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Back‑propagation optimization 
and multi‑valued artificial neural 
networks for highly vivid structural 
color filter metasurfaces
Arthur Clini de Souza 1,2,3, Stéphane Lanteri 1, Hugo Enrique Hernández‑Figueroa 2, 
Marco Abbarchi 3,4, David Grosso 3,4, Badre Kerzabi 3 & Mahmoud Elsawy 1*

We introduce a novel technique for designing color filter metasurfaces using a data‑driven approach 
based on deep learning. Our innovative approach employs inverse design principles to identify highly 
efficient designs that outperform all the configurations in the dataset, which consists of 585 distinct 
geometries solely. By combining Multi‑Valued Artificial Neural Networks and back‑propagation 
optimization, we overcome the limitations of previous approaches, such as poor performance due to 
extrapolation and undesired local minima. Consequently, we successfully create reliable and highly 
efficient configurations for metasurface color filters capable of producing exceptionally vivid colors 
that go beyond the sRGB gamut. Furthermore, our deep learning technique can be extended to design 
various pixellated metasurface configurations with different functionalities.

Optical color filters are structures or materials designed to discriminate and manipulate distinct light wavelengths 
through the selective transmission or reflection of particular colors while simultaneously absorbing or attenuat-
ing undesired  colors1,2. Conventional color filters rely on the manipulation of chemical composition to achieve 
the desired optical properties, which can lead to issues such as absorption losses, thermal effects, and alterations 
in chemical  characteristics3. An alternative approach involves the utilisation of structural color filters, offering 
distinct advantages and applications in diverse fields such as photorealistic color printing, color holography, 
anti-counterfeiting devices, and much  more4–6.

Metasurfaces have emerged as a promising platform for structural color  filters7,8, owing to its peculiar capa-
bility of controlling all the light properties at the nanoscale, enabling a plethora of  applications9–12. Dielectric 
metasurfaces play a crucial role in color filter applications, especially within the visible spectrum range where 
the plasmonic conterpart based on metals is less performing owing to intrinsic optical losses. The limited losses 
of dielectrics (e.g. Si3N4 , GaN, TiO2 , ZrO2 , HfO2 ) make them highly desirable for designing efficient devices 
with sharp resonance  responses13–16. Resonant dielectric metasurfaces achieve precise control over the phase of 
reflected and transmitted light by leveraging various resonant phenomena (e.g. Mie resonances)17,18. Through 
meticulous engineering of the resonators, selective interaction with different wavelengths is enabled, leading 
to efficient and vivid color filters. Such kind of metasurfaces offer exceptional phase control, high-quality fac-
tors, and sharp resonances, resulting in enhanced color purity and spectral  selectivity19–21. Yet, the design of an 
ideal color filter demands capability to selectively filter all colors across the optical spectrum. In other words, at 
each desired wavelength, it is crucial to eliminate any background resonances in order to achieve a pure color 
response characterized by sharp reflection or transmission amplitudes. Given the fabrication constraints, finding 
the appropriate resonator shape to achieve a desired response, is a challenging task that has garnered significant 
attention in the research community. Numerous studies explored this area, employing sophisticated optimiza-
tion algorithms including advanced Deep Learning (DL) approaches to tackle the inherent complexity of the 
 problem20–29. However, relying on classical optimization approaches requires several costly simulations when 
optimizing various color targets  simultaneously30–32. A viable solution for the design of vivid metasurface color 
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filters is one-shot optimization using Artificial Neural Network (ANN). However, it is not straightforward owing 
to the presence of several designs with similar optical response whereas regular ANN has only a single  output33.

Here we present a novel data-driven methodology for efficiently designing fabrication constrained color 
filter metasurfaces. Our approach combines the ability to find suitable designs of Multi-Valued Artificial Neural 
Network (MVANN) with the solution refinement of back-propagation optimization. Thereby overcoming the 
fundamental limitations of relying on either the latter, which will lead to an undesirable local minima, or solely 
on a MVANN leading to poor performance associated with  extrapolation23,24,33. In our case, relying solely on 
585 simulations and by varying four parameters allows for the optimization of a continuous spectrum of objec-
tives and the identification of highly vivid metasurface color filters. The optimized geometries exhibit a single 
sharp resonance response representing all the colors across the visible regime. To the best of our knowledge, our 
research outcomes exceed the previous findings documented in the literature, positioning our color filter as the 
foremost advancement in terms of vividness and overall  performance8,29,34–36.

