecosystems) could be devel-
oped. A possible perspective, in the spirit of thermodynamics, would be to apply various
metrics of non-ergodicity (the subject has been interestingly linked to inequalities in the
economy by O. Peters et al. [12–15]). This approach is complementary to the “microscopic”
aspect of the renewal strategy. The issue of non-ergodicity of the evolution described by
the model is certainly an important “macroscopic” aspect. It can be approached from the
angle of the type of long-term memory the system possesses of its past, of the way in which
its current trajectory is dictated by its previous states. I will propose an initial exploration
of this question.

The knowledge gained through these explorations could then be integrated into a
more general vision. A desirable objective is to find the proper scaling in terms of the efforts
needed to modify growth in a way compatible with current IPCC reports, for example:
how big are the “quakes” the economy needs to shift to an acceptable trajectory. If we refer
to related scientific areas, in order to act in a highly entangled economy, the desired new
“quakes” and the following “stasis” could be better defined in the grammar of network
theory, which closely parallels that of non-Hermitian Hamiltonians and RMT. Physicists
practicing non-equilibrium thermodynamics would thus have the opportunity to contribute
to radical transformations. Econophysics has shown some aspects of this understanding,
but, in my opinion, it has failed to describe the “network complexity” of the real world. In
a related area, impressive studies of actual networks have provided many new insights
(e.g., labor flows and firm size in the work of R. Axtell [16]), but with more emphasis
on the nature of the links between entities (firms, people) than in relation to goods and
energy. Despite the substantial changes that have occurred in the capitalist era (from the
single-earner family of the industrial era to the two-earner family of the post-industrial
era for example), changes captured through such a prism might constitute only a partial
picture of our material society, limiting its ability to foster large-scale changes.

After defining these aims and examining the related methodological issues, the paper
proceeds as follows: In Section 2, I recall the main basis of the model, and the quantities I
have tracked to give a reasonable idea of the relevance of the central concept of “dominance
of successive eigenvalues”, which I see as an asset in meeting the knowledge challenges
suggested above. In Section 3, I present the behavior of the model under different “iteration
schemes” and show that only a subset of the eigenvalues is concerned if slower, “sluggish”
iteration schemes are implemented. I show that there are only minor differences between
the Ginibre set of (purely real) random matrices and the (fully complex) complex set with
respect to the eigenvalue changes upon N → N + 1 “inflation”. A “pragmatic” sensitivity
analysis concludes this section. I discuss the possible role of non-ergodicity in Section 4
through some perspectives, and I conclude in Section 5.

2. The Matrix Inflation Model and Its Typical Output

The two aspects I have combined in the matrix inflation model [7] can be described
as follows.

(A) First, in an iteration scheme U(t + 1) = MU(t) where M is an eventually large
N × N matrix and U(t) a discrete-time vector function (t ∈ N∗, akin to those producing
Krylov suites), the vector U(t) tends toward the eigenvector with the largest modulus
eigenvalue λmax (in short the DEV(N), dominant eigenvector at size N). Possible degenera-
cies appear for real nonsymmetric M (Mjk ∈ R) with a majority of complex eigenvalues
coming as conjugate pairs, but only accidentally for complex eigenvalues (Mjk ∈ C). More-
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over, for random matrices with all elements taken as the scaled centered normal law,
Mjk ∈ N (0, 1)(N)−1/2 for the real case and Mjk ∈

[
N (0, 1)+iN (0, 1)] (2N)−1/2 for the

complex case, a majority of eigenvalues cluster asymptotically in the unit-radius disc. A
small fraction remains beyond it, comprising the extreme ones, lying in the “tail” of the
distribution according e.g., to various versions of the Tracy–Widom laws [5,17]. Note that
this tail is substantially more extended towards the very largest outliers in the complex
case than in the real case.

(B) Secondly, when the size of the matrix is increased N → N + 1 (one new row
and one new column, the rest unchanged), the new eigenvectors are generally far from
orthogonal to the previous ones. Thus, the DEV(N) has a sufficiently large projection on
DEV(N + 1) acting as a large seed and resulting in making the subsequent iterations of
M at size N + 1 converge to DEV(N + 1). The salt of the process is that the frequent case
is a limited change in DEV(N + 1) relative to DEV(N), regardless of the exact change in
λmax(N + 1) relative to λmax(N), whereas the rare case is that a widely different DEV(N + 1)
comes out: this rare case is logically associated (in the sense of “closer to” using an
appropriate scalar product) with one of the large eigenvalues that was just below λmax(N)
before inflation, and that took advantage of the extra row and column, so to speak, to
leapfrog above the eigenvalue of DEV(N). This rare event then corresponds to a quake.

