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Abstract: Coupling quantum emitters and nanostructures, in particular cold atoms and optical14

waveguides, has recently raised a large interest due to unprecedented possibilities of engineering15

light-matter interactions. In this work, we propose a new type of periodic dielectric waveguide16

that provides strong interactions between atoms and guided photons with an unusual dispersion.17

We design an asymmetric comb waveguide that supports a slow mode with a quartic (instead of18

quadratic) dispersion and an electric field that extends far into the air cladding for an optimal19

interaction with atoms. We compute the optical trapping potential formed with two guided modes20

at frequencies detuned from the atomic transition. We show that cold Rubidium atoms can be21

trapped as close as 100 nm from the structure in a 1.3-mK-deep potential well. For atoms trapped22

at this position, the emission into guided photons is largely favored, with a beta factor as high as23

0.88 and a radiative decay rate into the slow mode 10 times larger than the free-space decay rate.24

These figures of merit are obtained at a moderately low group velocity of 𝑐/50.25

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement26

1. Introduction27

The development of quantum technologies requires a number of prerequisites among which strong28

atom-photon interactions hold a high rank [1, 2]. Enhancing the interaction between a single29

photon and a single atom has been a driving force for a large community over the past decades.30

Two main routes have been followed rather independently: atoms in macroscopic high-finesse31

cavities [3, 4] or solid-state emitters (e.g., quantum dots) in micro and nanostructures [5, 6]. In32

recent years, various works have combined both approaches by interfacing cold atoms with33

nanophotonic devices such as photonic crystal nanocavities [7], nanofibers [8–10], and photonic34

crystal waveguides [11–13]. These hybrid strategies benefit from both the long coherence time of35

atoms and the enhanced electromagnetic field associated with subwavelength light confinement.36

Besides the well-established field of cavity quantum electrodynamics (QED), the use of single-37

pass schemes with nanofibers or nanostructured waveguides has triggered the emergence of a new38

field of research known as waveguide QED [14–16]. Photons travelling in the waveguide carry39

the information through long distances while atoms can store it for long times. These systems40

are a promising building block for quantum networks as shown recently by the experimental41

demonstrations of a coherent photon storage [17, 18], the heralded creation of a single collective42

excitation of atomic arrays [19], or a correlated photon transport [20–22]. In addition, strong43

atom-photon interactions give rise to new phenomena in many-body physics [23] such as the44

emergence of solitons dynamics [24, 25] or many-body localization [26].45
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Most of the existing experiments in waveguide QED at optical frequencies are performed with46

silica nanofibers [8–10,17–19,22, 27–29]. They offer a 4𝜋 solid-angle access to the interaction47

region that markedly eases the manipulation of atomic clouds near the structure. In addition,48

nanofibers provide single-mode operation over a broad spectral range. It is thus possible to use49

guided light beams at frequencies detuned from the atomic transition for trapping the atoms at50

subwavelength distances from the waveguide [10, 30, 31]. However, the atom-photon interaction51

remains relatively weak. It can be quantified by the 𝛽 factor, which is defined as the ratio of52

the radiative decay rate of a single atom in the waveguide mode Γ1D to the total decay rate Γtot,53

𝛽 = Γ1D/Γtot = Γ1D/(Γ1D + Γ′). Photons that are not funnelled into the waveguide mode are54

lost in the radiation continuum with a decay rate Γ′. Experimentally observed values of 𝛽 in55

nanofibers are typically in the range of 𝛽 ∼ 0.05 [32–34].56

A promising route to increaseΓ1D and 𝛽 is to use periodic dielectric waveguides, i.e., waveguides57

with a periodic modulation of the refractive index along the propagation direction. Indeed, the58

radiative decay rate of a single atom in a guided mode is given by Γ1D/Γ0 = 𝑛𝑔𝜎/(2𝐴eff), where59

Γ0 is the atomic decay rate in free space, 𝜎 is the absorption cross-section, 𝑛𝑔 and 𝐴eff are60

the group index of the mode and the effective area at the atom position [11, 35]. In periodic61

waveguides, the coupling between contrapropagating modes results in the opening of bandgaps62

in the dispersion relation and in the apparition of band edges where the group velocity 𝑣𝑔 = 𝑐/𝑛𝑔63

goes to zero [36]. Close to these peculiar points, periodic waveguides support slow guided modes64

with large 𝑛𝑔’s, which, in turn, lead to increased values of Γ1D and 𝛽 [35]. Hence, an important65

research effort has been devoted to the design and the realization of periodic waveguides aimed66

at increasing the interaction with cold atoms [11–13,37, 38]. However, this is a challenging task67

that requires tackling various issues [13, 39], including the sensitivity of slow light to fabrication68

imperfections, a stable trapping of atoms at the desired positions, and the accessibility around the69

structure to ease the transport of the atoms to the trapping sites.70

In addition to enhanced atom-photon interactions, periodic waveguides also offer the possibility71

to create dispersion relations that greatly differ from the usual and almost linear dispersion of a72

nanofiber. The curvature of the dispersion relation between the frequency 𝜔 and the wavevector73

𝑘 has a profound impact on various physical phenomena, such as the distortion of short pulses74

during propagation, the collective properties of atomic arrays coupled to the waveguide, the75

localization of photons emitted in the bandgap [15], as well as the tolerance of the slow mode to76

inevitable fabrication imperfections [13, 40]. However, the engineering of the dispersion has77

been quite limited until now. Indeed, most of the periodic waveguides studied so far (be it for78

interacting with atoms or for another purpose) are made of a periodic pattern that is symmetric79

in transverse directions [11, 12, 36, 37, 41–47] and their dispersion relation varies most often80

quadratically at band edges.81

By breaking the transverse symmetry, one can obtain new degrees of freedom for engineering82

the dispersion beyond the standard parabolic shape. Recently, Nguyen et al. demonstrated with a83

two-dimensional (2D) structure that symmetry breaking can be used to create exotic photonic84

dispersion relations such as Dirac cones, multivalley curves, or flat bands [48].85