Geometry and surrogate model
Figure 1 represents the considered metasurface geometry composed of slanted ridges of titanium dioxide (TiO2 ) 
on top of a silicon dioxide (SiO2 ) substrate with refractive index ns = 1.45 . The refractive index of TiO2 is 
determined through ellipsometry (available in the supplementary information section). The inclusion of slanted 
gratings in the metasurface design introduces additional degrees of freedom, enabling the appearance of sharp 
resonances in the reflection spectrum. This is achieved by breaking the symmetry in the z-direction, resulting in 
high-quality resonance  modes37,38. Four parameters, namely the metasurface period (P), resonator height (H), 
base width (W), and the ratio between the top and base widths of the resonator (S), are optimized in this study.

The first step to train the ANN is to generate a dataset. One important aspect that we considered to build 
it is the fabrication constraint that imposes a maximum aspect ratio of 2 between the height and width of the 
resonators. The dataset consists of 585 simulations generated by uniformly sweeping the four parameters indi-
cated in Fig. 1. The period P ranges from 250 and 510 nm. For the height H, the range spans from 100 to 425 
nm. In order to ensure that the ratios H/W and H/(P-W) remain less than 2, the width W varies between H/2 
and (2P-H)/2, and therefore, the height H must obey the inequality H/2 < (2P-H)/2. Additionally, the param-
eter S ranges from 0 to 0.8, with intervals of 0.1. The simulations were performed on an Intel� Xeon� W-2125 
Processor operating at 4.0 GHz and allocating 4 threads, taking a total of 33 min and 40 s. The description of 
the 2D Python MEEP Finite-Difference Time-Domain (FDTD) simulations are described in the first section in 
the supplementary information.

Subsequently, a feedforward ANN surrogate model was trained to forecast the reflection spectral response, 
considering the resonator’s geometry as input. In this study, we leverage the surrogate model for two distinct pur-
poses. Firstly, it enables rapid estimation of the reflection spectrum, achieving significant computational speed-
ups compared to full wave FDTD simulations. Secondly, the surrogate model is crucial in the inverse design 
process, playing a critical role in computing optimal solutions. As a result, the surrogate model’s performance 
is of paramount importance, as it must deliver exceptional precision to provide the most accurate approxima-
tions possible. By fulfilling these requirements, the surrogate model accuracy significantly contributes to the 
effectiveness and success of this study. Our surrogate model is a classical Multilayer Perceptron (MLP) model 
with fully connected layers. In this scenario, there are several ways to configure this MLP, and we will compare 
two different strategies to map the input geometries into a spectrum.

The first approach uses the geometric parameters as inputs and generates a multi-dimensional vector as out-
put. Each dimension of this vector corresponds to a distinct wavelength in the reflection spectrum. The second 
approach involves incorporating the wavelength as an input parameter while outputting a single dimension rep-
resenting the reflection amplitude at that particular wavelength (Fig. 2). Although both methods initially seems 
to be identical, the second is more convenient for this study. By incorporating the wavelength as an input, each 

Figure 1.  Schematic representation of the simulated structure. The light is injected from top with normal 
incidence with electric field polarized along the x-direction. The inset refers to the geometrical parameters 
associated to the single unit-cell surrounded with periodic boundary conditions.
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point in the spectrum becomes a unique data point for the surrogate model. In contrast, the first method con-
tains only 585 data points available for training the ANN. Conversely, the second method significantly enhances 
the availability of data samples, yielding a total of 292,500 individual data points resulting from sampling the 
spectrum across 500 different wavelengths.

Figure 2 represents the architecture of the surrogate model. In general, we consider the Gaussian Error Linear 
Unit (GELU) activation function which is a gating activation with a continuous derivative. Considering GELU 
implies the continuity of the output and its derivative, providing smoother response compared to the classical 
Rectified Linear Unit (ReLU)  activation39. It is worth mentioning that the last layer contains a single linear neuron 
to compute a singular output dimension aligning with the reflection observed at the designated wavelength as 
indicated by the red arrow in Fig. 2.