The mechanism that consists of making U(t + 1) = MU(t) enough times (say r
repetitions) at a given size to attain a vector close to DEV(N), and then, at later times t + r,
to inflate the matrix by one new row and one new column, naturally provides a sequence of
quakes and stasis. And it also implies that the dominant eigenvectors across the quakes are
seemingly unrelated. This is exactly the feature of “growth with disruption”, which I see as
a welcome, if highly stylized, representation of the actual Schumpeterian growth picture in
economics known as destructive creation (when an innovation entirely displaces a previous
dynamic equilibrium) [18,19]; or a representation of species evolution with punctuated
equilibria à la Gould [8,9].

At this point, a few simple remarks can be made. Convergence when using a matrix
of a given size,

U(t + r) = MrU(t), (1)

depends on the difference between the dominant eigenvalue and the next (degeneracy
allowing). The scaling of the convergence is exp(−|∆λ|r). The starting point depends how
a previously converged vector U(t), which became an eigenvector pre-inflation (a right
eigenvector, in my formalism), projects onto the dominant (still right) eigenvector post-
inflation. With my normalized matrices, |∆λ| could be considered to scale like N−1. But
the inflation process itself and the fact that the system is considered just after a “leapfrog”
of the previously second dominant eigenvector (I justified this assertion with an auxiliary
drift-diffusion model leading to the same kind of q-exponential law of quakes spacing as
the law of spacing observed in the actual model [7]) could lead to a smaller-than-normal
spacing. Nevertheless, I observe that products reaching r/N & 0.3 already lead to bona
fide model convergence for the .10–15 quakes observed at the values N ∼ a few hundred.
As for the projection, it is delicate to guess its scaling, as it demands careful tracking of the
eigenvectors through the inflation stage to define it correctly. Indeed, this is typical of the
subtleties of matrix inflation analysis.

I can now present the results of Figure 1a–d, whereby I use parameters such that
the convergence is good in case (a) with r/N f inal = 0.4 and weak in case (b) with only
r = 2 (r/N f inal = 0.0133). Here, N f inal is the final size of the matrix in the computation
(done with Matlab©). I discard the absolute growth of the eigenvector at this stage, as
it is easily rescaled arbitrarily. The Figure 1a,c thus essentially show, in the form of two
color maps, the growth of the vector U(t) with its stasis and quakes, through the moduli of
its (nonzero) components. The final time t f inal = N f inalr is normalized to 1 for simplicity.
Below the figure, to find out whether the “local dominant eigenvalue” is adopted (if so,
one can reasonably infer that the corresponding eigenvector is also adopted, although the
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non-Hermitian setting calls for certain provisions), I make use of the simple tool of the
Rayleigh quotient [20] R(t) ∈ C:

R(t) =

〈
U(t)

∣∣∣M(N(t))
∣∣∣U(t)

〉
〈U(t)|U(t)〉 , (2)

where M(N(t)) indicates that I restrict the operation to the active part (N(t) × N(t)) of
the matrix (technically, I first draw a N f inal × N f inal random matrix, and use its subblock
N(t)× N(t) at the appropriate time step).
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Figure 1. Role of growth rate for Nf inal = 150 (a) eigenvectors vs. normalized time t for r = 60 repeats
(thus, t f inal = 150× 60 = 9000); the stasis with the different dominant eigenvectors are clearly visible,
e.g., from N = 55 to N = 90 (t/9000 ≈ 0.37 to t ≈ 0.60); (b) eigenvectors vs. normalized time t for
r = 2 repeats (thus, t f inal = 150× 2 = 300); the shorter stasis is “missed” by evolution. The snowy
patterns (e.g., at abscissa > 0.8) are typical of oscillations. (c) Plot of Rayleigh quotient (Re and Im
in colors, modulus in grey) and the real and imaginary parts of the few largest eigenvalues of the
local matrix of size N (see legend for colors) for r = 60 repeats; (d) same for r = 2 repeats, note the
smeared transitions of the real and imaginary parts of the Rayleigh quotient.