In this article, we exploit symmetry breaking to design a novel three-dimensional (3D) geometry,86

the asymmetric comb waveguide, that (i) supports a slow mode with a quartic dispersion, (ii)87

offers the possibility to trap atoms optically at subwavelength distances, and (iii) provides very88

large 𝛽 factors for trapped atoms. We show that the quartic dispersion makes the slow mode more89

tolerant to fabrication imperfections than previous proposals [13]. The structure is represented90

in Fig. 1. It consists of a suspended bridge waveguide of width 𝐻 and thickness 𝑡𝑦 that has91

been periodically corrugated with an asymmetric rectangular pattern. This structure opens new92

opportunities in waveguide QED since it provides both a strong atom-photon interaction and an93

unusual dispersion that differs from the standard parabolic shape.94

The article is organized as follows. In Section 2, we illustrate with 2D examples the role of95



Fig. 1. Scheme of the asymmetric comb waveguide. The structure is etched in a GaInP
membrane (refractive index 𝑛 = 3.31) suspended in air. The waveguide has a total
width 𝐻 in the transverse 𝑥 direction and a thickness 𝑡𝑦 in the transverse 𝑦 direction.
The comb pattern along the propagation direction 𝑧 is made of teeth with a width 𝑤

and a height 𝐻etched, periodically spaced with a period 𝑎. The width of the guiding
region is thus 𝐻 − 𝐻etched. An excited atom (red dot) decays radiatively either into the
guided mode, with a rate Γ1D, or into the radiation continuum with a rate Γ′.

symmetry breaking in the design of a flat band with a quartic dispersion. Then, we design in96

Section 3 a 3D comb waveguide with a quartic dispersion after having detailed a few important97

criteria that should be fulfilled by a periodic waveguide aimed at interacting with cold atoms.98

We present in Section 4 the calculation of the potential of a two-color optical trap made with99

guided modes. We show that cold Rubidium (Rb) atoms can be trapped as close as 100 nm100

from the waveguide in a 1.3-mK-deep potential well by using relatively low powers (𝑃 ∼ 1 mW)101

compatible with photonic structures. Finally, we calculate in Section 5 the emission rates Γ1D,102

Γtot, and Γ′ of a trapped atom. We provide evidence for very large coupling between the atom103

and a slow mode with 𝑛𝑔 = 50: Γ1D = 10Γ0, Γ′ = 1.3Γ0, and 𝛽 = 0.88. Section 6 concludes the104

work and discusses some perspectives.105

2. Slow mode with a quartic dispersion106

In this Section, we show that symmetry breaking can be used to create a comb waveguide that107

supports a slow mode with a quartic dispersion around a zero-group-velocity point instead of108

the usual parabolic shape. In order to illustrate the impact of symmetry breaking, we compare109

the band diagrams of four different periodic waveguides with a period 𝑎. The waveguides are110

schematically represented in the insets of Figs. 2(a)-(d). All four are comb waveguides (see111

Fig. 1) with the same total width 𝐻 = 2𝑎 but different corrugations. The comparison is done112

with 2D structures (𝑡𝑦 = ∞) in TM polarization (magnetic field polarized in the 𝑦 direction). We113

consider a refractive index 𝑛 = 2.85 that corresponds to the effective index of the fundamental114

guided mode in a GaInP membrane of thickness 150 nm at 𝜆 = 780 nm.115

The dispersion curves are calculated with a Bloch-mode solver developed for studying light116

scattering in periodic waveguides [49]. The solver calculates the wavevector 𝑘 in the propagation117

direction as a function of the frequency 𝜔. It is implemented with the aperiodic Fourier modal118

method (a-FMM) [50], which relies on an analytical integration of Maxwell’s equations along the119

direction of periodicity (𝑧 axis) and on a supercell approach with perfectly-matched layers (PMLs)120

along the transverse directions (𝑥 and 𝑦 axis). PMLs ensure a correct treatment of far-field121

radiation conditions; they are implemented as complex nonlinear coordinate transforms [51]. This122

numerical method is also used in the rest of the paper for the calculation of the field distributions123

and the decay rates.124



Fig. 2. Impact of a transverse symmetry breaking. (a)-(d) Band diagram 𝜔 = 𝑓 (𝑘) of
four different 2D comb waveguides in TM polarization. The height of all structures is
𝐻 = 2𝑎, with 𝑎 the period. To bring these 2D calculations closer to 3D simulations,
we consider an effective refractive index 𝑛 = 2.85. (a) Symmetric comb waveguide.
The width of the teeth on both sides is 𝑤 = 0.5𝑎 and their depth is 𝐻etched = 0.25𝐻.
(b) Asymmetric comb waveguide. The teeth are two times deeper, 𝐻etched = 0.5𝐻,
with the same width 𝑤 = 0.5𝑎 to conserve the fraction of matter. (c) Asymmetric
comb waveguide with a sinusoidal corrugation but the same fraction of matter. The
depth of the cosine modulation is chosen so that the quantity of matter is the same as in
(a)-(b). (d) Asymmetric comb waveguide designed to support a flat band with a quartic
dispersion (green curve). The parameters are 𝑤 = 0.372𝑎 and 𝐻etched = 0.8𝐻. (e)
Variation of Δ𝜔 = |𝜔 −𝜔𝑒 | as a function of Δ𝑘 = |𝑘 − 𝜋/𝑎 | in logarithmic scales (solid
lines) for the green band in (d) and the red band of lowest frequency in (a). Dashed
straight lines represent pure quadratic (slope of two in red) and quartic (slope of four in
green) variations for comparison. (f) Group index as a function of Δ𝜆 = |𝜆 − 𝜆𝑒 |. The
quadratic and quartic dispersions lead to different scaling laws, as shown by the dashed
straight lines that represent slopes of −1/2 (red) and −3/4 (green).

