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ABSTRACT

We introduce a novel technique for designing color filter metasurfaces using a data-driven approach based on deep learning. Our
innovative approach employs inverse design principles to identify highly efficient designs that outperform all the configurations
in the training dataset, which consists of 810 distinct geometries solely. By combining Multi-Valued Artificial Neural Networks
and back-propagation optimization, we overcome the limitations of previous approaches, such as poor performance due to
extrapolation and undesired local minima. Consequently, we successfully create reliable and highly efficient configurations for
metasurface color filters capable of producing exceptionally vivid colors that go beyond the sRGB gamut. Furthermore, our
deep learning technique can be extended to design various pixellated metasurface configurations with different functionalities.

Introduction
Optical color filter are structures or materials designed to discriminate and manipulate distinct light wavelengths through the
selective transmission or reflection of particular colors while simultaneously absorbing or attenuating undesired colors1, 2.
Conventional color filters rely on the manipulation of chemical composition to achieve the desired optical properties, which
can lead to issues such as absorption losses, thermal effects, and alterations in chemical characteristics3. An alternative
approach involves the utilisation of structural color filters, offering distinct advantages and applications in diverse fields such as
photorealistic color printing, color holography, anti-counterfeiting devices, and much more4–6.

Metasurfaces have emerged as a promising platform for structural color filters7, 8, owing to its peculiar capability of
controlling all the light properties at the nanoscale, enabling a plethora of applications9–12. Dielectric metasurfaces play a
crucial role in color filter applications, especially within the visible spectrum range where the plasmonic conterpart based on
metals is less performing owing to intrinsic optical losses. The limited losses of dielectrics (e.g. Si3N4, GaN, TiO2, ZrO2,
HfO2) make them highly desirable for designing efficient devices with sharp resonance responses13–16. Resonant dielectric
metasurfaces achieve precise control over the phase of reflected and transmitted light by leveraging various resonant phenomena
(e.g. Mie resonances)17, 18. Through meticulous engineering of the resonators, selective interaction with different wavelengths
is enabled, leading to efficient and vivid color filters. Such kind of metasurfaces offer exceptional phase control, high-quality
factors, and sharp resonances, resulting in enhanced color purity and spectral selectivity19–21. Yet, the design of an ideal color
filter demands capability to selectively filter all colors across the optical spectrum. In other words, at each desired wavelength,
it is crucial to eliminate any background resonances in order to achieve a pure color response characterized by sharp reflection
or transmission amplitudes. Given the fabrication constraints, finding the appropriate resonator shape to achieve a desired
response, is a challenging task that has garnered significant attention in the research community. Numerous studies explored
this area, employing sophisticated optimization algorithms including advanced Deep Learning (DL) approaches to tackle
the inherent complexity of the problem20–29. However, relying on classical optimization approaches requires several costly
simulations when optimizing various color targets simultaneously30–32. A viable solution for the design of vivid metasurface
color filters is one-shot optimization using Artificial Neural Network (ANN). However, it is not straightforward owing to the
presence of several designs with similar optical response whereas regular ANN has only a single output33.

Here we present a novel data-driven methodology for efficiently designing fabrication constrained color filter metasurfaces.



Our approach combines the ability to find suitable designs of Multi-Valued Artificial Neural Networks (MVANNs) with the
solution refinement of back-propagation optimization. Thereby overcoming the fundamental limitations of relying on either the
latter, which will lead to an undesirable local minima, or solely on a MVANN leading to poor performance associated with
extrapolation23, 24, 33. In our case, relying solely on 810 simulations and by varying four parameters allows for the optimization
of a continuous spectrum of objectives and the identification of highly vivid metasurface color filters. The optimized geometries
exhibit a single sharp resonance response representing all the colors across the visible regime. To the best of our knowledge,
our research outcomes exceed the previous findings documented in the literature, positioning our color filter as the foremost
advancement in terms of vividness and overall performance8, 34–36.

Geometry and surrogate model
Figure 1 represents the considered metasurface geometry composed of slanted ridges of titanium dioxide (TiO2) on top of a
silicon dioxide (SiO2) substrate with refractive index ns = 1.45. The refractive index of TiO2 is determined through ellipsometry
(available in the supplementary information). The inclusion of slanted gratings in the metasurface design introduces additional
degrees of freedom, enabling the appearance of sharp resonances in the reflection spectrum. This is achieved by breaking the
symmetry in the z-direction, resulting in high-quality resonance modes37, 38. Four parameters, namely the metasurface period
(P), resonator height (H), base width (W), and the ratio between the top and base widths of the resonator (S), are optimized in
this study.

Figure 1. Schematic representation of the simulated structure. The light is injected from top with normal incidence with
electric field polarized along the x-direction. The inset refers to the geometrical parameters associated to the single unit-cell
surrounded with periodic boundary conditions.