Figure 3 illustrates the generalization capacity of the surrogate model. Despite being trained on a relatively 
small dataset, the model is able to reproduce the spectra associated to the geometries that lie beyond the train-
ing dataset. This accomplishment can be attributed to the integration of wavelength as an input variable and 
the meticulous training methodology employed to mitigate overfitting. The demonstrated efficiency of this 
approach underscores the potential for constructing dependable surrogate models even when confronted with 
restricted training data.

Inverse design
In this particular section, an inverse design methodology is formulated for metasurface color filter. The primary 
objective is to determine the corresponding set of parameters based on the desired spectrum response. To initiate 
the process, the target line shape spectrum must be established, and in our research, a Lorentzian function shape 
resembling a Fano resonance-like shape is employed:

where ω represents the full width at half maximum (FWHM) while f0 corresponds to the central frequency. The 
units employed are in accordance with MEEP’s configuration, where both frequency and FWHM are measured in 
µm−1 . Additionally, it is worth noting that throughout the optimization process, the FWHM remains unchanged 
for all targets. This means that the Quality Factor (QF) of the desired spectra undergoes variations as a function 
of f0 , in accordance with Eq. (2).

The optimization scenario illustrated in Fig. 4 depicts the inverse design process. The desired spectrum is 
represented by the cyan curve in the top left corner. In this stage, we employ two complementary approaches for 
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Figure 2.  The diagram represents the architecture of the surrogate model ANN. The green arrows represent the 
input parameters. The surrogate model is designed to calculate a single output dimension, which corresponds 
to the reflection at the desired wavelength as shown by the red arrow. On the left side, a typical example of the 
resonator’s geometry is provided, while on the right side, an example spectrum is displayed. It is important to 
note that these examples are purely for illustrative purposes and do not represent any real simulations. All the 
layers in this architecture are initialized using Glorot normal initializers as discussed in Ref.40. The model was 
trained using the TensorFlow framework, employing a holdout  methodology41. The dataset is divided into two 
subsets: 555 simulations to update the weights of the ANN and 30 simulations for validation. The optimizer of 
choice was Adam with Mean Square Error (MSE) loss and batch size of  51242. The training stopped at epoch 
82 due to the lack of improvement of the validation loss within the last 20 epochs. The final MSE loss was 
2.6996× 10−4 and validation loss, 3.2745× 10−4 . The graph showing the loss evolution at each epoch can be 
found in section 2 of the supplementary information document. The total training time was 9 min 48s on a 
Google colab’s Central Processing Unit (CPU).
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inverse design. The first approach involves a straightforward search through a dataset, represented by the arrow 
pointing to the right of the target spectrum. For each simulation in the dataset, we calculate the MSE loss between 
the target spectrum and the simulated spectrum. By doing so, we can identify the design that produces the low-
est MSE. Although this design is the best within the dataset, it fails to accurately match the desired response, 
as indicated in Fig. 5. To address this limitation, we utilize a fully differentiable surrogate model and perform 
gradient optimization to finely adjust the parameters. As it can be seen in Fig. 5 running the back-propagation 
yields interesting designs. However, still this approach is not able to produce vivid colors along all the visible 
regime. Further the resonances are mainly associated with higher order modes appearing at shorter wavelengths 
(see last column) that allows for non-pure color. The optimized solution, along with the best design found within 
the dataset, are both stored for later comparison. A detailed explanation of the methodology used to perform 
back-propagation is displayed in section 3 of the supplementary information.

The second complementary approach, indicated by the downward arrow from the target spectrum in Fig. 4, 
involves the utilization of a MVANN to generate robust solutions for the inverse design problem. A MVANN is 
essentially an ANN capable of producing multiple solutions based on a single input. In the context of our study, 
the adoption of the MVANN proves highly advantageous as it effectively addresses the challenge of multiple 
parameter responses corresponding to a given objective  target33. To ensure reasonable accuracy, we choose to 
employ a model that yields 20 outputs. The detailed architecture and training procedure of the MVANN are 
provided in the supplementary information section 5. After acquiring the set of 20 distinct designs, a validation 
process is conducted using the surrogate model. Among these designs, the one that exhibits the lowest MSE loss 
when compared to the target is initially stored for future comparison. To further improve the results, this best 
design is subjected to back-propagation optimization. By employing a combination of the dataset search method 
indicated by the top blocks in Fig. 4 and the MVANN approach, followed by back-propagation indicated by the 
bottom blocks in Fig. 4, we successfully identify four robust designs. This entire process, encompassing both 
approaches, takes approximately 100 s to complete. Finally, the design exhibiting the lowest MSE loss compared 
to the target is selected as the final choice. We refer to section 6 in the supplementary information for more 
details regarding the performance of MVANN as a function of the dataset size. Further, a detailed comparison 
between MVANN and a state-of-the art algorithm can be found in section 7 in the supplementary information.

