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Abstract

ARC 3.0 is a modular, object-oriented Python library combining data and algorithms to enable the calculation of a range of prop-
erties of alkali and divalent atoms. Building on the initial version of the ARC library [N. Šibalić et al., Comput. Phys. Commun.
220, 319 (2017)], which focused on Rydberg states of alkali atoms, this major upgrade introduces support for divalent atoms. It also
adds new methods for working with atom-surface interactions, for modelling ultracold atoms in optical lattices and for calculating
valence electron wave functions and dynamic polarisabilities. Such calculations have applications in a variety of fields, e.g., in the
quantum simulation of many-body physics, in atom-based sensing of DC and AC fields (including in microwave and THz metrol-
ogy) and in the development of quantum gate protocols. ARC 3.0 comes with an extensive documentation including numerous
examples. Its modular structure facilitates its application to a wide range of problems in atom-based quantum technologies.

Keywords: alkaline earth atoms, divalent atoms, alkali atoms, Rydberg states, dipole-dipole interactions, electron wave functions,
optical lattices, Bloch bands, Wannier states, dynamic polarisability, magic wavelengths, atom-surface van der Waals interaction,
Stark shift, Förster resonances, quantum technologies, neutral-atom quantum computing, atom-based sensors

PROGRAM SUMMARY
Program Title: ARC 3.0
Licensing provisions: BSD-3-Clause
Programming language: Python
Computer: i386, x86-64
Operating System: Linux, Mac OSX, Windows
RAM: of the order of several 100 MB for calculations involving several
thousand basis states
External Routines: NumPy [1], SciPy [1], Matplotlib [2], SymPy [3],
LmFit [4]
Nature of problem:
The calculation of atomic properties of alkali and divalent atoms in-
cluding energies, Stark shifts and dipole-dipole interaction strengths
using matrix elements evaluated through a variety of means.
Solution method:
Dipole matrix elements are calculated using an analytical semi-classical
approximation or wave functions obtained by numerical integration of
the radial Schrödinger equation for a one-electron model potential. In-
teraction energies and shifts due to external fields are calculated using
second order degenerate perturbation theory or exact diagonalisation
of the interaction Hamiltonian, yielding results valid even at large ex-
ternal fields or small interatomic separation.
Restrictions:
External electric and magnetic field must be parallel to the quantization
axis. The accuracy of short range (. 1 µm) atom - atom interaction
potentials is limited by the truncation of the basis. Only weak mag-
netic fields are supported as only linear Zeeman shifts are taken into
account. Calculations for divalent atoms use a single-electron approx-
imation and calculation of their wave functions is not supported.
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1. Introduction

Neutral atoms are ideal building blocks for both fundamen-
tal research and technological applications exploiting quantum
mechanics. The stability of their physical properties makes
them an ideal choice for a sensing medium, virtually eliminat-
ing the need for recalibration [1, 2]. By promoting atoms to
highly-excited, long-lived Rydberg states, the sensitivity to ap-
plied electric fields can be enhanced by many orders of magni-
tude compared to the ground state [3], which has applications to
electric field metrology over a wide range of frequencies from
DC to THz fields [2, 4, 5, 6, 7].

The reproducible properties of a given atomic species al-
lows for the creation of hundreds of identical atomic qubits [8,
9]. Together with the dramatic increase in the interatomic inter-
action strength associated with Rydberg excitation, this enables
applications in quantum simulation [8, 10, 11, 12] and quantum
optics [13, 14, 15, 16, 17, 18, 19].

Having precise and accurate values of the relevant atomic
parameters (e.g., transition dipole moments, Stark shifts, etc.)
is crucial for developing new experiments, comparing to theory,
or simply for interpreting the data. As the number of potentially
relevant parameters vastly exceeds what can be tabulated, there
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is a need for an atom-calculator computing these parameters on
demand. ARC 1.0 [20] aimed to provide such a research tool
for alkali metals by combining the best available algorithms
and experimental data into a modular, object-oriented Python li-
brary. The open source nature of the package and the popularity
of this programming language facilitated its rapid adoption by
the community and the inclusion of newly developed methods.
Related efforts are those of JAC [21] and Pairinteraction [22]
programs.

However, a growing number of research groups are now
working on Rydberg states of atoms with two valence elec-
trons [23], such as the alkaline earth elements (e.g., Ca, Sr)
and some of the lanthanides (e.g., Yb, Ho [24]). While several
groups have performed calculations of Stark maps [25, 26, 27]
and interaction potentials [28, 29, 30], open-source codes like
those provided by ARC 1.0 [20] and Pairinteraction [22] for
the alkalis are not available for these species. This motivated
the major upgrade of the ARC library we are presenting here.
Specifically, we have extended ARC to divalent atoms, modify-
ing the algorithms as necessary and including supporting data
for 88Sr, 40Ca and 174Yb. Methods for calculating long-range
van der Waals interactions have been extended to degenerate
perturbative calculations and pair-state calculations to arbitrary
interspecies calculations. This new version of ARC also adds
functionalities for atom-surface interactions, optical trapping
and visualisation of results. The miniaturisation of atom-based
sensors [31], and the strong long-wavelength transitions be-
tween Rydberg states [3], make atom-surface interaction effects
prominent [32]. We have therefore included non-retarded van
der Waals atom-surface potential calculations in ARC 3.0. Data
are currently included only for sapphire and perfectly reflective
surfaces, but other surfaces can easily be incorporated.

