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Revisiting Quantum Mysteries.
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In this article we argue that in quantum mechanics, and in opposition to classical physics, it is
impossible to say that an isolated quantum system “owns” a physical property. Some properties of
the system, its mass for example, belong to it in a sense close to that of classical physics; but most
often a property must be attributed to the system within a context. We give simple motivations
for adopting this point of view, and show that it clarifies many issues in quantum physics.

I. OUR QUANTUM WORLD.

In many broadcasts or publications intended for the
general public one meets the assertions that in the “quan-
tum world” an object can be in several places at the same
time, or that two particles located at astronomical dis-
tances can influence each other instantaneously, or that
particles pass through walls...

However, the world thus described is nothing but ours.
All those who are familiar with the popularization of
quantum physics are used to hearing these sentences,
which fascinate and challenge. They often lead to the
ideas, quite frustrating for the uninitiated, that quantum
mechanics is a discipline full of paradoxes, and incompre-
hensible otherwise than by its mathematical formalism;
and that even the best physicists disagree on what it
means [1, 2]. Quantum mechanics being at the basis
of innumerable technologies (electronics, lasers, medical
imaging...) which have changed our daily life, and having
never been disproved, this difficulty in communicating its
physical content to the layman is surprising. It may even
appear embarrassing, in a context where many countries
are investing billions of Euros to develop technologies re-
lated to the “second quantum revolution”, even more dif-
ficult to explain than the first one.

A legitimate question is then : would it be possible to
formulate different statements, referring specifically to
this mysterious “quantum world”, but not appearing as
a series of contradictions or absurdities? This is what
we propose here, avoiding also any abusive recourse to
mathematics: they are indispensable, but will only be
mentioned briefly in a second time.

II. EMPIRICAL EVIDENCE AND ITS

CONSEQUENCES.

Our starting point will be a series of empirical
observations, that is to say, observations that relate to
experiments that are quite feasible and that have been
carried out, sometimes recently. We will start from
concepts known at the beginning of the 20th century
(light is a wave, matter is made of atoms with a nucleus
and electrons...) and we will introduce new phenomena,
which we will then have to explain.

The fundamental physical fact is that observations of
microscopic objects show a discrete, or quantized, char-
acter, of which here are some examples:

• The possible wavelengths of light emitted by atoms
take only certain particular values, each atom be-
ing characterized by the “spectrum” of wavelengths
that it can emit.

• Light can extract electrons (particles) from matter,
but to describe this phenomenon called the photo-
electric effect, we are led to admit that light is also
formed of particles (photons).

• We can perform experiments where objects clas-
sically considered as particles (electrons, atoms...)
give rise to interference effects, which are classically
associated with waves, and not with particles.

A rather inevitable conclusion of these observations is
that microscopic objects (atoms, electrons, photons...)
have behaviors that combine a discrete character (i.e.
described by integers) with the possibility of interference
(traditionally associated with continuous waves).
Quantum mechanics was built on the basis of these

observations, by a few brilliant physicists who invented
a somewhat bizarre mathematical formalism, able to ac-
count for all these observations, and also to make count-
less predictions of new phenomena. This formalism, or
even these formalisms, because there are several equiv-
alents, have never been put in default, but the physical
nature of the objects and properties they describe has
remained obscure. This questioning, however intrinsic to
physics, has given rise to innumerable “interpretations”
and paradoxical statements - the sentences quoted at the
beginning of this text are a very partial example.
It is therefore clear that an “ingredient” is missing that

would give a physical meaning to this very efficient for-
malism; this is what we propose in what follows.

III. UNDERESTIMATING EMPIRICAL

EVIDENCE ?

The normal approach in physics since Newton has been
to define objects, to attribute properties to them, and
to measure these properties. One then asserts that the
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object “has” this property, for example that it has a po-
sition, a velocity, a momentum... Does this “natural”
approach work in quantum mechanics? Although physi-
cists are extremely reluctant to admit it, the answer is
clearly no - and this “no”, correctly interpreted, provides
the empirical element that is missing in the construction.

So let’s look at a simple experiment that shows that
it is impossible to say that a quantum particle “owns” a
property. Of course some particle’s properties, its mass
for example, belong to it in a sense very close to classical
physics; but most often the situation is not so simple.