By employing the aforementioned inverse design methodology illustrated in Fig. 4, we perform a total of 100 
optimization iterations, as depicted in Fig. 6a. These iterations involve sweeping the desired wavelength across 
the range of 400–700 nm, thereby encompassing the entire spectrum of colors. The target function is defined as a 
Lorentzian spectrum with a Full Width at Half Maximum (FWHM) value of ω = 0.01 . Subsequently, we calculate 
the perceived color values (x and y) on the chromaticity diagram using the CIE 1931 2◦ standard observer color 

Figure 3.  Comparison between fullwave simulation and the prediction from the surrogate model. Top 
figures indicate the reflection spectra of three randomly selected samples from the dataset. The bottom figures 
corresponding to the same top geometries while introducing a small random deviation to the geometrical 
parameters. Notably, the surrogate model demonstrates robust generalization capabilities despite the inherent 
sparsity of the dataset.
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matching functions and the “Equal energy” illuminant, which ensures that incident light of all wavelengths pos-
sesses uniform  power43. As depicted Fig. 6a, we successful optimized metasurface designs that generate colors 
closely resembling our target (gray curve). Consequently, a significant number of these optimized designs fall 
outside the sRGB zone, represented by the dashed triangle in Fig. 6a, expanding the color gamut achievable with 
metasurfaces beyond the limitations of conventional display technologies.

In Fig. 6b, we select six distinct designs to demonstrate the spectral response of our optimized configurations, 
as indicated by the black arrows in Fig. 6a. Our inverse design approach has led to metasurface designs that 
exhibit a reflection spectrum response that is consistent with the target Lorentzian spectrum across all desired 
wavelengths. Moreover, the background response in the spectrum is nearly flat, providing a vibrant color response 
for our optimized configurations. A typical example of the field profile is presented in the supplementary infor-
mation. Additionally, a numerical comparison between FDTD calculations and COMSOL has been included to 
verify our results. Furthermore, we have conducted a full-wave simulation with finite structure to identify the 
number of required periods to retrive the results of a single unitcell simulation with periodic boundary condi-
tions (for more details, the reader can refer to the supplementary information). To the best of our knowledge, 
the optimized metasurface designs yield the most vivid color filter reported so far in the  literature8,29,34–36. It is 
worth mentioning that the entire optimization process took 2 h, 37 min, and 45 s. Among this time, 1 h, 26 min, 
and 20 s were dedicated to simulations, 1 h, 2 min, and 6 s were allocated for back-propagation optimization, 
8 min and 27 s were spent on predictions using both the surrogate model and the MVANN, and 250 ms were 
utilized for searching the best design within the dataset.

The results presented in Fig. 6 show that the optimized designs have varying heights. However, considering 
the complexity associated with fabricating structures of different heights, it is preferable to find designs with a 
fixed height. Therefore, we introduce a constraint to the back-propagation optimization process, requiring all 
designs to have equal heights. To achieve this, we modified the inverse design workflow as follows: Initially, we 
obtained the lowest 5 losses from the MVANN for each of the 6 different target designs, each representing a 
different color and having a different height. Subsequently, we identified designs that were closer in their height 
values. We calculated the mean height of these selected designs for each color and used this mean value as an 
initial guess for optimizing each target using the back-propagation optimization process.

To accommodate the height constraint, we introduced a dedicated layer in the surrogate model. This layer 
connected the height input solely to the initial guess and consisted of a single weight and bias. This shared layer 
was employed throughout all optimization iterations. By optimizing all 6 models simultaneously within the 
same batch, we ensured that the loss for each individual model progressively decreased with each training epoch. 