The importance of optical trapping stimulated the addition
of two modules. OpticalLattice1D is dedicated to optical lat-
tices and allows easy calculation of Bloch bands, Bloch states
and Wannier states. DynamicPolarizability calculates the
wavelength-dependent atomic polarizability relevant for optical
trapping, and enables searches for “magic-wavelengths” where
two different atomic states have the same polarizability.

Finally, to allow easy visualisation of different atomic states,
a moduleWavefunction provides sectional views of the atomic
wave function for arbitrary atomic states. These are important
both for pedagogical and research purposes, especially since the
size of Rydberg electron orbitals can be large enough to encom-
pass other atoms, and may even approach the typical length-
scale over which external trapping potentials vary [33, 34].

How to start using the library is explained in Section 2. The
rest of the paper gives an overview of the newly implemented
calculations, with comments on restrictions and implementa-
tion details.

2. Installation and getting started

ARC 3.0 is available from the online repository Python Pack-
age Index (PyPI) and can be installed from the command line
simply by invoking
pip install ARC-Alkali-Rydberg-Calculator

This installs the package correct for the user’s environment,
which can be based on Python 3 for Windows, Mac OS or
Linux. All the methods discussed in the following can be used
after importing them from the arc library:

from arc import *
# write your code

The examples of code given in the paper assume that this line
was included at the beginning of the program to import the li-
brary.

The detailed documentation of the ARC library is available
online [35] and is updated at each upgrade of the code. New
users are recommended to consult the accompanying Jupyter
IPython interactive notebooks listed on the “Getting started with
ARC” page of the online documentation [35], which provide
examples of calculations and describe the relevant physics. The
interactive notebooks contain a number of examples that bench-
mark ARC results against the existing literature. Finally, we
note that a selection of the functionality of the ARC library
is available at https://atomcalc.jqc.org.uk as a part of the
web-app Atom Calculator. This web page will also generate
code that can be used as example-on-demand to help users start
their own calculations. Bug reporting, questions and further
code development are tracked on the project’s GitHub page [36].

3. Overview of the new functions

A high-level view of the ARC 3.0 library is shown in Fig. 1.
This upgrade generalises methods originally included in ARC
1.0, which were developed for AlkaliAtom with electron spin
S = 1/2, to the singlet (S = 0) and triplet (S = 1) states of diva-
lent atoms. This approach is underpinned by the broad validity
of the single active electron approximation for highly-excited
states of divalent atoms, as discussed in Appendix A. Thus
most of the divalent_atom_functions methods are directly
inherited from alkali_atom_functions, upgraded as neces-
sary to support divalent atoms. The spin state is now speci-
fied through an optional keyword parameter s, which defaults
to 0.5 for alkali atoms and must be set to 0 or 1 for divalent
atoms. To support these calculations, a semi-classical method
for calculating dipole and quadrupole matrix elements has been
implemented that does not require the use of a model potential.

The range of divalent atom data currently included in ARC
3.0 is discussed in Appendix Appendix B. New species/series
may easily be added by generating the appropriate data files.
Inter-species calculations for both PairStateInteractions and
StarkMapResonances are possible.

In addition, PairStateInteractions.getC6perturbatively
now supports degenerate perturbation theory for the calcula-
tion of C6 coefficients, The possibility of taking into account
a weak magnetic field directed along the quantization axis has
also been introduced (only paramagnetic terms linear in field
strength which shift energy levels but do not mix states are in-
cluded in the calculation). Moreover, the new single-atom cal-
culationsWavefunction, AtomSurfaceVdW,OpticalLattice1D
and DynamicPolarizability have been added in
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Figure 1: Overview of ARC 3.0. Only the class names are listed here; a full list of the implemented methods can be found in Appendix C.

calculations_atom_single. (The calculations of atom-surface
interactions implemented in AtomSurfaceVdW require values
of the refractive index for the surface of interest for a range of
frequencies. Methods for general optical surface properties are
implemented in materials.)

Finally, we have also created a group of advanced calcula-
tions which are likely to be too specialized for a core toolbox.
The corresponding modules are intended for expert use and can
be imported with

# from arc.advanced.<mn> import *
# where <mn> is module name, for example:
from arc.advanced.population_lifetime import

getPopulationLifetime

The modules in this advanced library will be built on top of the
ARC core library and will provide solutions for specialised re-
search questions. The first of these modules is population_lifetime,
which has been contributed by the authors of Ref. [37]. It gives
access to a getPopulationLifetime function calculating pop-
ulation lifetimes taking into account the redistribution of pop-
ulation within a Rydberg manifold driven by black-body radi-
ation, including repopulation processes (such population life-
times thus differ from state lifetimes).

In the following we outline the calculations newly imple-
mented in ARC 3.0 and provide examples of code for each of

them.

3.1. Divalent atoms dipole and quadrupole matrix elements

Dipole and quadrupole matrix elements factorize into prod-
ucts of radial matrix elements and angular factors. ARC pro-
vides access to both reduced (e.g. getReducedMatrixEle-
mentJ, getReducedMatrixElementJ_asymmetric, getRe-
ducedMatrixElementL, . . . ) and full matrix elements
(getDipoleMatrixElement, getDipoleMatrixElementHFS,
. . . ) as detailed in the online documentation [35].

Table 1: Energy level data for divalent atoms currently included in diva-
lent_atom_data, with references.