Below the two color maps, I plot the corresponding real and imaginary parts of the
Rayleigh quotient Re(R(t)) and Im(R(t)), as well as those of the 6 largest eigenvalues
Re(λk(t)) and Im(λk(t)) in Figure 1c,d.

Comparing the two cases, it is clear that for Figure 1c,d, r = 2 is largely insufficient to
converge to the local eigenvalue. The pattern of eigenvalues themselves features either a
smooth variation upon an inflation step, or in some case a more severe disruption. Just as
in Francis Galton’s old (about as old as Darwin’s) polyhedron explanation for irreversible
abrupt changes in evolution (see the figure, e.g., in Erwin’s review of Gould’s work [21]),
there are intrinsic tipping points in the inflation process, at least as far as the ranked
eigenvalues result is concerned. In the case of r = 2, it can be seen that the convergence to
the eigenvalues is prevented by the ongoing inflation steps. In this case, the tipping effects
are smoothed, but the dynamics may still exhibit abrupt sequences.

I am now in position to examine the various results of the next section.
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3. Results on the Operation of the Matrix Inflation Model
3.1. Inflation Model and System Inertia

Let us first study the time iteration in relation to “inertia”. If a vector is assumed
to describe a real system (economic or ecological), then this system has some inertia. It
would not shift from a matrix to an inflated matrix at once, as it takes time to have an
innovation adopted. One could think of innovation diffusion, i.e., the ability of other
innovations (other inflation steps) following a given innovation to incorporate it and
amplify its effects. This would wash out the disruption effect of any given innovation,
giving rise to “variable dynamics” all along time, and making it difficult to directly track
anything “Schumpeterian” [18,19]. This approach cannot be ruled out, but it reduces the
tipping (eigenvalue leapfrogging) behavior of the vector to a witness to the adoption of “all
the rest before” in a rather indistinct way.

Another way of introducing inertia into the model is to “mix” the output MU(t) and
the previous vector U(t) itself to obtain U(t + 1), with a simple linear mixture governed by
a coefficient α:

U(t + 1) = (1− α)U(t) + αMU(t), (3)

While the idea is fairly intuitive (the vector is asked to travel only a certain path on
the way from U(t) to MU(t), the arrival point), the operation is not neutral, not as neutral
as a mere delay would be. It amounts to replacing M by

Mα = (1− α)I+ αM, (4)

whose eigenvectors are obviously the same, but whose eigenvalues are

λα,k = (1− α) + αλk, (5)

For these modified eigenvalues λα,k, the leading pattern in complex space is not the
unity disc ( |λk| ≤ 1) but a disc smaller by a factor α, centered at cα = 1− α (on the positive
real half-axis if α is real). Then, there is no reason for the largest-modulus eigenvalue to
be the same, unless it lies along the cα line, say the real axis if Im(cα) = 0, or close enough
depending on the competing eigenvalues of M.

A sampling study of the largest eigenvalue position for successive matrices M (of size
N ≤ Nmax = 150) for three representative values of , α ( α = 0.1, α = 0.5, and α = 0.9) is
shown in Figure 2a,c, along with the reference case (Mα = M, α = 1) in Figure 2d. It is
seen that as α diminishes, the set of successive largest eigenvalues tends to cluster on the
real axis, while having just the same configuration as that of the reference case but reduced
by the factor α.

Consequently, if the model is run with this prescription in the more “inertial” case
α = 0.1 and a still large number of repeats r = 40, one sees in Figure 3 that the resulting
vector is different (using the same random matrix draw as in Figure 1). One also sees
that the Rayleigh quotient bounds its imaginary part Im(R(t)) to a value well below unity,
leaving the lion’s share to Re(R(t)).