The first step to train the ANN is to generate a dataset. One important aspect that we considered to build it is the fabrication
constraint that imposes a maximum aspect ratio of 2 between the height and width of the resonators. The dataset consists of 810
simulations generated by uniformly sweeping the four parameters indicated in Figure 1. The period P ranges from 250 nm and
510 nm. For the height H, the range spans from 100 nm to 425 nm. In order to ensure that the ratios H/W and H/(P-W) remain
less than 2, the width W varies between H/2 and (P-H)/2, and therefore, the height H must obey the inequality H/2 < (P-H)/2.
Additionally, the parameter S ranges from 0 to 0.8, with intervals of 0.1. The simulations were performed on an Intel® Xeon®
W-2125 Processor operating at 4.0 GHz and allocating 8 threads, taking a total of 45 minutes and 48 seconds. The description
of the 2D Python MEEP Finite-Difference Time-Domain (FDTD) simulations are described in the supplementary information.

Subsequently, a feedforward ANN surrogate model was trained to forecast the reflection spectral response, considering the
resonator’s geometry as input. In this study, we leverage the surrogate model for two distinct purposes. Firstly, it enables rapid
estimation of the reflection spectrum, achieving significant computational speed-ups compared to full wave FDTD simulations.
Secondly, the surrogate model is crucial in the inverse design process, playing a critical role in computing optimal solutions. As
a result, the surrogate model’s performance is of paramount importance, as it must deliver exceptional precision to provide the
most accurate approximations possible. By fulfilling these requirements, the surrogate model accuracy significantly contributes
to the effectiveness and success of this study. Our surrogate model is a classical Multilayer Perceptron (MLP) model with fully
connected layers. In this scenario, there are several ways to configure this MLP, and we will compare two different strategies to
map the input geometries into a spectrum.
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The first approach uses the geometric parameters as inputs and generates a multi-dimensional vector as output. Each
dimension of this vector corresponds to a distinct wavelength in the reflection spectrum. The second approach involves
incorporating the wavelength as an input parameter while outputting a single dimension representing the reflection amplitude at
that particular wavelength (Figure 2). Although both methods initially seems to be identical, the second is more convenient
for this study. By incorporating the wavelength as an input, each point in the spectrum becomes a unique data point for
the surrogate model. In contrast, the first method contains only 810 data points available for training the ANN. Conversely,
the second method significantly enhances the availability of data samples, yielding a total of 405,000 individual data points
resulting from sampling the spectrum across 500 different wavelengths.

Figure 2 represents the architecture of the surrogate model. In general, we consider the Gaussian Error Linear Unit (GELU)
activation function which is a gating activation with a continuous derivative. Considering GELU implies the continuity of the
output and its derivative, providing smoother response compared to the classical Rectified Linear Unit (ReLU) activation39. It
is worth mentioning that the last layer contains a single linear neuron to compute a singular output dimension aligning with the
reflection observed at the designated wavelength as indicated by the red arrow in Figure 2.

Figure 2. The diagram represents the architecture of the surrogate model ANN. The green arrows represent the input
parameters. The surrogate model is designed to calculate a single output dimension, which corresponds to the reflection at the
desired wavelength as shown by the red arrow. On the left side, a typical example of the resonator’s geometry is provided,
while on the right side, an example spectrum is displayed. It is important to note that these examples are purely for illustrative
purposes and do not represent any real simulations. All the layers in this architecture are initialized using Glorot normal
initializers as discussed in Ref.40. The model was trained using the TensorFlow framework, employing a holdout
methodology41. The dataset is divided into two subsets: 769 simulations to update the weights of the ANN and 41 simulations
for validation. The optimizer of choice was Adam with Mean Square Error (MSE) loss and batch size of 51242. The training
stopped at epoch 252 due to the lack of improvement of the validation loss within the last 100 epochs. The final MSE loss was
2.1443×10−4 and validation loss, 4.3698×10−4. The total training time was 18 min 6s on a Google colab’s NVIDIA® T4
Graphics Processing Unit (GPU).

Figure 3 illustrates the generalization capacity of the surrogate model. Despite being trained on a relatively small dataset,
the model is able to reproduce the spectra associated to the geometries that lie beyond the training dataset. This accomplishment
can be attributed to the integration of wavelength as an input variable and the meticulous training methodology employed
to mitigate overfitting. The demonstrated efficiency of this approach underscores the potential for constructing dependable
surrogate models even when confronted with restricted training data.