Figure 2(a) displays the band diagram of a comb waveguide whose corrugation is symmetric in125

the transverse direction. It can be easily understood with the following picture: the uncorrugated126

planar waveguide of width 𝐻 supports symmetric and antisymmetric modes and the periodic127

corrugation couples forward and backward propagating modes, resulting in the opening of128

photonic bandgaps [36]. However, the symmetry of the corrugation forbids coupling between129

modes of different symmetry. Therefore, the Bloch modes resulting from the coupling can130

be sorted in two distinct families: they are either symmetric (blue curves) or antisymmetric131

(red curves). As can be seen, blue and red curves cross each other without coupling. Most132

of the bandgaps and the associated zero-group-velocity points are located at the edge of the133

first Brillouin zone, at 𝑘 = 𝜋/𝑎. Using a standard coupled-mode approach with two waves134

having linear dispersions, one can show that the dispersion relation of the Bloch modes varies135

quadratically in the vicinity of these points: 𝜔 − 𝜔𝑒 ∝ ±(𝑘 − 𝜋/𝑎)2, where 𝜔𝑒 is the frequency136



of the band edge where 𝑣𝑔 = 0 (see Supplement 1 for more details).137

We now consider in Figs. 2(b)-(c) comb waveguides without mirror symmetry in the transverse138

direction and with two different corrugations profiles. For the sake of comparison, the fraction139

of matter (the orange area) is the same as in Fig. 2(a). The situation is now fundamentally140

different: since the corrugations have no particular symmetry, all possible couplings are indeed141

allowed. As a result, gaps are now open inside the Brillouin zone (𝑘 ≠ 𝜋/𝑎) around the points of142

intersection between the dispersion curves of the symmetric and antisymmetric modes of the143

uncorrugated waveguide. Looking precisely to the band diagrams, we observe that the spectral144

widths of the bandgaps are smaller for a sinusoidal profile than for a rectangular profile. Thus,145

the latter provides larger coupling strengths. This is the reason why we study the rectangular146

asymmetric comb waveguide in the following.147

For a rectangular profile, the coupling strengths depend on the size of the teeth, fixed by the148

width 𝑤 and the depth 𝐻etched defined in Fig. 1. Stronger corrugations result in larger coupling149

strengths and wider bandgaps. If the coupling is strong enough, two consecutive bandgaps may150

overlap. In this case, the coupling mechanism is more complex since it involves four waves151

instead of two [48]. This offers extra degrees of freedom for engineering the bands beyond the152

standard parabolic shape.153

Following this principle, we have designed an asymmetric comb waveguide that supports a154

flat band with a quartic dispersion curve of the form 𝜔 − 𝜔𝑒 ∝ −(𝑘 − 𝜋/𝑎)4. This flat band is155

highlighted in green in Fig. 2(d). In order to confirm the quartic variation, we plot in Fig. 2(e)156

Δ𝜔 = |𝜔 −𝜔𝑒 | as a function of Δ𝑘 = |𝑘 − 𝜋/𝑎 | with logarithmic scales. The solid green curve is157

extracted from the green band in Fig. 2(d). It follows a quartic variation, parallel to the dashed158

green straight line with a slope of four. In contrast, the symmetric comb waveguide of Fig. 2(a)159

(solid red curve) supports modes with a quadratic dispersion, as shown by the dashed red straight160

line that represents a slope of two.161

A flat band with a quartic dispersion broadens the useful bandwidth of the slow mode, i.e.,162

the bandwidth over which 𝑛𝑔 is larger than a target value. Indeed, a quartic dispersion produces163

a group index that scales with the wavelength as Δ𝜆−3/4 while the group index of a quadratic164

dispersion scales as Δ𝜆−1/2. These scaling laws are derived in Supplement 1 and probed in165

Fig. 2(f). Therefore, if one wants to work at a given group index, the quartic dispersion (green166

curve) allows an operation at a larger Δ𝜆, i.e., at a frequency further from the band edge. We will167

see in the next Section that this increase of the useful bandwidth is important to improve the168

tolerance of the slow mode to fabrication imperfections.169

Let us end this Section by emphasizing that a quartic functional form for the dispersion relation170

of a slow mode is uncommon, in particular in the context of waveguide QED where it has not171

been studied so far. It is thus important to design a waveguide with a quartic dispersion and a172

3D geometry compatible with the interaction with cold atoms trapped in the air cladding. We173

present this design in the following Section.174

3. Design of a three-dimensional asymmetric comb waveguide175

We first detail a few important requirements that apply to a slow-light waveguide designed to176

interact with cold atoms. Then, we present the design of a 3D asymmetric comb waveguide that177

supports a slow mode with a quartic dispersion at the transition frequency of Rb atoms and an178

evanescent field that extends far into the air cladding for an optimal interaction. In addition, we179

pay particular attention during the design process to the presence of blue- and red-detuned modes180

that can be used to create an optical two-color trap.181

3.1. Design requirements182

The design of a periodic waveguide aimed at increasing the coupling with cold atoms should183

maximize the emission rate into the waveguide mode Γ1D. Since the group index diverges at a184



band edge, the first idea is to align the transition frequency of the atom with any band edge of the185

photonic dispersion diagram. Unfortunately, this simple design cannot work for several reasons.186

First, slow light is very sensitive to fabrication imperfections, resulting in backscattering,187

radiation losses, and potentially light localization [40, 52–54]. Therefore, in a practical situation,188

fabrication imperfections set an upper bound to the group index 𝑛𝑔 that can be reached [55–57].189

To improve the fabrication tolerance, X. Zhang et al. proposed to use parabolic dispersion curves190

with large effective photon masses, 𝑚eff =
(
𝜕2𝜔/𝜕𝑘2)−1 [13]. Therefore, the design should not191

only increase the group index, but also reduce the curvature of the dispersion relation.192

A second issue is the value of the effective mode area at the position of the atom, or equivalently193

the effective cross section of the photon seen by the atom. One should be careful not to lose with194

an increased mode area what is gained with an increased group index. Hence, the design has195

to find a trade-off between two opposite trends. On the one hand, we need a mode whose field196

extends far into the air cladding, implying that it weakly interacts with the periodic pattern. On197

the other hand, we need to control the group velocity and the curvature of the dispersion relation,198

meaning that we need a mode that strongly interacts with the periodic pattern.199

Finally, a third important challenge is to generate a stable optical trap for the atoms at200

subwavelength distances of the waveguide and to be able to bring the atoms inside the trap.201