Atom Measured en-
ergy levels

Quantum defects References

88Sr 1S0, 1P1, 1D2,
3S1, 3P0, 3P1,
3P2, 3D1, 3D2,
3D3

1S0, 1P1, 1D2,
1F3, 3S1, 3P0, 3P1,
3P2, 3D1, 3D2,
3D3, 3F2, 3F3,
3F4,

[38, 39, 40,
41, 42, 43, 44,
45, 46]

40Ca 1F3
1S0, 1P1, 1F3, 3S1,
3P1, 3P2, 3D2, 3D1

[38, 43, 47,
48, 49, 50]

174Yb 1S0, 1P1, 1D2,
3D2

1S0, 1P1, 1D2, 3D2 [51, 52, 53]
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As noted above, the calculations are performed within the
single active electron approximation. The radial matrix element
for a dipole transition between states |n, L, J〉 and |n′, L′, J′〉 of
hydrogen or an alkali atom are calculated as in ARC 1.0, i.e.,
by numerical integration between suitably chosen bounds ri and
ro:

RnLJS , n′L′J′S ′ =

∫ ro

ri

RnLJ(r) r Rn′L′J′ (r) r2 dr (1)

with S = S ′ = 1/2 and the wave functions RnLJ(r) obtained as
solutions of the Schrödinger equation for a model potential.

Since model potential methods are problematic for divalent
atoms (Appendix A) the dipole radial matrix elements for these
species are obtained in a semi-classical approximation [54].
This approach is not based on numerical wave functions. In-
stead, the dipole radial matrix elements take on the form

RnLS J , n′L′S ′J′ =
3
2

n2
∗c

1 − (
`c

n∗c

)21/2 ∞∑
p=0

γpgp (∆n∗) , (2)

with S = S ′ = 0 or 1. In this equation n∗ is the reduced prin-
cipal quantum number (n∗ ≡ n − δ(n, L, S , J) with δ(n, L, S , J)
being the quantum defect for the |n, L, S , J〉 state) and `c, n∗c, γ,
∆` and ∆n∗ are defined as

`c ≡
L + L′ + 1

2
, n∗c ≡

√
n′∗ n∗, γ ≡ ∆` `c/n∗c,

∆` ≡ L′ − L, ∆n∗ ≡ n∗ − n′∗.

Moreover,

g0(∆n∗) =
1

3∆n∗

[
J∆n∗−1(−∆n∗) − J∆n∗+1(−∆n∗)

]
,

g1(∆n∗) = −
1

3∆n∗

[
J∆n∗−1(−∆n∗) +J∆n∗+1(−∆n∗)

]
,

g2(∆n∗) = g0(∆n∗) −
sin π∆n∗
π∆n∗

,

g3(∆n∗) =
∆n∗

2
g0(∆n∗) + g1(∆n∗),

where the Js(−∆n∗)’s are Anger functions:

Js(x) ≡
1
π

π∫
0

dθ cos [sθ − x sin (θ)].

The radial quadrupole matrix elements are calculated as

R
Q
nLJS , n′L′J′S ′ =

∫ ro

ri

RnLJ(r) r2 Rn′L′J′ (r) r2 dr, (3)

in the case of hydrogen and alkali atoms, and by using the corre-
sponding semi-classical formulae for divalent atoms. The latter
differ between different values of |∆L|. For ∆L = ±2,

R
Q
nLS J , n′L′S ′J′ =

5
2

n4
∗c

[
1 −

(`c + 1)2

n2
∗c

]1/2

×

[
1 −

(`c + 2)
n2
∗c

]1/2 3∑
p=0

γpQp(∆n∗), (4)

whereas for ∆L = 0,

R
Q
nLS J , n′L′S ′J′ =

5
2

n4
∗c

1 − 3`2
c

5n2
∗c

1∑
p=0

γ2pQ2p(∆n∗)

 . (5)

The expansion coefficients Qp(∆n∗) are the same in both cases:

Q0(∆n∗) = −
6

5(∆n∗)2 g1(∆n∗),

Q1(∆n∗) = −
6

5∆n∗
g0(∆n∗) +

5
6

sin π∆n∗
π(∆n∗)2 ,

Q2(∆n∗) = −
3
4

[
6

5∆n∗
g1(∆n∗) + g0(∆n∗)

]
,

Q3(∆n∗) =
1
2

[
∆n∗

2
Q0(∆n∗) + Q1(∆n∗)

]
.

We have compared the model potential and semiclassical
methods for calculating dipole matrix elements using rubidium
as a test case. The two methods give results in close agreement
when |n − n′| ≈ 0, even for n, n′ as low as 10 (below which
multi-electron effects can be expected to become important).
While the agreement deteriorates when |n − n′| increases, the
semi-classical results do not differ by more than 5% from the
model potential results in the range 0.65 n . n′ . 1.5 n. Given
that outside this range the dipole matrix elements are less than
1% of their values at |n − n′| ≈ 0 (except for very small values
of n), the semi-classical approach is normally appropriate for
any value of n − n′ for which the dipole matrix element is large
enough to be significant in calculations of Stark maps or dis-
persion coefficients. A multi-channel quantum defect approach
would be more appropriate in the regions where perturbers mix
states of different symmetries [55]; however, such calculations
are beyond the scope of the current version of ARC.

All dipole and quadrupole matrix elements for calcium, stron-
tium and ytterbium currently used or produced by ARC 3.0 are
obtained as described above, as no literature values of these
quantities are currently available for these atoms. Matrix ele-
ments obtained in the future from more accurate calculations
or from measurements can be added to a literature file, as de-
scribed in Section 4.3. The library will use the values found in
this literature file, should there be any, rather than recalculate
them.