Inverse Design
In this particular section, an inverse design methodology is formulated for metasurface color filter. The primary objective is to
determine the corresponding set of parameters based on the desired spectrum response. To initiate the process, the target line
shape spectrum must be established, and in our research, a Lorentzian function shape resembling a Fano resonance-like shape
is employed:

L( f ) =
ω2

ω2 +4( f − f0)
2 , (1)
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Figure 3. Comparison between fullwave simulation and the prediction from the surrogate model. Top figures indicate the
reflection spectra of three randomly selected samples from the dataset. The bottom figures corresponding to the same top
geometries while introducing a small random deviation to the geometrical parameters. Notably, the surrogate model
demonstrates robust generalization capabilities despite the inherent sparsity of the dataset.

where ω represents the full width at half maximum (FWHM) while f0 corresponds to the central frequency. The units employed
are in accordance with MEEP’s configuration, where both frequency and FWHM are measured in µm−1. Additionally, it is
worth noting that throughout the optimization process, the FWHM remains unchanged for all targets. This means that the
Quality Factor (QF) of the desired spectra undergoes variations as a function of f0, in accordance with Equation 2.

QF :=
f0

ω
(2)

The optimization scenario illustrated in Figure 4 depicts the inverse design process. The desired spectrum is represented by the
cyan curve in the top left corner. In this stage, we employ two complementary approaches for inverse design. The first approach
involves a straightforward search through a dataset, represented by the arrow pointing to the right of the target spectrum. For
each simulation in the dataset, we calculate the MSE loss between the target spectrum and the simulated spectrum. By doing
so, we can identify the design that produces the lowest MSE. Although this design is the best within the dataset, it fails to
accurately match the desired response, as indicated in Figure 5. To address this limitation, we utilize a fully differentiable
surrogate model and perform gradient optimization to finely adjust the parameters. As it can be seen in Figure 5 running
the back-propgation yields interesting designs. However, still this approach is not able to produce vivid colors along all the
visible regime. Further the resonances are mainly associated with higher order modes appearing at shorter wavelengths (see last
column) that allows for non-pure color. The optimized solution, along with the best design found within the dataset, are both
stored for later comparison.

The second complementary approach, indicated by the downward arrow from the target spectrum in Figure 4, involves
the utilization of a MVANN to generate robust solutions for the inverse design problem. A MVANN is essentially an ANN
capable of producing multiple solutions based on a single input. In the context of our study, the adoption of the MVANN proves
highly advantageous as it effectively addresses the challenge of multiple parameter responses corresponding to a given objective
target33. To ensure reasonable accuracy, we choose to employ a model that yields 20 outputs. The detailed architecture and
training procedure of the MVANN are provided in the supplementary information section. After acquiring the set of 20 distinct
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Figure 4. Optimization diagram for the inverse design methodology, where the target reflection spectrum is specified in the
cyan curve. To achieve the desired outcome, two complementary paths are identified. The first path involves exploiting the
dataset scan and searching for the best design that will be subjected to a back-propagation optimization to fine-tune the
parameters, as indicated in the top blocks. On the other hand, the second path involves passing the target through the MVANN
to obtain 20 designs. These designs are then validated using the surrogate model, and the solution that presented the least MSE
compared to the target is chosen. Finally, a back-propagation optimization is performed on that design. Ultimately, the best
solution among the four selected designs from the two paths is chosen. Further details can be found in the text.

designs, a validation process is conducted using the surrogate model. Among these designs, the one that exhibits the lowest
MSE loss when compared to the target is initially stored for future comparison. To further improve the results, this best design
is subjected to back-propagation optimization. By employing a combination of the dataset search method indicated by the top
blocks in Figure 4 and the MVANN approach, followed by back-propagation indicated by the bottom blocks in Figure 4, we
successfully identify four robust designs. This entire process, encompassing both approaches, takes approximately 100 seconds
to complete. Finally, the design exhibiting the lowest MSE loss compared to the target is selected as the final choice.

By employing the aforementioned inverse design methodology illustrated in Figure 4, we perform a total of 100 optimization
iterations, as depicted in Figure 6 (a). These iterations involve sweeping the desired wavelength across the range of 400 nm
to 700 nm, thereby encompassing the entire spectrum of colors. The target function is defined as a Lorentzian spectrum with
a Full Width at Half Maximum (FWHM) value of ω = 0.01. Subsequently, we calculate the perceived color values (x and
y) on the chromaticity diagram using the CIE 1931 2° standard observer color matching functions and the "Equal energy"
illuminant, which ensures that incident light of all wavelengths possesses uniform power43. As depicted Figure 6 (a), we
successful optimized metasurface designs that generate colors closely resembling our target (gray curve). Consequently, a
significant number of these optimized designs fall outside the sRGB zone, represented by the dashed triangle in Figure 6 (a),
expanding the color gamut achievable with metasurfaces beyond the limitations of conventional display technologies.