At this point, the question arises as to how to induce inertia while preserving the
same sequence of tipping point eigenvectors as in the original α = 1 process. Formally,
there is an angle ϕ ∈ [−π, π] such that, if α = aeiϕ with a > 0, the rotation induced by the
term αλk in Equation (5) brings the new largest eigenvalue to the outer edge of the rotated
circle along the line z = ρeiϕ, hence ensuring that it remains the largest. But this involves
adjusting the inertia according to the result, which weakens the degree of generality sought
in such stylized models. But on the other hand, it provides an interesting feature as
to how an innovation is “received” in a given society, economy, or ecosystem with its
idiosyncratic inertia. The idea that innovations, more often than not, lead to a “dephasing”
is a vocabulary used by early thinkers of modern technology such as Gilbert Simondon [22],
suggesting that society goes first to adaptation stages and next to adoption stages of the
innovation. This is of course a semantic game, but given the difficulty of finding models
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that include all systemic aspects of innovation-cum-profusion, the suggestion might attract
some interest. One of the aspects of this difficulty of finding a model with a broad meaning
with regard to these questions of innovation reception stems from the fact that we are in a
world made up of very diverse societies that are nevertheless irrigated (if not constrained
for many of them) by technologies developed by a few.
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inertia. The eigenvalues of successive inflating matrices M or the renewal-modified version Mα

are shown as small and light dots, with a sequence of hues going from brownish to greenish to
blueish. Panels (a–c) show the values of α = 0.1, α = 0.5, and α = 0.9, respectively, while panel
(d) shows the original M. The inset shows the unit disc as shrunk and moved to be tangent to the
left of z = 1 by the transformation of Equation (5). The dominant eigenvalues are represented by
the large darker dots, with a sequence of hues corresponding to the small and light dots (saturation
enhancement, brown to green to blue-grey sequence). In the reference case (d), the dominant
eigenvalue trajectory (grey arrows), while presenting the clusters of the quakes and stasis pattern,
samples the unit disc rather randomly. For the other cases, the smaller the value of α, the more the
dominant eigenvalue/(eigenvector) dots crowd to the right side close to z = 1, and they therefore
sample a different set from the reference set in (d).
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number of repeats ( r = 40). Note the different trajectory of the Rayleigh quotient, which remains real.
Nevertheless, the appearance of stasis is still clear (the blurred aspect for low values of N is rather an
oscillation regime).

3.2. A Basic Comparison of Real and Complex Matrices

Next, I am looking for an elementary way to compare the core of the matrix inflation
process when run with a real matrix and with a complex matrix. In the first case, if the
initial vector U(t = 1) is real, then U(t > 1) remains real at all subsequent times. The
Rayleigh quotient is therefore a purely real number. The fact that the eigenvalues are
complex is compounded by the presence of conjugate pairs of eigenvalues/eigenvectors.
The corresponding U has a structure analogous to a cosine with respect to the two complex
exponentials (there is a decomposition of U(t) as a sum of terms such as λkUk + λ∗k U∗k ,
assuming ad hoc indexing by nonconjugate eigenvalues k). In practice, this leads to cosine-
like oscillations in the elements of MrU(t), during the repeats. It is possible to use a
modified matrix M that retains the same eigenvectors but forces the eigenvalues that cause
oscillations (and which lie in a half plane) to be reduced to as small values as desired,
effectively “killing” or at least “taming” these oscillations. It is also possible to eliminate
the oscillatory process by signal processing, in order to obtain a clearer view of punctuated
growth. These are partly artifactitious additions to the initial model, and are thus not the
most appropriate approaches for retaining maximum generality.

One of the interests of the complex case (M and U both fully complex) is to escape
these specific unpleasant consequences of conjugate eigenvalues. The price to pay is the
difficulty of establishing some correspondence with a real ecosystem or a real economy,
described by real numbers.

As for the core process itself, i.e., the way the eigenvalues can “leapfrog” each other
(again, this view assumes that the eigenvectors can be tracked throughout an inflation step,
which is generally possible, but not strictly always), it can be questioned how it is modified
between the two cases. A simple way to probe this is to blindly examine the probability
distribution function (pdf) of the quantity ∆N =

∣∣∣λ(N+1)
max

∣∣∣− ∣∣∣λ(N)
max

∣∣∣, the difference of the
moduli of the “largest modulus eigenvalues” when going through the inflation step. As
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the matrices are not rescaled during the inflation (it was apparent from the
√

N evolution
of the eigenvalues in Figure 1, they are scaled to reach the unit radius at N = N f inal), it is
expected that the distribution is asymmetrical, favoring the tail on the long side (∆N > 0)
over the small-side tail ∆N < 0. Given the unit radius condition common to the real and
complex cases, the coefficients have an appropriate factor of