A fully integrated trapping scheme can be achieved by using “fast” guided modes (i.e., with202

standard values of 𝑛𝑔) at frequencies detuned from the atomic transition. For instance, red- and203

blue-detuned modes can be used to create a two-color trap [31]. The design of the periodic204

waveguide should thus ensure the presence of additional modes with adequate field profiles,205

which spatially overlap with each other and with the slow mode.206

As a whole, the design of a periodic waveguide with increased atom-photon interactions is a207

complex task that should meet the following criteria:208

1. a slow and single-mode operation at the transition frequency of the atom (large 𝑛𝑔),209

2. a large fraction of the electric field in air outside the structure (small 𝐴eff),210

3. a large effective photon mass for an improved robustness to fabrication imperfections,211

4. the existence of additional modes at frequencies detuned from the atomic transition for212

trapping the atoms optically with low powers (few mW),213

5. a clear access around the structure to ease the transport of the atoms to the trapping sites.214

Up to now, two main geometries have been investigated. The first one, the alligator waveguide,215

is composed of a tiny 250-nm-wide air slot symmetrically surrounded by two corrugated bridge216

waveguides [11, 12, 38]. This geometry fulfills the first two criteria (large 𝑛𝑔 and small 𝐴eff)217

as well as the fourth one. However, it has been shown in [13] that the effective photon mass218

of the slow mode is small, meaning that alligator waveguides are very sensitive to fabrication219

imperfections in the slow-light regime. The fifth criterion is not met either since the atoms need220

to be loaded in a narrow interacting region, which constitutes a major experimental challenge [58].221

External trapping via side illumination has been considered [39, 59], but a stable trapping of222

atoms inside the air slot has not been demonstrated. As a result, the value of 𝛽 and the number 𝑁223

of trapped atoms are limited to 𝛽 ∼ 0.5 and 𝑁 ∼ 3 [12, 60].224

A different geometry has been proposed in [13] to address these limitations. It consists of225

a hybrid-clad waveguide that combines two guidance mechanisms: total internal reflection on226

one lateral side with a sharp sidewall and photonic bandgap on the opposite lateral side with a227

two-dimensional photonic crystal. The hybrid-clad waveguide provides a flatter dispersion curve228

than the alligator waveguide (50 times enhanced effective photon mass) and a 2𝜋 solid-angle229

access to the interaction region. However, the possibility to use detuned guided beams for230

trapping the atoms (fourth criterion) has not been investigated yet. One the one hand, the bandgap231

of the photonic-crystal cladding sets important constraints on the spectral range available to place232



additional guided modes that could be used for trapping. On the other hand, the photonic-crystal233

geometry provides various degrees of freedom for engineering the band diagram.234

In the following, we design an asymmetric comb waveguide that fulfills all five criteria. In235

addition, the dispersion relation of the slow mode is quartic instead of quadratic. We show236

that, thanks to the quartic dispersion, the slow mode of the comb waveguide is more tolerant to237

fabrication imperfections than the mode of the hybrid-clad waveguide proposed in [13] that mostly238

follows a standard parabolic dispersion. To further limit the loss issues related to fabrication239

imperfections, we have chosen to use a moderately slow mode with 𝑛𝑔 = 50, a value compatible240

with current fabrication processes [57]. We calculate in Section 5 that, despite this moderate241

slowdown of the light, we can achieve a strong atom/photon interaction.242

3.2. Asymmetric comb waveguide243

In order to benefit for a large refractive index contrast, we consider a GaInP membrane (refractive244

index 𝑛 = 3.31) with a thickness 𝑡𝑦 = 150 nm, as shown in Fig. 1. Starting from the 2D structure245

in Fig. 2(d), we have designed a 3D comb waveguide that supports a slow mode with a quartic246

dispersion 𝜔 − 𝜔𝑒 ∝ −(𝑘 − 𝜋/𝑎)4 and a group index 𝑛𝑔 = 50 at 𝜆0 = 780 nm, the wavelength247

of the 5𝑆1/2 ↔ 5𝑃3/2 transition of Rb atoms. The geometrical parameters are 𝑎 = 283 nm,248

𝐻 = 2𝑎, 𝐻etched = 0.8𝐻, and 𝑤 = 0.422𝑎. The band diagram of this comb waveguide is shown249

in Fig. 3(a); the slow mode with a quartic dispersion is highlighted in green. We consider the250

modes whose field components 𝐸𝑥 , 𝐸𝑧 , and 𝐻𝑦 are symmetric with respect to 𝑦 = 0.251

Figures 3(b) and 3(c) display the distribution in the (𝑥, 𝑧) plane of the dominant components252

of the electric field (𝐸𝑥 and 𝐸𝑧) at 𝜆0 = 780 nm. Note that the evanescent tail of the electric253

field extends far in the air cladding. On the side opposite the teeth, the longitudinal electric-field254

component 𝐸𝑧 is maximum in front of the teeth, at 𝑧 ≡ 𝑎/2 (mod 𝑎). The positions of the maxima255

of the transverse electric-field component 𝐸𝑥 are shifted by 𝑎/2, at 𝑧 ≡ 0 (mod 𝑎).256

In addition to the slow mode, the band diagram should also provide two additional modes,257

red- and blue-detuned with respect to the atomic transition, that can be used to realize an optical258

two-color trap. These modes should lie below the light line and below the frequency of the259

electronic bandgap of GaInP (𝜆 = 680 nm). The design of the structure has been performed by260

taking into account these additional constraints. The red- and blue-detuned modes are highlighted261

by the red and light blue dots in Fig. 3(a). The calculation of the trapping potential is presented262

in Section 4.263

To ease the future implementation of the structure, it is important to keep in mind that264

nanostructured devices are never manufactured to their nominal specifications. Hence, real265

periodic waveguides are not exactly periodic and suffer from random fabrication imperfections.266

Slow light is particularly sensitive to these imperfections. It experiences random scattering as it267

propagates, resulting in backscattering, radiation losses, and possibly light localization [52–54].268