3.2. Pair-state calculation of atom-atom C6 interactions in de-
generate perturbation theory

In the single-active electron approximation, the interaction
between two atoms at inter-atomic distance R arises from the
interaction between the valence electrons and the interaction of
each of these electrons with the screened nucleus of the other
atom. Denoting the coordinates of the valence electrons relative
to the respective nuclei by r1 and r2, this interaction is given by
the following multipolar expansion (c.f. Eq. (19) in Ref. [20]
for details):

V(R) =

∞∑
k1,k2=1

Vk1,k2 (r1, r2)
Rk1+k2+1 , (6)
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Figure 2: Two examples of cases where degenerate perturbation theory has to be used for C6 calculations. (a): Two atoms with inter-atomic axis parallel to the
quantisation axis may exchange virtual photons that drive two σ+ transitions [corresponding to Y1,+1 in Eq. (7)] in one atom and two σ− transitions in the other
atom, thus coupling the initial |r1〉 and |r2〉 states to energetically permitted |r3〉 and |r4〉 states. The projection of the total angular momentum on the quantisation
axis is conserved in this process (i.e., mJ1 + mJ2 = mJ3 + mJ4 ). (b): Alternatively, when the inter-atomic axis is perpendicular to the quantisation axis, virtual
photons driving a σ− transition in one atom may be viewed as having linear polarization perpendicular to the quantisation axis and can thus drive both σ+ and σ−

transitions in the other atom. The projection of the total angular momentum on the quantisation axis is then not conserved and mJ3 + mJ4 may differ from mJ1 + mJ2 .
Using degenerate perturbation theory, the energy eigenstates can be obtained with their corresponding C6 coefficients, as shown in (c) for the case of two 88Sr atoms
initially in a pair state with n1 = n2 = 40, L1 = L2, J1 = J2 and S 1 = S 2 (the red circles correspond to the stretched states mJ1 = J1 = mJ2 = J2, assuming that the
inter-atomic axis is parallel to the quantization axis).

with

Vk1,k2 (r1, r2) =
(−1)k2 4π

√
(2k1 + 1)(2k2 + 1)

×
∑

p

√(
k1 + k2
k1 + p

) (
k1 + k2
k2 + p

)
rk1

1 rk2
2

×Yk1,p(r̂1)Yk2,−p(r̂2). (7)

Here the
(
n
m

)
are binomial coefficients and the Yk,p(r̂) are spher-

ical harmonics, and it is assumed that the quantization axis of
both atoms is directed along the internuclear axis [as in Fig. 2(a)].
Terms with k1 + k2 = 2, 3, 4, . . . correspond respectively to
dipole-dipole, dipole-quadrupole, quadrupole-quadrupole inter-
actions and so on.

In the large R limit, the interaction between Rydberg atoms
is typically dominated by dipole-dipole interactions. Such an
interaction couples an initial pair-state |r1 r2〉 to other states
|r′ r′′〉 whose energy differs by an energy defect ∆r′,r′′ = Er′ +

Er′′ − Er1 − Er2 . To second order in this interaction, the interac-
tion energy of two atoms in the initial pair-state |r1 r2〉 is given
by a van der Waals interaction potential of the form −C6/R6,
where C6 is defined by the following equation if the pair-state
energy Er1 + Er2 is non-degenerate:

C6

R6 =
∑
r′,r′′

|〈r′ r′′ |Vdd(R) | r1 r2〉|
2

∆r′,r′′
. (8)

Here the sum goes over all the pair states |r′ r′′〉 that are coupled
by electric dipole transitions to the original pair-state |r1 r2〉, and
Vdd(R) is the dipole-dipole part of V(R):

Vdd(R) ≡ V1,1(r1, r2)/R3. (9)

However, there are situations in which the pair-state energy
Er1 +Er2 is degenerate and the dipole-dipole interaction couples
the initial pair-state |r1 r2〉 to some other pair-states |r3 r4〉 of the
same energy — for instance, in the absence of external fields,
to pair-states differing in magnetic quantum numbers only. Two
examples of such off-diagonal couplings mixing pair-states are
given in Fig. 2. In such situations, a perturbative calculation of
the C6 coefficients requires the diagonalization of the matrix
C describing the second-order coupling between the energy-
degenerate pair-states [28]. To this end, we work in the basis
{| ri r j〉} of degenerate pair-states, i.e.,

| ri r j〉 ∈ {| n1L1S 1J1mJ1 = −J1〉, . . . , | n1L1S 1J1mJ1 = +J1〉}

⊗ {| n2L2S 2J2mJ2 = −J2〉, . . . , | n2L2S 2J2mJ2 = +J2〉},
(10)

where (n1, L1, S 1, J1,mJ1 ) and (n2, L2, S 2, J2,mJ2 ) are the quan-
tum numbers associated with the states | r1〉 of atom 1 and | r2〉

of atom 2, respectively. The element of C corresponding to the
second-order coupling between the q-th and the p-th basis states
is

R6
∑
r′,r′′

〈riq r jq |Vdd(R) | r′ r′′〉〈r′ r′′ |Vdd(R) | rip r jp〉

∆r′r′′
.