√
2 in the real [7] vs. the

complex case (discussed in this paper).
Using enough draws, I obtain the pdf for both cases in Figure 4. They do not differ

much, with similar but slightly different slopes on the y-log-scale purposely chosen for the
graph, showing that there are two Poisson-type pdf on each side of the sharp maximum.
This suggests that much of the model’s properties are dictated by the structural properties of
the eigenvalue evolution. I mean here by structural the topology of the disk in the complex
plane. Furthermore, the picture of a competition with drift and diffusion of the few largest
eigenvalues is appropriate in both cases, real or complex coefficients. Furthermore, as
the eigenvectors lie in the same (complex) space in both cases, the statistics relating to
the evolution of the vectors throughout the quakes (correlation of components through
the quakes) should also be similar, with tools such as scalar products offering similar
analysis opportunities.
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Figure 4. Comparison of the role of matrix inflation between real matrices and complex matrices.
Using 100,000 draws of matrices of size 51× 51 with the same semi-circle radius of 1, I compare
the statistical distribution (pdf) of the change in eigenvalue modulus difference upon an inflation
process

∣∣λN=51
1

∣∣ − ∣∣λN=50
1

∣∣. The central part of the distribution (with abundance > 10% of max
abundance) shows the same distribution for both types of matrices, with two different slopes using
the logarithmic scale of abundance, differing by a factor of 2 (the smaller slope and thus the greater
dispersion along the positive side of the abscissa since the difference

∣∣λN=51
1

∣∣− ∣∣λN=50
1

∣∣ is calculated
along the increasing mean eigenvalue direction). However, for the extremes, the trend for complex
matrices shows a “fatter” tail. These differences also correspond to the “fatter tail” of the largest
eigenvalue at a given size.

3.3. A Basic Sensitivity Analysis

The model that I propose has two parameters, the number of repeats r and the renewal
rate α. Their role has been assessed and the main limitations of the sensitivity analysis
for these parameters can be guessed from the above results. As for the initial vector and
the normalization, they are of no importance for the sequence of eigenvalues sampled
during the inflation steps. The statistical choice of the random draws of the matrix is not a
parameter in the usual sense, but it is interesting to ask what role it plays in the result. In
other words, how sensitive is the resulting vector sequence when a matrix is modified? This
is the “pragmatic” aspect of the ergodicity question that I shall examine in Section 5, paying
more attention to the specific paths taken by vectors. A simple way of answering this
question is to examine the extent of the standard deviation of the (complex) vector change
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when the matrix M is modifed. We thus track the real quantity SD(t) = std(U(t)−U′(t))
along the iteration path, with U(t) obtained from a given matrix M(1), and U′(t) obtained
from a modified matrix M′ = aM(1) + bM(2). The “mixing coefficients” obey a2 + b2 = 1 to
preserve the statistical properties of M′. Figure 5a shows the resulting plots, for the set of
mixing coefficients b2 ∈

{
10−6 10−2 0.5 1

}
in four different colours and in the loglog plot,

zooming in on the interesting part of the data. Only 50 draws of M(1) (and M(2)) were used
to preserve the visible information. In this study, r = 5, N = 150, t f inal = 750. The dark
red dotted line at the top is the statistical upper bound of these differences,

√
2 std(U(t)),

which is, in general, a nearly perfect straight line on such a scale, with a slope simply
dictated by normalization (hence the steps, of which only the first are noticeable on the top
left). The main point emerges directly from this loglog setting: starting from a given vector,
the sensitivity reaches a maximum at a value that appears to depend on b2 only in the large
b2 limit, and to be independent in the small b2 limit, with a mean deviation essentially
scaling as b2. The vector cannot widely differ, obviously enough for small b2 where the
imprint of aM(1) remains strong, but not so obviously for stronger mixtures. I propose
that this has to do with the fact that the vectors U(t) do not have a “wild” distribution
(see Figures 1 and 3). Hence, they all probe the matrix content in a similar “averaging”
way, approaching an asymptotic deviation more or less rapidly. However the sample for
this figure is modest (50 draws). To obtain more details of the tails of the distribution, a
color-coded histogram of the b2 = 0.01 case has been produced and is shown in Figure 5b
with 2500 draws of M(1). It confirms that the distribution of standard deviation SD(t),
which is my “proxy” for an elementary sensitivity analysis, has modest tails. Thus, the
picture of Figure 5a with a modest spread of outliers is a fairly faithful representation of an
elementary sensitivity analysis. In Section 4, I will question the model’s dependence on its
“history” in another, less “pragmatic” way, also more connected to ergodicity.
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Figure 5. (a) Standard deviation of the U(t) vector, SD(t) = std(U(t)−U′(t)) for variably modified
matrices M′ = aM(1) + bM(2) , as a function of the number of iterations in log-log scales. The
coefficient b2 (in percent) is used to index the four curves shown, based on 50 draws. The top red
curve is the natural upper limit based on the vector’s own standard deviation; hence