In the usual case of a parabolic dispersion, the effective photon mass 𝑚eff =
(
𝜕2𝜔/𝜕𝑘2)−1 is269

the good figure of merit to be considered. It has been shown that a larger effective photon mass270

improves the tolerance of a slow mode to fabrication imperfections [13, 40]. According to these271

works, in the case of a non-parabolic dispersion, one must consider a second figure of merit in272

addition to the effective photon mass 𝑚eff: the distance of the operation frequency to the band273

edge, Δ𝜔 = |𝜔 − 𝜔𝑒 |. To improve the tolerance to fabrication imperfections, both figures of274

merit should be increased: the effective photon mass at the operation frequency and the distance275

of the operation frequency to the band edge.276

We have calculated 𝑚eff and Δ𝜔 for the asymmetric comb. They are shown by the green277

curves in Figs. 3(d) and 3(e). For the sake of comparison, we have also calculated these figures278

of merit for the hybrid-clad waveguide proposed in [13], which is the most resilient to fabrication279

imperfections in the waveguide QED literature. Figure 3(d) displays the distance of the operation280

wavelength to the band edge, Δ𝜆 = |𝜆 − 𝜆𝑒 |, as a function of the group index. Regardless of the281



Fig. 3. Slow mode with a quartic dispersion. (a) Band diagram of the 3D comb
waveguide designed to support a slow mode with a quartic dispersion (green curve) that
stronly interacts with Rubidium atoms. The geometrical parameters are 𝑎 = 283 nm,
𝐻 = 2𝑎, 𝐻etched = 0.8𝐻, 𝑤 = 0.422𝑎, 𝑡𝑦 = 150 nm and 𝑛 = 3.31. The red and light
blue dots mark the “fast” modes red- (𝜆𝑟 = 837 nm) and blue-detuned (𝜆𝑏 = 736
nm) with respect to the atomic transition that are used for trapping, as detailed in
Section 4. (b) Amplitude of the 𝑥-component of the slow mode electric field in V/µm.
(c) Amplitude of the 𝑧-component of the slow mode electric field in V/µm. The field
distributions are calculated for 𝜆0 = 780 nm at 𝑦 = 0 in the middle of the membrane. (d)
Group index as a function of the distance to the band edge, Δ𝜆 = |𝜆 − 𝜆𝑒 | (logarithmic
scales). (e) Effective photon mass as a function of Δ𝜆 = |𝜆 − 𝜆𝑒 | (logarithmic scales).
The green curves correspond to the slow mode of the 3D comb waveguide [green curve
in (a)] and the orange curves correspond to the hybrid-clad waveguide in [13]. In (d),
the dashed curves indicate the Δ𝜆−3/4 (green) and Δ𝜆−1/2 (orange) scaling laws.

value of the group index, the comb waveguide allows one to operate further from the band edge282

than the hybrid-clad waveguide. The dashed green and orange lines show that the asymmetric283

comb waveguide follows the scaling law that is expected for a quartic dispersion while the284

hybrid-clad waveguide mostly follows the scaling law of a quadratic dispersion. The dashed285

horizontal line marks the value 𝑛𝑔 = 50 that is used in the following. Figure 3(e) shows the286

effective photon mass as a function of Δ𝜆. Regardless of the operation frequency, the asymmetric287

comb has a larger effective mass than the hybrid-clad waveguide. Therefore, according to288

previous theoretical results [13, 40], the asymmetric comb waveguide should be more tolerant to289

fabrication imperfections than the hybrid-clad waveguide.290

4. Two-color optical trap for Rubidium atoms291

We show hereafter that the versatility of the asymmetric comb allows us to trap Rb atoms optically292

as close as 100 nm from the waveguide. At these deeply subwavelength distances, the atoms293

can strongly interact with the slow mode aligned with their transition frequency. The objective294

is to trap atoms where the electric field of the slow mode is intense, see Figs. 3(b)-(c). For295

accessibility reasons, it is not appropriate to create a trap between the comb teeth. Therefore, we296

aim at trapping atoms on the side opposite the teeth, see the red dot in Fig. 1.297

There exist various ways to trap atoms close to a dielectric structure [30]. In waveguide QED,298

a smart, fully integrated, approach consists in taking advantage of the waveguide to build an299

optical trap with guided light beams. In this work, we use a two-color trap, whose principle is to300

send two additional light beams into the waveguide [31]. The first one is red detuned with respect301



to the atomic transition; it produces a negative Stark shift on the energy of the ground state302

5𝑆1/2 that results in an attracting potential 𝑈𝑟 (𝑥, 𝑦, 𝑧) < 0. The second beam is blue detuned; it303

creates a positive Stark shift and a repulsive potential 𝑈𝑏 (𝑥, 𝑦, 𝑧) > 0. The combination of the304

two potentials,305

𝑈trap (𝑥, 𝑦, 𝑧) = 𝑈𝑟 (𝑥, 𝑦, 𝑧) +𝑈𝑏 (𝑥, 𝑦, 𝑧), (1)

can produce a deep potential well (i.e., a stable trap) at a given position in space that depends on306

the spatial profile of both guided beams, on their powers, and on the polarizability of the atom.307

On top of the trapping potential 𝑈trap generated by the detuned beams, it is necessary to take308

into account the attracting Casimir Polder (CP) potential that arises when an atom interacts with309

electromagnetic vacuum fluctuations near a dielectric surface [61,62]. We assume that the CP310

potential felt by an atom close to the vertical sidewall of the comb (see the red dot in Fig. 1) is the311

same as the potential near a planar surface, which varies as 𝑈CP = −𝐶3
𝑑3 , where 𝑑 is the distance312

between the atom and the surface and 𝐶3 is a constant that depends both on the material and the313

atom. The value of 𝐶3 for GaInP and Rb atoms, 𝐶3 ' 6.7 × 104 mK.nm3, is computed with the314

formula in [63]; the permittivity of GaInP is taken from the experimental data in [64]. The desired315

depth of the trapping potential for cold atoms is typically of the order of 1 mK. In comparison,316

the CP potential is negligible for distances larger than 100 nm, 𝑈CP (100 nm) ≈ −6.7 × 10−2 mK,317

and it is dominant close to the surface 𝑈CP (10 nm) ≈ −67 mK.318

In order to realize a two-color trap with guided modes, the frequencies of the detuned signals319

have to be chosen with the band diagram in Fig. 3(a). Since the waveguide is periodic, we320

are dealing with Bloch modes whose field distributions are periodically modulated along the 𝑧321

direction. It is thus possible to create a periodic array of potential wells in the 𝑧 direction without322

using contra-propagating beams. It is convenient to choose the red-detuned frequency on the323

same band as the slow mode (green band), but closer to the light line where the group velocity324

is of the order of 𝑐/𝑛. Then, one of the higher-order bands can be used for the blue-detuned325

frequency.326

Since the wavelength of the 5𝑆1/2 ↔ 5𝑃3/2 transition of Rb atoms is 𝜆0 = 780 nm, we have327

chosen to work with 𝜆𝑟 = 837 nm for the red-detuned field and 𝜆𝑏 = 736 nm for the blue-detuned328