Diagonalising this matrix yields a C6 coefficient for each of the
energy curves the degenerate pair-state energy splits into due to
the dipole-dipole interaction, these coefficients being the eigen-
values C(i)

6 of C [see, e.g., Fig. 2(c)]. These eigenvalues are
independent of the orientation of the inter-atomic axis relative
to the quantization axis, in the absence of external fields, al-
though the composition of the corresponding energy eigenstates
in terms of the basis states defined above depends on the choice
of the quantization axis [28].
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Degenerate perturbation theory can be used within the
getC6perturbatively function by setting the flag degener-
atePerturbation=True. The function will then return the C(i)

6
eigenvalues and the corresponding eigenvectors of the relevant
C matrix. For example, the following fragment of code pro-
duces the results displayed in the third column of Fig. 2(c)

# Sr 88 40 ^3P_1 mj=0 , 40 ^3P_1 mj=0 state
calc = PairStateInteractions(

Strontium88(),
40, 1, 1,
40, 1, 1,
0, 0,
s=1
)

theta = 0; phi = 0; deltaN = 5;
deltaE = 30e9; # in Hz
c6, eigenvectors = calc.getC6perturbatively(

theta, phi, 5,
deltaE, degeneratePerturbation=True)

# getC6perturbatively returns the C6 coefficients
# expressed in units of GHz mum^6.
# Conversion to atomic units:
c6 = c6/1.445e-19
# These results should still be divided by n^{11}
# to be plotted as in Fig. 2(c).

Here theta and phi are, respectively, the polar angle (Θ) and
azimuthal angle (Φ) defining the orientation of the inter-atomic
axis in a referential whose z-axis is parallel to the axis of quan-
tisation of the angular momenta. The dependence on Θ and Φ

of the elements of C is taken into account by rotating the atomic
basis states using Wigner D-matrices, as in ARC 1.0 [20]. I.e.,
Vdd(R) defined above is replaced by the angle-dependent Vdd(R,Θ,Φ),
with, in a simplified notation,

Vdd(R,Θ,Φ) =[D(J′1,Θ,Φ) ⊗ D(J′2,Θ,Φ)]
Vdd(R)

[D(J1,Θ,Φ) ⊗ D(J2,Θ,Φ)]†, (11)

where the D(J mJ ,Θ,Φ) represent the relevant rotation matri-
ces. Although the elements of the matrix C and the composi-
tion of its eigenstates in terms of the basis states defined above
depend on Θ and Φ, this is not the case for its eigenvalues C(i)

6
(hence for the C6 coefficients resulting from this calculation)
[28].

Invoking getC6perturbatively without the flag degener-
atePerturbation=True or with degeneratePerturbation=False
will only return the individual element of the matrix C corre-
sponding to the values of the quantum numbers specified in the
call, rather than the eigenvalues and eigenvectors of C. These
individual elements normally depend on Θ and Φ and can be
taken to be effective C6 coefficients for particular combinations
of magnetic quantum numbers.

We note that the interaction energies can also be obtained
non-perturbatively by full diagonalisation of the Hamiltonian
using the function diagonalise. An example of results obtained

Sr 60 3S1 m j = 1, Sr 60 3S1 m j = 1

Figure 3: Example interaction strength calculations using the full diago-
nalisation method for a pair of divalent atoms in identical states (88Sr 5s60s
3S1mJ = 1). The plot shows how the energy levels of the atom pair vary as
functions of the inter-atomic distance, R. The energies are measured relative
to the energy of the initial pair-state in the R → ∞ limit, and only pair-states
coupled to this initial pair-state are represented. The fraction of the initial pair
state present in each eigenstate is colour-coded as per the colour bar.

in this way is given by Fig. 3, which is produced by running the
following code:

calc = PairStateInteractions(
Strontium88(),
60, 0, 1,
60, 0, 1,
1, 1,
s=1
)

theta=0; phi=0; deltaN = 5;
deltaL = 5; deltaMax = 25e9 # [Hz]

# Generate pair-state interaction Hamiltonian
calc.defineBasis(theta, phi, deltaN, deltaL, deltaMax,

progressOutput=True)

# Diagonalise
r = np.linspace(1.5, 4, 300)
nEig = 200 # Number of eigenstates to extract
calc.diagonalise(r, nEig, progressOutput=True)

# Plot
calc.plotLevelDiagram()
calc.showPlot(interactive=False)

The selected range of values of R shown on Fig. 3 is above the
LeRoy radius, estimated for low-L states as 〈r2

1〉
1/2 + 〈r2

2〉
1/2 ≈

3/2a0(n2
1 + n2

2), for electron coordinates r1,2 measured relative
to nucleus, Bohr radius a0, and principal quantum numbers n1,2
of the respective states of two atoms.

We also note that the implementation of degenerate pertur-
bation theory made in ARC does not take into account energy
degeneracies between states differing in L or S . It is therefore
not appropriate for atomic hydrogen or for high angular mo-
mentum states. We recommend using the full diagonalisation
method for such cases.
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3.3. Inter-species interaction calculations

PairStateInteractions supports inter-species calculations.
Users can initialize such calculations using the keyword argu-
ment atom2 to explicitly state the species of the second atom.
Note that to specify the spin state of the second atom, the key-
word argument s2 should also be set. Setting s2 can also be
used for calculations where the atoms are from the same atomic
species but have different spin.