√
2 std(U(t))

for identically, normally-distributed U(t) and U′(t) with both having complex coefficients. The thick
blue dashed line is a visual guide to the shifting maximum of the curves; (b) Color-coded histogram
(log10(abundance), cf. color bar) for the same quantity SD(t) and the case b2 = 0.01, based on a few
thousand draws, giving a better view of the tails of the distribution at different points.
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4. Discussion

I have examined the extension of the growth model based on “matrix inflation” that I
had previously introduced for the sole case of real matrices (non-symmetric, the Ginibre
set) in [7]. As could be anticipated from the basic idea of eigenvalues “leapfrogging”
one another through an inflation step, while carrying their eigenvector only marginally
modified with them, the resulting dynamics of the inflation process appear very similar. I
did not carry out the further analysis leading to the q-exponential law that I had found in [7],
but the results seem qualitatively quite analogous, from the point of view of the spacing of
quakes and the kind of changes they induce through the successive dominant eigenvectors.

I did not take into account absolute growth, which may occur more freely here given
that eigenvectors do not come in conjugate pairs (leading to “cosine” oscillations during
iterations). However, it is much more difficult to imagine that the absolute growth can
have a deep meaning in terms of the “punctuated equilibria”, if one thinks of the classical
issues of ecological systems, whereby proliferation is generally tamed by the ecosystem as
a whole. Weeds, for example, have an enormous growth potential if one counts the ability
to grow more than 100 seeds from a single one per year. Human agriculture can therefore
be conceived as a race against the weed in time and space to obtain plants that provide,
relatively slowly, staple food rather than many new seeds. But it is also known from the
same systems that weeds are constrained to a much lower effective growth rate, except in
invasion sequences (often created by man). In the case of invasive sequences, the issues at
stake are rather those of qualitative growth rather than merely quantitative growth. Plants
that have some kinds of robust rhizome (bamboo) or worse, that have a rhizome robust
and surviving to subdivision in small pieces (e.g., Japanese knotweed, which circulates
when soil is removed during river, road, and house works and redeposited) lead to striking
invasions, while brambles and nettles are tamed after a while, e.g., as the forests that host
them evolve over the years.

Apart from these general considerations, I have shown that even a relatively simple
change in the model, the “amount of renewing” of the new vector with the old one, has
an important, subtle effect, in terms of eigenvalues. It will be interesting to see, looking at
actual systems, what are the proper ways to understand their inertia, and whether it favors
any of the eigenvalue patterns discussed above. I anticipate that forcing the eigenvalues
to lie in a closer corner of the disc in the case of partial renewal (long inertia) would also
lead to a different correlation pattern of successive eigenvectors, which will undoubtedly
deserve further investigation.

A final consideration concerns non-ergodicity. The “pragmatic” sensitivity analysis in
Figure 5 has given an estimate of the ensemble deviation. But it is clear that, as the model
is run, one can say that each sequence (in fact, each random matrix M and, in practice,
each M f inal) is a particular case. The ensemble average of these sequences would clearly,
asymptotically, wash out the details, and yield “gray”, “average” vectors containing no
useful information. Furthermore, in the perfectly nonstationary context of growth, it is
apparently impossible to define a sensible time-average to perform an ergodic test. This
is a concern given that the model deals with quakes and crises, for the understanding of
which non-ergodicity could play an important role. Such a role could be investigated in the
apparently simple case of a geometric Brownian motion (GBM) series [12–15].