One can for example measure the angular momentum
of an atom along a certain direction u, or the polar-
ization (equivalent to angular momentum) for a photon.
Such a measurement gives a discrete result, as explained
above, and we can therefore say for example that we ob-
tain the value +1, in adequate units. Moreover, if we
repeat this same measurement on the same particle, we
find +1 again: the result can therefore be predicted with
certainty, as one would expect in classical physics.

But let’s complicate things a bit, and measure the an-
gular momentum in another direction, let’s say v. We
find for example +2, then we come back to u, and we
measure again. In a classical framework we would ex-
pect to find the previous +1 result, but in fact we don’t
necessarily get +1, but a random result! In general this
new result can take any value in a certain set that is de-
fined by the system studied, for example (-2, -1, 0, +1,
+2) for a certain type of atom, each of these values hav-
ing a certain probability of being obtained. One some-
times speaks of “measurement-induced perturbation”, a
phenomenon that also exists in classical physics; but the
randomness described here is inescapable: it is not pos-
sible to eliminate it completely, nor to trace it back to a
“true value” of the measured quantity.

Very often this simple but fundamental experiment is
not considered as a fact, but is immediately buried in
mathematical formalism, invoking operators that do not
commute or other arguments that are not explanations,
but mathematical descriptions. However, this experi-
ment is essential since it shows that the value attributed
to certain physical properties varies in an irremediably
random way when the measurement process is modified.
However, this is not an incomprehensible blur, since as
long as the measurement does not change, the value ob-
tained always remains the same: certainty and repeata-
bility remain, but under more restrictive conditions than
those observed in classical physics.

If one legitimately considers that certainty and repro-
ducibility are minimum requirements for a realistic de-
scription of the physical world, the inescapable conse-
quence of the above observations is that the object to
which one must attribute physical properties is not “a
system”, but “a system on which a given measurement is
made”, since only in this case the result does not change.
This is an essential difference with Newtonian physics,
and it can be used as a basis to build up quantum physics
as we will see now.

IV. CONTEXTS, SYSTEMS AND MODALITIES.

These observations being very quantum but not really
mysterious, we can formalize them (still without mathe-
matics!) by introducing some vocabulary [3–8] :

• let us designate the devices, arranged to carry out
a particular measurement on a given quantum sys-
tem, by the word “context”;

• let us refer to a particular measurement result, on
a given system in a given context, by the word
“modality”. By definition a modality character-
izes the system as well as it is physically possible,
and, once obtained, it is ideally repeatable with
certainty as long as the context is not changed;

• let us admit the following fundamental principle,
called “contextual quantization”: whatever the con-
text, a measurement on a given system gives one

modality among N possible ones, where the value

of N characterizes the system; these N modalities

are mutually exclusive, i.e. only one can be realized

at a time.

It follows from this principle that if there are other dif-
ferent modalities in other contexts, the link between the
modalities of different contexts can only be probabilis-
tic; otherwise one would have a “super context” with a
number of mutually exclusive modalities greater than N ,
which would contradict the fundamental principle [5].
In this approach the probabilities in quantum mechan-

ics are thus physically necessary, since they are imposed
by the contextual quantization. It is crucial to note that
the conjunction of the two ingredients, quantization and
contextuality, is required: for example, many probabilis-
tic phenomena are discrete but classical (heads or tails,
dice game...), and others have contextual aspects (for ex-
ample in a poll it is known that the order of the questions
influences the answers) but they remain classical because
quantization does not play a constraining role.

V. A LITTLE BIT OF MATHEMATICS.

The last step of our approach is to mathematize the
principle of contextual quantization, to obtain the quan-
tum formalism. It is crucial to underline that, as usual in
physics, this step cannot be “deductive” (we cannot show
that the formalism is the only one possible), but must be
“inductive” : we propose a formalism, the most general
one possible, respecting the imposed physical conditions,
and we verify deductively that it works by describing well
the observed effects. The theoretical question is there-
fore : given a modality (among N) in an initial context,
resulting from a previous measurement, what is the prob-
ability of obtaining another modality (among N) in a
final context associated with a new measurement ? We
are therefore looking for an N×N matrix of probabilities
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between the initial context and the final context, which
is generally called a stochastic matrix.
The fundamental (and actually unique) mathematical