For example, pair-state calculations between rubidium atoms
in the | 5s60s 2S1/2 mJ = 1/2〉 state and ytterbium atoms in the
| 6s54s 1S0 mJ = 0〉 state [Fig. 4] are initialized as follows:

calc = PairStateInteractions(
Rubidium(),
60, 0, 0.5,
54, 0, 0,
0.5, 0,
s=0.5,
atom2=Ytterbium174(),
s2=0
)

3.4. Single-atom properties for divalent atoms

ARC 3.0 extends most of the single atom methods avail-
able in ARC 1.0 to divalent atoms. For example, Stark maps
can be obtained for divalent atoms by setting the additional key
argument s to define the spin state. Note that in the single elec-
tron approximation, states of different total spin are not cou-
pled. Example results from such a calculation are shown in
Fig. 5. Static electric fields are often used to adjust pair-state
energies. StarkMapResonances allows the user to search for
electric field strengths where two pair-states have same ener-
gies (Förster resonances). Lastly LevelPlot allows the plotting
and interactive exploration of energy level diagrams. These di-
agrams may be opened as interactive stand-alone plots (from a
command line Python call or in a Jupyter notebook with %mat-
plotlib qt); then will then display the transition wavelength

Rb 60 S1/2 m j = 1/2, Yb 54 1S0 m j = 0

Figure 4: Example alkali-divalent interspecies interaction calculation (85Rb
60s 2S1/2mJ = 1/2; 174Yb 5s54s 1S0mJ = 0). The plot shows how the energy
levels of the atom pair vary as functions of the inter-atomic distance, R. The
fraction of the initial pair state present in each eigenstate is colour-coded as per
the colour bar.

Figure 5: An example Stark map calculation for a divalent atoms, showing the
perturbation of states in the vicinity of the |5s60d 1D2 mJ = 0〉 state of 88Sr
by an external electric field. Only the coupled states (i.e., singlet states with
mJ = 0) are plotted. The colour bar shows the admixture of this state into each
atomic eigenstate.

and transition frequency for pairs of states selected interactively
by clicking on energy levels.

3.5. Electronic wave functions

Visualisations of atomic wave functions are a useful ped-
agogical tool enabling visual interpretation of effects such as
dipole moments. In addition, the detailed shape of Rydberg
electron wave functions plays an important role in a number of
effects. For example, the wave functions can become so spread
out that they encompass other atoms. The modulations of the
electron probability density may then induce a significant vari-
ation in the potential energy of the encompassed atoms, which
may lead to the formation of Rydberg molecules [56]. At the
same time, the optical potentials used for atom trapping may
vary substantially over the length-scale of the Rydberg electron
wave functions, giving rise to energy shifts [33] and affecting
the trap lifetime [34].

Wavefunction enables the calculation of atomic wave func-
tions for arbitrary superposition states. Quick 2D and 3D visu-
alisations are possible, with a choice of units (atomic or SI). For
example, the following code can be used to obtain and plot the
probability density function for the 10f 2F7/2 mJ = 7/2 state of
rubidium [Figs. 6(a and b)]:

atom = Rubidium()
n = 10; l=3; j=3.5; mj=3.5;
stateBasis = [[n, l, j, mj]]
stateCoef = [1] # pure 10 F_7/2 mj=7/2 state
wf = Wavefunction(atom, stateBasis, stateCoef)
wf.plot2D(plane="x-z", units="atomic"); plt.show()
wf.plot2D(plane="x-y", units="atomic"); plt.show()

Wavefunction can be integrated with other ARC functions.
For example, one can find the electronic wave function for an
atom perturbed by an electric field by getting the state from
the corresponding StarkMap and using Wavefunction as per
the following code to plot the result. An example is shown in
Figs. 6(c-d).

atom = Caesium()
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(a)

(b)

(c)

(d)

Figure 6: Example wave function visualizations showing (a and b) cuts through
the 85Rb |10f 2F7/2 mJ = 7/2〉 state two orthogonal planes and (c and d) similar
cuts for the Cs |28s 2S1/2 mJ = 1/2〉 state perturbed by a strong electric field
(−240 V/cm). The plot shows the eigenstate that is adiabatically connected
to the |28s 2S1/2 mJ = 1/2〉 unperturbed state in zero electric field. Note the
change of units (a0 or nm), which can be easily specified using keyword argu-
ments in the Wavefunction methods.

calc = StarkMap(atom)
states, coef, energy= calc.getState([28, 0, 0.5, 0.5],

-24000,23,32,20, accountForAmplitude=0.95,
debugOutput=True)

wf = Wavefunction(atom, states, coef)
wf.plot3D(plane="x-z", units="nm"); plt.show()
wf.plot2D(plane="x-z", units="nm", pointsPerAxis

=400, axisLength=2800)
plt.show()

The density and scale of the mesh on which the wave func-
tions are calculated can be adjusted with optional keyword pa-
rameters. The probability density functions can be provided
in Cartesian as well as in spherical coordinates (respectively
through getRtimesPsi and getRtimesPsiSpherical), and it
is also possible to obtain arrays of wave functions for all differ-
ent possible spin states (using the getPsi method).

Note that Wavefunction is currently only supported for
species in the alkali_atom_data class, as calculations based
on model potentials are not currently supported for divalent
atoms.

3.6. Atom-surface interactions: van der Waals potentials

In the vicinity of a surface, an atomic dipole interacts with
its image in the surface, leading to shifts of the atomic energy
levels. For small atom-surface distances z < λ/(2π), where λ
is the wavelength associated with the strongest transition, the
interaction potential V(r) for an atom in the state a is of the
non-retarded, van der Waals form [57]

VAS(z) = −
1

4πε0

∑
b

n(ωab)2 − 1
n(ωab)2 + 1

|µab
x |

2 + |µab
y |

2 + 2|µab
z |

2

16z3

≡ −
C3

z3 . (12)

Here n(ωab) is the frequency dependent refractive index asso-
ciated with the surface. The summation covers all the states
b dipole coupled to state a. The corresponding transition fre-
quencies and dipole matrix elements in the x, y and z directions
are respectively ωab, µab

x , µab
y and µab

z . The z-axis is taken to be
perpendicular to the surface. Note that different states will have
different C3 values, which leads to a modification of the atomic
transition frequencies near the surface.