Fig. 4. Electric-field distributions of the blue- and the red-detuned guided modes used
for the two-color trap. (a)-(b) Blue-detuned mode E𝑏 at 𝜆𝑏 = 736 nm, marked by
a light blue dot in the band diagram of Fig. 3(a). (c)-(d) Red-detuned mode E𝑟 at
𝜆𝑟 = 837 nm, marked by a red dot in the band diagram of Fig. 3(a). In (a) and (c) the
field is represented in the (𝑥, 𝑧) plane at 𝑦 = 0 (cross-section through the center of the
GaInP membrane). The solid lines show the contour of the comb waveguide. In (b)
and (d) the field is represented in a (𝑦, 𝑧) plane located in air at a distance 𝑑 = 100 nm
from the structure. The fields are expressed in V/µm.



field. These wavelengths are displayed in Fig. 3(a) with red and light blue dots. The electric329

fields of the corresponding guided modes are shown in Fig. 4. The amplitude of the red-detuned330

mode is almost homogeneous in air along the 𝑧 direction while the amplitude of the blue-detuned331

mode exhibits a more pronounced periodic modulation, with intensity maxima in front of the332

comb teeth at 𝑧 ≡ 𝑎/2 (mod 𝑎). Therefore, an atom near the back of the comb will “feel” an333

attracting potential that is almost independent of 𝑧 and a repulsive potential that is stronger in334

front of the teeth. By playing with the relative powers of both detuned beams, it is possible to335

create a potential well with a minimum at 𝑧 ≡ 0 (mod 𝑎). An atom trapped at this position will336

interact efficiently with the slow mode since the transverse component of its electric field is337

maximum, see Fig. 3(b).338

Fig. 5. Potential of the two-color trap. (a)-(b) Distribution of the trapping potential
𝑈trap created by the superposition of the blue- and red-detuned modes. As in Fig. 4,
we represent a cross-section in the (𝑥, 𝑧) plane at 𝑦 = 0 (a) and a cross-section in a
(𝑦, 𝑧) plane located in air at a distance 𝑑 = 100 nm from the waveguide (b). Red dots
represent atoms trapped in the potential wells. The black area in (a) shows the comb
waveguide where the potential is not defined. We do not show the potential around
the teeth (gray area); it is repulsive and does not exhibit trapping sites. The dashed
lines in (b) remind the position of the GaInP membrane that is located in a different
plane, shifted by 100 nm in the 𝑥 direction. (c) Trapping potential 𝑈trap (dashed curves)
and total potential 𝑈tot = 𝑈trap +𝑈CP (solid curves) as a function of the distance 𝑑

to the waveguide for 𝑦 = 0 and 𝑧 = 0 (mod 𝑎). Two different sets of trapping powers
are represented. The powers (𝑃𝑟1 , 𝑃𝑏1 ) = (1.6, 1.3) mW create a potential well at
𝑑 = 100 nm with a depth 𝑈 ≈ −2.2 mK. The powers (𝑃𝑟2 , 𝑃𝑏2 ) = (1, 1.3) mW create
a potential well at 𝑑 = 160 nm with a depth 𝑈 ≈ −0.8 mK. (d) Total potential 𝑈tot as a
function of the vertical coordinate 𝑦 for 𝑧 = 0 (mod 𝑎). The orange (resp. light blue)
curve shows the potential created at a distance 𝑑 = 100 nm (resp. 𝑑 = 160 nm) by blue-
and red-detuned modes with powers (𝑃𝑟1 , 𝑃𝑏1 ) [resp. (𝑃𝑟2 , 𝑃𝑏2 )].

We have computed the trapping potential𝑈trap (𝑥, 𝑦, 𝑧) for Rb atoms with the recently-introduced339

open-source package Nanotrappy [65]. The inputs of Nanotrappy are the electric fields of the340



blue- and red-detuned guided modes, which are calculated with the mode solver for periodic341

waveguides used to calculate the band diagram [49]. Nanotrappy calculates the Stark shifts342

induced by these electric fields and the corresponding potentials. The calculation includes the343

scalar, vector, and tensor shifts [65].344

Figures 5(a)-(b) display maps of the trapping potential 𝑈trap in the (𝑥, 𝑧) plane at 𝑦 = 0 and345

in a (𝑦, 𝑧) plane located in air at a distance 𝑑 = 100 nm from the structure. The powers of the346

red- and blue-detuned modes are respectively (𝑃𝑟1 , 𝑃𝑏1 ) = (1.6, 1.3) mW. The potential is given347

in mK so that it can be easily compared with the temperature 𝑇 of cold Rb atoms in a typical348

experiment, 𝑇 ∼ 10 𝜇K. Red dots highlight the potential minima, where atoms can be trapped, at349

𝑦 = 0, 𝑧 = 0 (mod 𝑎 = 283 nm), and a distance 𝑑 = 100 nm from the structure. The confinement350

is good in all three directions of space.351

Finally, we investigate in Figs. 5(c)-(d) the impact on the trap of the powers of the detuned352

modes, as well as the effect of taking into account the CP potential. Cross-sections of 𝑈trap353

(dashed curves) and 𝑈tot = 𝑈trap +𝑈CP (solid curves) are plotted for two different sets of trapping354

powers (𝑃𝑟1 , 𝑃𝑏1 ) = (1.6, 1.3) mW and (𝑃𝑟2 , 𝑃𝑏2 ) = (1, 1.3) mW. Note that the power of the355

blue-detuned mode (i.e., the repulsive potential 𝑈𝑏) is kept constant. Decreasing the power of356

the red-detuned mode has two main effects. First, the depth of the potential well is reduced from357