ingredient is then to associate a projector (N × N ma-
trix) with the set of all modalities that are related to each
other with certainty, either in the same context (it is then
the same modality) or in different contexts (this link is
observed empirically). This set constitutes an equiva-
lence class of modalities that are linked “extracontextu-
ally”, and it is therefore called an extravalence class.
By admitting this fundamentally quantum idea, and

a few simple consistency arguments [5], there is in fact
no longer any choice: powerful mathematical theorems
allow us to show that the only possible theory is quantum
mechanics.
More precisely, Uhlhorn’s theorem [9, 10] shows that

unitary transformations between projectors are necessary
to preserve the mutually exclusive character of events in
each context; and Gleason’s theorem [11, 12] shows that
Born’s law is necessary to respect the general structure
of a probability law (see details in the Appendix).
The probability matrix we are looking for has then a

particular form: it is unistochastic, i.e. it is constituted
by the squared moduli of the coefficients of a unitary
matrix. It also follows that a context is associated to a
family of N orthogonal projectors, and that a change of
context is associated to a unitary transformation between
these families, which reconstitutes the usual framework
of quantum probabilities [5]. We note that within this
framework a usual quantum state |ψ〉 is incomplete, be-
cause it lacks the specification of the context to define a
true probability distribution [6, 7]; this is consistent with
attributing a modality to a system within a context.

VI. NO PARADOX ANYMORE ?

We will not go further into the mathematical details
here, but to conclude let us try to translate into this
new language the paradoxical statements quoted at the
beginning of this article, again avoiding any formalism:

• an object can be in several places at the same time:

we often hear also that a quantum bit is in several
states at once, and that this corresponds to the no-
tion of quantum superposition. But what does this
“at the same time” mean? In fact, it is a question
of detecting a modality, therefore a certainty, but a
certainty in another context. To say that a particle
is “at the same time” in the two arms of the inter-
ferometer means in fact that if these two arms in-
terfere constructively, we can predict with certainty
where the particle will go. On the other hand, if
the measurement is made inside the interferometer,
then the result is random, according to the prin-
ciples explained above: the measurements either
inside or outside the interferometer correspond to
different contexts.

• two particles separated by an arbitrarily large dis-

tance can influence each other instantaneously: this
is the phenomenon of entanglement, and there is in
fact no instantaneous influence at a distance, but
again the manifestation of a modality, which is a
certain and reproducible property of the pair of par-
ticles, e.g. that the total angular momentum of the
pair is zero. This can be verified in the appropri-
ate context, but if one makes the measurement in a
context where the particles are spatially separated
one will obtain necessarily random (because of the
change of context, see above), but strongly corre-
lated results. This is again a consequence of Born’s
law, which still holds when the context changes,
and illustrates nicely the predictive incompleteness
of |ψ〉 without a context [7].

• the quantum particles pass through the walls: this is
the tunneling effect, an “obvious” effect for classi-
cal waves (it is due to so-called evanescent waves),
but “impossible” for classical particles. But the
classical notions of waves and particles are inade-
quate here, and one must consider probability am-
plitudes, which allow to physically visualize Born’s
law in this case. The change of context corresponds
then to the passage from a representation where
the momentum of the particle is defined, to another
“incompatible” one where its position is defined. A
usual quantum wave-packet is somewhere between
these two extremes, but in any case speaking about
particles or waves with a classical behavior is a fic-
tion, sometimes useful but most often misleading.

The above examples do not necessarily require to fully
determine the modalities, i.e. all the system’s properties,
but the general ideas remain valid. It may be noticed
that contextual quantization is difficult to admit, even
for physicists, since it asserts that properties/modalities
belong to a system within a context, and not to a system
considered as “alone in the universe”, as classical physics
would assume. But the notion in itself is not paradox-
ical, and if we admit that such is the behavior of the
nature in which we live, then the statements related to
the “quantum world” finally cease to appear as a long
series of contradictions or absurdities.