To specify the surface material, ARC provides an abstract
class materials.OpticalMaterial, with a method getN return-
ing the refractive index n for a specified wavelength. A subclass
Sapphire is provided as an example. The AtomSurfaceVdW
uses information on the optical properties of the surface and the
atomic transition frequencies to calculate C3. For example, the
following code will return the energy shift with error for the
6s 2S1/2 state of caesium in the proximity of a sapphire surface
(the result is 1.259(2) kHz µm3):

from arc.materials import Sapphire

atom = Cesium()
surface = Sapphire()
calc = AtomSurfaceVdW(atom, surface)

# look at 6 S_1/2 state
n1 = 6; l1 = 0; j1 = 0.5
# take into account coupling to
# 6 P_1/2, 6 P_3/2, 7 P_1/2, 7 P_3/2
coupledStates = [[6, 1, 0.5],

[6, 1, 1.5],
[7, 1, 0.5],
[7, 1, 1.5]]

c3, c3_err = calc.getStateC3(n1, l1, j1,
coupledStates,
debugOutput=True)

Such calculations are possible for all the atomic species
supported by ARC, to the extent that the required dipole ma-
trix elements are available.

3.7. Optical lattices: Bloch bands, Bloch states, Wannier states

Atoms in optical lattices are important in many areas of
science and technology including atomic clocks and gravime-
ters, quantum gas microscopes and quantum simulators. A laser
standing wave gives rise, through the AC Stark shift (Sec. 3.8),
to a spatially periodic potential for the atoms. As is well-known
from solid state physics, such a periodic potential can also be
considered in reciprocal space. In momentum space (k−basis),
a potential with spatial period λ/2 couples free particle states
that are separated by an integer multiple of δk = 4π/λ = 2k ≡ kl
where λ is the wavelength of the optical field, and kl = 2k
is the lattice momentum. Therefore, from the Bloch theorem,
the eigenfunctions of the Hamiltonian (called Bloch states or
Bloch wave functions in this context) can be parametrized by
a quasimomentum q (|q| < k), and these eigenfunctions are
of the form exp(iqr) times a periodic function of r whose pe-
riod is the same as that of the lattice. The Hamiltonian can
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thus be diagonalised on a discrete basis of free-particle states
{eiqr, ei(q+kl)r, ei(q+2kl)r, . . .} separated by an integer multiple of
the lattice momentum in momentum space. Plotting the result-
ing energy levels for different values of the quasimomentum
gives Bloch bands [Fig. 7(a)].

Both Bloch states and Bloch bands can be calculated using
OpticalLattice1D. For example, the following code produces
a Bloch band diagram for rubidium atoms trapped in an optical
lattice formed by a 1064 nm standing wave with a maximal
depth of 5 ER, using a basis which includes states up to q + 35kl
in momentum (ER = h2/(2mλ2) is the recoil energy):

atom = Rubidium87()
trapWavelength = 1064e-9
lattice = OpticalLattice1D(atom, trapWavelength)

lattice.defineBasis(35)
qMomentum = np.linspace(-1,1,100)
lattice.diagonalise(5, qMomentum)
fig = lattice.plotLevelDiagram()
plt.show()

We can enumerate Bloch bands in order of their increasing
energies, starting with the index 0 for the ground state. The
corresponding Bloch wave functions can be obtained by speci-
fying the quasimomentum and the Bloch band index, as in the

(a) (b)

w1,0

w0,0

Figure 7: Example calculations for Rb atoms trapped in an optical standing
wave V(x) with wavelength λ = 1064/2 nm and depth 5 ER. (a) Bloch band
diagram showing energy as a function of quasimomentum q. (b) Lower panel:
Corresponding Bloch wave functions for q = 0 (green) and q = ~k (red). Mid-
dle panel: Wannier functions for the ground state and first excited Bloch band
at R = 0. Upper panel: optical lattice potential V(x).

following example:

# lattice depth = 40 recoil energies
# quasi momentum = + 0 k
# blochBandIndex = 0
f = lattice.BlochWavefunction(40, +0.0, 0)

The Bloch wave functions are delocalised across the lat-
tice sites [Fig. 7(b) bottom panel]. For many calculations and
a more intuitive mapping to atomic physics experiments, it is
convenient to switch to a basis of localised functions, namely
Wannier functions. For each Bloch band, the Wannier functions
wi,R(x) are defined (up to a normalisation factor) as a complete
orthogonal set of functions localised at lattice points defined by
a lattice vector R:

wi,R(x) ∝
∑

q

e−iqRbi,q(x), (13)

where the sum goes over all values of the quasimomentum q
and bi,q are the Bloch wave functions for a given Bloch band
index i and quasimomentum q. Values of the Wannier function
can be obtained after diagonalisation of the interaction potential
Hamiltonian for which we defined Bloch band index to be saved
by setting saveBandIndex keyword argument in diagonalise
method. We can then call getWannierFunction to obtain val-
ues of the Wannier function in a given Bloch band [Fig. 7(b)
middle panel]. For example:

atom = Rubidium87()
trapWavelength = 1064e-9
lattice = OpticalLattice1D(atom, trapWavelength)
lattice.defineBasis(35)
qMomentum = np.linspace(-1,1,100)
lattice.diagonalise(Vlat, qMomentum,

saveBandIndex=0)
print(lattice.getWannierFunction(x, latticeIndex = 0))

Note that saveBandIndex selects the band index, and latti-
ceIndex sets the localisation of the function at the site with
the corresponding index. The Wannier functions returned by
the program should be normalised on the relevant lattice by the
user.