In Figure 6 (b), we select six distinct designs to demonstrate the spectral response of our optimized configurations, as
indicated by the black arrows in Figure 6 (a). Our inverse design approach has led to metasurface designs that exhibit a
reflection spectrum response that is consistent with the target Lorentzian spectrum across all desired wavelengths. Moreover,
the background response in the spectrum is nearly flat, providing a vibrant color response for our optimized configurations.
A field profile for one of the optimized geometries is presented in the supplementary information section. Additionally, a
numerical comparison between FDTD calculations and COMSOL has been included to verify our results. Furthermore, we have
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Figure 5. Results from the dataset search using a Lorentzian lineshape in frequency as target for the dataset search for the
wavelengths of 420 nm 480 nm, 500 nm, 530 nm, 650 nm 650 nm with ω = 0.01 from left to right, top to bottom. The metric
used to evaluate the results was the MSE (L) between the target spectrum and the closest one in the dataset, while the geometric
parameters (P, H, W and S) were described in Figure 1. Blue and red curves represent the best design without and with
back-propagation optimization on best design found in the dataset. A comparison of sharp resonances and broader resonances
can be found in the supplementary information section.

conducted a full-wave simulation with finite structure to identify the number of required periods to retrive the results of a single
unitcell simulation with periodic boundary conditions (for more details, please refer to the supplementary section). To the best
of our knowledge, the optimized metasurface designs yield the most vivid color filter reported so far in the literature8, 34–36. It is
worth mentioning that the entire optimization process took 2 hours, 47 minutes, and 41 seconds. Among this time, 1 hour, 29
minutes, and 57 seconds were dedicated to simulations, 1 hour, 25 minutes, and 9 seconds were allocated for back-propagation
optimization, 8 minutes and 30 seconds were spent on predictions using both the surrogate model and the MVANN, and 330
milliseconds were utilized for searching the best design within the dataset.

The results presented in Figure 6 show that the optimized designs have varying heights. However, considering the complexity
associated with fabricating structures of different heights, it is preferable to find designs with a fixed height. Therefore, we
introduce a constraint to the back-propagation optimization process, requiring all designs to have equal heights. To achieve this,
we modified the inverse design workflow as follows: Initially, we obtained the lowest 5 losses from the MVANN for each of the
6 different target designs, each representing a different color and having a different height. Subsequently, we identified designs
that were closer in their height values. We calculated the mean height of these selected designs for each color and used this
mean value as an initial guess for optimizing each target using the back-propagation optimization process.

To accommodate the height constraint, we introduced a dedicated layer in the surrogate model. This layer connected the
height input solely to the initial guess and consisted of a single weight and bias. This shared layer was employed throughout all
optimization iterations. By optimizing all 6 models simultaneously within the same batch, we ensured that the loss for each
individual model progressively decreased with each training epoch. Consequently, we transformed the fixed height constraint
into an optimized parameter, allowing us to determine the most suitable height value for achieving the desired outcomes across
all six colors.

The results presented in Figure 7 demonstrate the effectiveness of our approach in achieving favorable outcomes for most of
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Figure 6. (a) Chromaticity diagram depicting the outcomes of the 100 optimization results. The arrows in the diagram
indicate the corresponding designs showcased in (b). The gray line represents the calculated perceived color corresponding to
the target spectrum. (b) detailed examination of 6 different optimizations, displaying their dimensions (in nm) of each
geometrical parameter and the corresponding sRGB color representation of the simulated spectrum

the considered colors, with the exception of the last color. It is noteworthy that the optimization of this particular vivid red
color posed additional challenges, even in the absence of height constraints. These challenges indicate inherent complexities in
the optimization process for achieving this specific color and necessitate the utilization of specialized design approaches20, 44,
which are beyond the scope of our current work. It is important to mention that our study focuses on achieving pure colors
across the entire spectrum, rather than emphasizing a single color. Furthermore, it is worth noting that prior studies employed
half the number of simulations to optimize a single color compared to our methodology.

Conclusion
In conclusion, our research presents a novel DL methodology for optimizing resilient designs of vivid color filter metasurfaces.
By utilizing a surrogate model constructed from a dataset of only 810 simulations, our approach demonstrates exceptional
efficiency in the optimization process. The numerical tool developed in this study enables the cost-effective fabrication of
structural color filters by exploring a wide range of narrow line shapes that exhibit high-quality resonances, aligning with desired
spectral reflection responses. Notably, our methodology expands the color gamut beyond the conventional RGB colors, offering
unprecedented versatility in color generation. Furthermore, our DL approach successfully respects fabrication constraints,
ensuring practical feasibility. The achievements of our research significantly contribute to the field of optical device design. By
pushing the boundaries of metasurface optimization, we open up new possibilities for the development of advanced optical
devices. The proposed methodology holds promise for various applications, such as display technologies, data encoding, and
artistic expression. These notable advancements not only enhance the understanding of metasurface design principles but also
provide valuable insights for future research endeavors.
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