However, it is maybe possible to play the same game that historians are often asked
to play, i.e., giving “some kind” of previsions (it takes more than rhetoric dispositions,
here for fairness, to say that historians, as agents of a professional community, warn rather
starkly that however elaborate their understanding of the past may be, it has no direct
scientifically-based predicting power). Transposed into my framework, this means asking,
for each given case, how much does the evolution in the past times (thus of concern for the
few basic components), used as a temporal average, makes sense for future changes (which,
at the time of prediction, may look like an ensemble average). Of course, this is admittedly
a quite skewed vision of ergodicity, but the conversation on this point may receive more
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attention as more data are collected that carry quantities of “historic” information, which
could at least be used to inform a variety of scenarios.

A first step in the proposed direction is shown in Figure 6. Here, the matrix is inflated
only in one particular case up to “half-way” of the above simulation, hence N = 75 (here
with r = 20, enough to qualitatively follow the DEV). Then, the rest of the inflation is
performed with variable random additions of lines and columns while keeping the same
“core” of the matrix (core size N f inal/2×N f inal/2) which represents “the past”. By running
different possible “futures”, one can see the role of “the past”, now in the ensemble manner
as well as the time manner at will, thus somewhat addressing the tenets of ergodicity. More
details can be grasped from the caption of Figure 6a,b. The chosen process reveals that
memory, under these conditions chosen for preliminary exploration, clearly displays two
time scales, a fast one related to the spacing of quakes (as described e.g., by a q-exponential
law of [7]), and a longer time scale, during which a more “sluggish” decay to the mean
value of the scalar product (∼0.072 for the case N = 150) takes place. Thus, there are signs
of long memory, with a possible appearance of non-ergodic aspects in the evolution of this
model. I intend to address these in future work.
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Figure 6. Memory study tackling the ergodicity issue. Vectors are iterated with different ran-
dom realizations, after a given initial start and inflation from N = 1 to N = 75 (with r = 20
repeats, thus up to t0 = 1500). Then, from N = 76 to N = 150, (t = 1501 to t = 3000), a set
of 1000 random different inflation scenarios is considered. To see how the system forgets its
past, I track the scalar products |〈V(t)|V(t0)〉| on the “future” side of t0. (a) Colormap of the
1000 scalar products moduli over time, showing variable “inheritance” scenarios. (b) Average of
the 1000 cases. There is a rapid initial decay over a period typical of the q-exponential law of spac-
ing ( ∆N ∼ 10–15, ∆t ∼ 200–300, ∆t/3000 ∼ 0.07–0.1). This is followed by a more sluggish decay
towards the random limit, indicated by an arrow.
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5. Conclusions and Perspectives

To conclude, I addressed some simple mathematical-physical issues related to the use
of the matrix inflation model, bearing in mind its application to economic systems and eco-
logical systems, in order to explain, among other things, their “quakes and stasis” patterns.
I suggested that complex matrices, while unnatural for describing the usual quantities of
economics, might be a tempting approach. The resulting evolution of eigenvectors obeys
rules quite similar to those of a real matrix, and I defer to further work the full check that a
q-exponential law also applies to the spacing of quakes in time, as in the real case [7]. And
the avoidance of certain complexities that arise with conjugate pairs of eigenvectors could
be considered a simplification.

I discussed how “inertia”, by partial renewal, was introducing an interesting bias on
the set of successive dominant eigenvalues of the underlying matrix M, favoring those
closer to the right of the disc ( z→ 1) in the complex plane. The pattern of eigenvalue
modulus evolution was also found to be very similar in appearance. There are now several
ways to exploit the possible outcomes of such a domain.

Some look challenging, such as importing the notion of ergodicity in a non-stationary
context (although the network context could be useful to examine the issue, see [23] for an
example of network evolution in a non-Hermitian context). Others are closer to what the
existence of big data troves allows: exploring the growth dynamics as I have carried out
earlier [7] for the Web Of Science (WOS) bibliographic records (via the number of journals
in a few tested WOS domains), and tracking whether changes in the patterns map those
among different eigenvectors of an inflating matrix, as I proposed here. Other possible
domains for such attempts could be in catalogs that combine hierarchy and curation to
a sufficiently high level. The European REACH legislation from the ECHA (European
Chemical Agency) comes with a catalog of chemicals that could serve this kind of purpose.
The ecosystem of semiconductor products could also lend itself to the exercise, as this
specific industry maintains high supply standards to ensure its viability in the face of the
rapid evolution of company in the sector. These proposed uses of non-Hermitian random
matrices would then acquire one more universal characteristic feature, which adds to the
many features of random matrices in general.
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