VII. QUANTUM COMPUTING IN CONTEXT.

This point of view also underlines that statements
made “out of context” (such as those concerning the fa-
mous Schrödinger’s cat, both dead and alive) are mean-
ingless. Any statement concerning a quantum system,
even a large one such as a quantum computer, is only
meaningful in combination with a relevant context in
which the modalities under consideration can manifest
themselves and be observed.
This allows us to come back to the technological

promises mentioned at the beginning of this article. It
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is true that a quantum computer has, in principle, a gi-
gantic computing power, based on the manipulation of
entangled states involving a very large number of quan-
tum bits. But this manipulation will only be possible
if an adequate context is available, which will also be
of a very high complexity - even if it is then a classical
complexity.
Then is it certain that the ensemble formed by the

quantum “heart” (the system) surrounded by classical
instruments capable of interacting with it (the context)
will be more efficient than a usual, classical supercom-
puter ? The answer to this question remains open, and
the scientific and rational conclusion is that we have to
go forward and see what happens - it may not be exactly
what we expect, but this is very common in experimental
physics, and it could be just as interesting.

Appendix : Uhlhorn’s and Gleason’s theorems.

As written above, the empirical facts that we want to
describe mathematically are :

(i) in each context a measurement provides one modality
among N possible ones, that are mutually exclusive. No
measurement can provide more than N mutually exclu-
sive modalities, and once obtained in a given context, a
modality corresponds to a certain and repeatable result,
as long as one remains in this same context.

(ii) the certainty and repeatability of a modality can be
transferred between contexts, this fundamental property
is called extracontextuality of modalities. All the modal-
ities that are related together with certainty, either in the
same or in different contexts, constitute an equivalence
class that we call an extravalence class.

Our central mathematical ingredient is then to asso-
ciate a rank-one projector Pi (a N ×N hermitian matrix
such as P 2 = P ) to each extravalence class of modalities,
in such a way that the N projectors associated with the
N modalities within a given context are mutually orthog-
onal. In addition, we assume that the probability to get
a given modality is a function of its associated projector
only. The heuristic motivation for this choice is that it
ensures that the events associated with modalities can-
not be subdivided in more elementary events, as it would
be the case with classical (partition-based) probabilities.
The choice of a specific orthogonal set of projectors

associated with a context is not given a priori, but mu-
tually exclusive modalities in the context should stay so,

whatever choice is made for the projectors. It means
that if two orthogonal projectors are associated with two
mutually exclusive modalities, they should stay orthogo-
nal whatever choice is made for the projectors associated
with a “reference” (fiduciary) context. Then Uhlhorn’s
theorem [9, 10] warrants that the transformations be-
tween the sets of projectors associated with different con-
texts must be unitary or anti-unitary; anti-unitary oper-
ators are associated with time reversal, so we will omit
them here and consider only unitary ones.

We thus get a major result : once a set of mutually or-
thogonal projectors associated with a fiduciary context
has been chosen, the sets of projectors associated to all
other contexts are obtained by unitary transformations,
so we are simply “moving” in a Hilbert space. There
are also various arguments for using unitary (complex)
rather than orthogonal (real) matrices; in our framework
the simplest argument is to require that all permutations
of modalities within a context are continuously connected
to the identity, which is not possible with orthogonal ma-
trices, but is possible with unitary ones.

The next step is to consider the probability f(Pi) to get
a modality associated with projector Pi. By construction

a context is such that
∑i=N

i=1
Pi = I, and

∑i=N

i=1
f(Pi) = 1

for any complete set {Pi}. But these are just the hy-
pothesis of Gleason’s theorem [11, 12], so there is a den-
sity matrix ρ such that f(Pi) = Trace(ρPi). If the
value 1 is reached, then ρ is also a projector Qj and
f(Pi) = Trace(QjPi) which is the usual Born’s formula.

We have thus reconstructed the basic probabilistic
framework of quantum mechanics. In order to use it,
one must define explicitly the relevant physical proper-
ties and associated contexts, that may go from space-time
symmetries (Galileo group, Lorentz group) [13] to qubits
registers. In any case, contextual quantization applies
and sets the scene where the actual physics takes place.

An interesting question is whether this probabilistic
formalism might be used outside physics, for its own
virtues in a “quantum-like” analogy [14, 15]. However, it
can be observed that the requirements (i) and (ii) writ-
ten above are strictly respected in quantum mechanics,
hence the strong predictive power, whereas this is only
loosely the case in other domains. Therefore whether or
not a variant of this formalism might have a useful pre-
dictive (and not only descriptive) power outside physics
remains an open - and quite stimulating - question.
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