≈ 2.2 mK to ≈ 0.8 mK. Second, the trapping distance is increased from 100 nm to 160 nm.358

Adding the CP potential does not alter the potential well. It is only modified at shorter distances359

where the attracting CP interactions become dominant. For the closest trap (𝑑 = 100 nm,360

orange solid curve), the potential barrier between the trap and the structure is lowered by the361

CP interactions but it remains higher than 1 mK. The orange curve in Fig. 5(d) shows that the362

potential minimum is not necessarily located at 𝑦 = 0. The height of the tiny potential barrier at363

𝑦 = 0 is only 50 𝜇K364

We have demonstrated the possibility to trap cold Rb atoms at deeply subwavelength distances365

(𝑑 = 100 nm) from the comb waveguide where the 𝑥-component of the electric field of the slow366

mode is intense. We have used a two-color optical trap with powers of about 1 mW, a value367

well compatible with the powers used in current integrated-optics experiments. We show in the368

following Section that an atom trapped at this position interacts strongly with the slow mode.369

5. Strong atom-photon interaction370

Having established the possibility to trap Rb atoms close to the comb waveguide, we now show371

that trapped atoms can strongly interact with the slow mode. For that purpose, we compute the372

spontaneous emission rate of an excited atom and the 𝛽 factor – i.e., the fraction of light coupled373

to the slow mode.374

With the optical trap discussed in Section 4, atoms are located at positions where the 𝑥-375

component of the electric field of the slow mode is dominant. Therefore, we consider in the376

following spontaneous emission of an atom with a dipole d that is linearly polarized along the 𝑥377

direction, d = 𝑑e𝑥 with e𝑥 the unitary vector along the 𝑥 direction. Experimentally, this situation378

can be realized by imposing a quantization axis along 𝑥 with an external magnetic field.379

We calculate the total emission rate Γtot and the emission rate in the slow mode Γ1D (sum of380

the forward and backward propagation directions). The former is proportional to the imaginary381

part of the total Green tensor at the position r0 of the atom [66],382

Γtot
Γ0

=
6𝜋𝑐
𝜔0

e𝑥 · Im [G(r0, r0, 𝜔0)] e𝑥 , (2)

while the latter depends only on the electric field of the guided mode [11, 35],383

Γ1D
Γ0

=
𝑛𝑔𝜎𝑎𝜀0 |e𝑥 · E∗

𝑚 (r0) |2

2
∭

Cell 𝜀 |E𝑚 |2𝑑3r
. (3)



In these expressions, 𝜔0 is the transition frequency, Γ0 = 𝜔3
0 |d|

2/(3𝜋ℏ𝜀0𝑐
3) is the emission384

rate in vacuum, 𝜎 = 3𝜆2
0/(2𝜋) is the absorption cross-section, E𝑚 is the electric field of the385

slow mode, and 𝑛𝑔 = 𝑐/𝑣𝑔 is its group index. One usually defines the mode effective area as386

𝐴eff (r0) =
∭

Cell 𝜀 |E𝑚 |2𝑑3r/(𝑎𝜀0 |e𝑥 · E∗
𝑚 (r0) |2). Note that the volume integral runs over one387

unit cell of the periodic waveguide.388

Then, we deduce the emission rate outside the slow mode (i.e., into all the other modes),389

Γ′ = Γtot − Γ1D, as well as the value of the 𝛽 factor, 𝛽 = Γ1D/Γtot. Let us recall that the slow390

mode supported by the comb waveguide designed in Section 3 has a group index 𝑛𝑔 = 50 at the391

transition wavelength of Rb atoms, 𝜆0 = 2𝜋𝑐/𝜔0 = 780 nm. Its electric field is represented in392

Figs. 3(b)-(c).393

The main difficulty is the calculation of the total Green tensor G(r0, r0, 𝜔0) of an infinitely394

long periodic waveguide, which requires an accurate calculation of the emission into radiation395

modes with outgoing-wave conditions in a periodic medium [49]. Two different approaches396

are often used to bypass this difficulty. The first one amounts to assume that the emission rate397

into radiation modes is approximately equal to the emission rate in vacuum, Γ′ ≈ Γ0, see for398

instance [13]. With this approximation, Eq. (2) simply becomes Γtot/Γ0 ≈ 1 + Γ1D/Γ0. In that399

case, the calculation only requires the knowledge of the guided mode, which can be calculated400

with a Bloch-mode solver. The second approach that avoids the calculation of the Green tensor401

of an infinitely long periodic waveguide consists in considering a finite-size structure formed402

by a finite number of periods, see for instance [37]. The main drawback is that the calculated403

structure (a Fabry-Perot cavity) is different from the desired one (an infinitely long waveguide).404

As a result, the emission rate exhibits a series of spurious resonance peaks that depends on the405

arbitrary choice of the structure length and termination. It is thus difficult to infer the actual406

emission rate of the periodic waveguide.407

In contrast to these two approximate approaches, we calculate rigorously the Green tensor of the408

periodic waveguide by using a modal method that relies on an exact Bloch-mode expansion [49].409

Figure 6 shows the variation of the decay rates Γtot, Γ1D, Γ′ (first line), and of the 𝛽 factor (second410

line) as a function of the position of the atom. In Fig. 6(a), the atom is moved horizontally411

away from the comb for 𝑦 = 0 and 𝑧 = 0 (mod 𝑎). In Fig. 6(b), the atom is moved vertically412

for 𝑑 = 100 nm and 𝑧 = 0 (mod 𝑎). In Fig. 6(c), the atom is moved along the waveguide for413

𝑑 = 100 nm and 𝑦 = 0. The yellow areas represent the volume where atoms are likely to be414

trapped, defined as the positions where the value of the orange potential in Fig. 5 is between415

𝑈𝑚𝑖𝑛 ≈ −2.2 mK and 𝑈𝑚𝑖𝑛 + 50 𝜇K. This defines a trapping volume of typical size 30 nm along416