Figure 4.  Optimization diagram for the inverse design methodology, where the target reflection spectrum is 
specified in the cyan curve. To achieve the desired outcome, two complementary paths are identified. The first 
path involves exploiting the dataset scan and searching for the best design that will be subjected to a back-
propagation optimization to fine-tune the parameters, as indicated in the top blocks. On the other hand, the 
second path involves passing the target through the MVANN to obtain 20 designs. These designs are then 
validated using the surrogate model, and the solution that presented the least MSE compared to the target is 
chosen. Finally, a back-propagation optimization is performed on that design. Ultimately, the best solution 
among the four selected designs from the two paths is chosen. Further details can be found in the text.
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Figure 5.  Results from the dataset search using a Lorentzian lineshape in frequency as target for the dataset 
search for the wavelengths of 420 nm, 480 nm , 500 nm , 530 nm , 650 nm, 650 nm with ω = 0.01 from left 
to right, top to bottom. The metric used to evaluate the results was the MSE (L) in 10−3 between the target 
spectrum and the closest one in the dataset, while the geometric parameters (P, H, W and S) of the device found 
on the search were described in Fig. 1. Blue and red curves represent the best design without and with back-
propagation optimization on best design found in the dataset. A comparison of two different resonance shapes 
with different ω values are also tested in figure S5 provided in the supplementary information.

Figure 6.  (a) Chromaticity diagram depicting the outcomes of the 100 optimization results. The arrows in the 
diagram indicate the corresponding designs showcased in (b). The gray line represents the calculated perceived 
color corresponding to the target spectrum. (b) detailed examination of 6 different optimizations, displaying 
their dimensions (in nm) of each geometrical parameter and the corresponding sRGB color representation of 
the simulated spectrum.
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Consequently, we transformed the fixed height constraint into an optimized parameter, allowing us to determine 
the most suitable height value for achieving the desired outcomes across all six colors.

The results presented in Fig. 7 demonstrate the effectiveness of our approach in achieving favorable outcomes 
for most of the considered colors. Our optimization approach allows us to explore various line shapes using the 
same dataset, as depicted in Fig. 8. Notably, our algorithm excels at identifying optimized designs that seamlessly 
match the desired response. It is important to mention that our study focuses on achieving pure colors across 
the entire spectrum, rather than emphasizing a single color. Yet, interestingly, our algorithm is capable of opti-
mizing designs to replicate a vibrant red color response, a task that traditionally involves complex optimization 
processes  (see20,44). However, our design approach, coupled with advanced inverse design techniques, simplifies 
the process of identifying designs that mimic this vivid red color response, all while relying on the same dataset. 

Figure 7.  Optimization results based on a fixed height configurations. (a) refers to the chromaticity diagram 
of 6 optimized designs. The simulated spectra is given in (b) and the time used for training, and optimizing is 
depicted in the supplementary information section.

Figure 8.  Optimization results targeting a broader Lorentzian ( ω2
/(ω

2
+ 4

(

f − f0
)6
) ) on the top row and 

a combination of Gaussians to mimic a strong secondary resonance on the bottom row. (a) Refers to the 
chromaticity diagram of 6 optimized designs. The simulated spectra is given in (b). It can be seen that we 
achieved the most vivid red.
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Furthermore, it is worth noting that prior studies employed half the number of simulations to optimize a single 
color compared to our methodology.

Conclusion
In conclusion, our research presents a novel DL methodology for optimizing resilient designs of vivid color filter 
metasurfaces. By utilizing a surrogate model constructed from a dataset of only 585 simulations, our approach 
demonstrates exceptional efficiency in the optimization process. The numerical tool developed in this study ena-
bles the cost-effective fabrication of structural color filters by exploring a wide range of narrow line shapes that 
exhibit high-quality resonances, aligning with desired spectral reflection responses. Notably, our methodology 
expands the color gamut beyond the conventional RGB colors, offering unprecedented versatility in color genera-
tion. Furthermore, our DL approach successfully respects fabrication constraints, ensuring practical feasibility. 
The achievements of our research significantly contribute to the field of optical device design. By pushing the 
boundaries of metasurface optimization, we open up new possibilities for the development of advanced optical 
devices. The proposed methodology holds promise for various applications, such as display technologies, data 
encoding, and artistic expression. These notable advancements not only enhance the understanding of metas-
urface design principles but also provide valuable insights for future research endeavors.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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