𝑥, 160 nm along 𝑦 and 20 nm along 𝑧.417

For large distances, 𝑑 > 400 nm, the emission rate Γ1D into the slow mode is negligible418

compared to the emission rate Γ′ into the radiation continuum and the 𝛽 factor tends towards zero.419

As the distance 𝑑 decreases, the atom enters the region where the field of the slow mode is intense420

and Figs. 6(a) shows a strong enhancement of Γ1D that results in an increase of the 𝛽 factor. For421

a trapping distance of 𝑑 = 100 nm (yellow area), Γ1D = 10Γ0, Γ′ = 1.3Γ0, and 𝛽 = 0.88. This422

number is significantly larger than the value of 𝛽 ≈ 0.5 that has been experimentally observed for423

the alligator waveguide [12, 60].424

In Figs. 6(b)-(c), we fix the distance 𝑑 = 100 nm and we vary the position of the atom in the425

two other directions. Along the vertical direction, as long as the atom is located inside the trap426

in front of the structure (−75 nm 6 𝑦 6 75 nm), the decay rate into the slow mode remains427

dominant Γ1D > 8Γ0 and 𝛽 > 0.8. Along the 𝑧 direction, Γ1D varies periodically. Its variation428

over one period is directly related to the variation of |𝐸𝑥 (𝑧) | represented in Fig. 3(b). On the429

other hand, Γ′ is almost constant.430

Finally, let us emphasize that the presence of the comb increases the emission rate into the431

radiation continuum Γ′, compared to the emission rate in vacuum Γ0. Indeed, for 𝑑 6 100 nm432

and −75 nm 6 𝑦 6 75 nm, Γ′ > 1.3Γ0. Therefore, the assumption Γ′ ≈ Γ0 would lead to an error433



Fig. 6. Decay rates of an atom near the 3D asymmetric comb waveguide. First line:
Decay rates Γtot (blue), Γ1D (red), and Γ′ (black) as a function of the distance 𝑑 from
the waveguide for 𝑦 = 0 and 𝑧 = 0 (mod 𝑎) (a), as a function of 𝑦 for 𝑑 = 100 nm and
𝑧 = 0 (mod 𝑎) (b), and as a function of 𝑧 for 𝑑 = 100 nm and 𝑦 = 0 (c). All decay rates
are normalized by the decay rate Γ0 of the atom in vacuum. Second line: Variation
of the 𝛽 factor, 𝛽 = Γ1D/Γtot, at the same positions. The yellow areas represent the
volume where atoms are likely to be trapped, defined as the positions where the value
of the orange potential in Fig. 5 is between 𝑈𝑚𝑖𝑛 ≈ −2.2 mK and 𝑈𝑚𝑖𝑛 + 50 µK.

larger than 30% for 𝑑 6 100 nm. This trend of an increase of Γ′ close to a dielectric structure is434

not general; a previous calculation with the same numerical method has shown a decrease of Γ′
435

in the near field of a different periodic waveguide [67].436

6. Conclusion437

We have proposed a new waveguide geometry, the asymmetric comb, that provides a strong438

interaction between trapped atoms and guided photons. An important originality of the structure439

is its quartic dispersion relation of the form 𝜔 − 𝜔𝑒 ∝ −(𝑘 − 𝜋/𝑎)4, unique in the context440

of waveguide QED. We have demonstrated that this specific form of the dispersion relation441

reduces the impact of the inevitable fabrication imperfections. Then, we have shown how cold442

Rubidium atoms can be trapped at subwavelength distances (𝑑 = 100 nm) from the structure by443

implementing a two-color optical trap with guided modes that are red and blue detuned with444

respect to the atomic transition frequency. Finally, we have completely characterized the decay445

of an excited atom in this complex photonic environment by calculating rigorously the decay rate446

Γ1D into the guided mode as well as the decay rate Γ′ into all other radiative channels. Atoms447

inside the trap decay preferentially into the slow mode (group velocity 𝑣𝑔 = 𝑐/50) with a 𝛽 factor448

as high as 0.88.449

We have considered throughout the article a structure made of GaInP, a semiconductor material450

with a high refractive index. This choice is not critical for the design. We have checked that an451

asymmetric comb waveguide with a quartic dispersion and a large 𝛽 factor can also be designed452

in a material with a lower refractive index such as silicon nitride or silicon oxide. Regarding453

the fabrication, we have conducted preliminary studies (not shown here) that show that the454

fabrication of the structure is completely feasible with current fabrication processes. Note that455



suspended periodic waveguides with symmetrical patterns of similar dimensions have been456

fabricated in [47]. Two important practical issues are the coupling of light into the slow mode457

and its propagation loss. Attenuations of 3 dB after propagation over 100 µm have been measured458

for 𝑛𝑔 = 50 in a photonic-crystal waveguide [57]. We can reasonably expect lower propagation459

loss since we have shown that the asymmetric comb waveguide has a larger effective photon460

mass. Coupling light into the slow mode can be achieved by gradually decreasing the group461

velocity with an adiabatic tuning of the waveguide geometry. Short (1–2 µm) and efficient (90%462

efficiency) tapers have been realized with this strategy [68–70].463

Being able to control the emission with figures of merit as large as Γ1D = 10Γ0, Γ′ = 1.3Γ0, and464

𝛽 = 0.88 puts the strong coupling regime of waveguide QED (Γ1D/Γ′ � 1) within reach. In this465

important regime, both collective [71–76] and non-linear quantum [2] phenomena are enhanced,466

meaning that single photon switches [77] or coherent photon storage [17,18,29] could be achieved467

with high efficiencies. Exotic many-body phenomena such as correlated photon transport [21],468

many-body localization [26], or fermionization of the multiple excited states [78] could also be469

explored with the asymmetric comb. Finally, let us emphasize that the uncommon dispersion470

relation of the slow mode significantly alters the range of the photon-mediated interactions471

for atoms whose transition frequencies lie inside the bandgap, as discussed in Supplement 1.472

Enlarging the bandwidth of the structure also allows one to probe with reduced distortion the fast473

dynamics of superradiant emission.474
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