3.8. Dynamic polarisabilities and magic wavelengths
The dynamic (AC) polarisability α(ω) of an atom exposed

to an oscillating electric field of angular frequency ω can be ex-
pressed as the sum of a contribution from the polarisability of
the valence electron(s) αv and the core polarisability αc. The
valence polarisability often dominates. For an electron in state
|a〉 with total angular momentum J and projection mJ the va-
lence polarisability for linearly polarised light can be written
as [58]

αv(ω) = α0(ω) +
3m2

J − J(J + 1)
J(2J − 1)

α2(ω) + α(cont.)
0 (ω); (14)

that is as the sum of a scalar polarisability

α0(ω) =
2

3(2J + 1)

∑
states |b〉

|〈b || er || a〉|2 (Eb − Ea)
(Eb − Ea)2 − (~ω)2 , (15)
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and a tensor polarisability

α2(ω) = 4
(

5J(2J − 1)
6(J + 1)(2J + 1)(2J + 3)

)1/2

×
∑

states |b〉

(−1)J+Jb

{
J 1 Jb

1 J 2

}
|〈b || er || a〉|2 (Eb − Ea)

(Eb − Ea)2 − (~ω)2 .

(16)

Here 〈b || er || a〉 are reduced dipole matrix elements and the
summation runs over all the bound states |b〉, with total angular
momentum jb, dipole-coupled to the state |a〉 of interest. Fi-
nally, there is also a term α(cont.)

0 contributed by the continuum
of unbound states (this contribution will be discussed in more
detail below).

For example, the scalar and tensor polarisabilities of the
caesium 100p 2P1/2 state in the AC field given by a 1100 nm
wavelength optical trapping laser can be obtained using the fol-
lowing code (in this calculation, the sum over intermediate states
b is limited to all the bound states with n ≤ 115, including the
ground state and the low lying excited states):

atom = Caesium()
n = 100
calc = DynamicPolarizability(atom, n, 1, 1.5)
calc.defineBasis(atom.groundStateN, n+15)
alpha0, alpha1, alpha2, alphaC, alphaP, closestState =

calc.getPolarizability(1100e-9, units="SI")

closestState saves the state whose transition frequency is clos-
est to that of the driving field.

In addition to alpha0 and alpha2 the method getPolariz-
ability also returns the core polarizability, αc (alphaC), and
the ponderomotive polarizability, αp (alphaP). The core polar-
izability is approximated by its static value (saved in atom.alphaC)
which is appropriate when the driving laser is far from reso-
nance with core transitions. The ponderomotive polarizability
can be linked to the contribution from the continuum of un-
bound states α(cont.)

0 (which is currently not calculated by ARC).
Close to a bound-state resonance, the contributions from the

6 P3/2 6 P1/2

Figure 8: Example calculation of α(ω) for the caesium 6 S1/2 (red dashed)
and 15 P1/2 (blue solid) states. Resonant transitions to other states are marked
with vertical dotted lines. The inset show a region around 881 nm where the
polarisabilities are equal, corresponding to a magic wavelength.

bound intermediate states dominate αv(ω). However, for Ry-
dberg states one is often in the opposite limit far from bound-
state resonances. Away from strong resonances, the total scalar
polarisability α0 +α(cont.)

0 then approaches the free-electron pon-
deromotive polarisability αP associated with the time-averaged
motion of a free electron in an oscillating electric field [αP =

e2/(2hmeω
2), where ω is frequency of driving field and e and

me are electron charge and mass respectively]. This result is ob-
tained by applying the limit where the Keppler frequency of the
electron orbit around the core is much smaller than ω as is typ-
ical for Rydberg states [59], and applying a Born-Oppenheimer
approximation to separate the fast quiver motion of the loosely
bound electron driven by the electric field component and the
slower relative motion of electron around the ionic core.

The code also returns alpha1 which is a vector polarisabil-
ity relevant in driving with non-linearly polarised light, see,
e.g., Ref. [60]. This feature is not exploited in the current imple-
mentation of DynamicPolarizability, which focuses on the
simplest case of driving under linearly polarized light; how-
ever it provides a path for future support of other polarizations.
Other future extensions could include adding bound-state reso-
nances to the core polarizability and an extended treatment of
the continuum contribution near the ionization threshold.

DynamicPolarizability calculations can involve dipole ma-
trix elements between low-lying states or between low-lying
states and highly excited states. For low-lying states dipole ma-
trix elements calculated both with the semiclassical approxima-
tion and the model potential method become less accurate. That
is why ARC uses literature values for these states, where avail-
able. Users should check the availability of literature values in
the corresponding files (Sec. 4.3). If values for low-lying tran-
sitions are available, the expected accuracy can be of the order
of ∼ 1%, otherwise the accuracy is limited to ∼ 10% for typical
input parameters. Currently, there are significant compiled lit-
erature sources for dipole matrix elements in alkali atoms, but
the data for divalent atoms is more scarce.

For quantum state control in atoms in optical traps, it is of-
ten desirable to find optical trap parameters at which the AC in-
duced shifts of two states, i.e., the polarisabilities of these two
states, is exactly the same. That happens at so called “magic
wavelengths” for optical trapping field. For example, to find
such wavelengths for the 15p 2P1/2 mJ = 1/2 and 6s 2S1/2 mJ =

1/2 states of caesium we plot the polarisability of these two
states in the same plot (see Fig. 8). The magic wavelengths are
then given by the intersections where the the two polarisabilities
are equal:

atom = Caesium()
n = 15
calcP = DynamicPolarizability(atom, n, 1, 0.5)
calcP.defineBasis(atom.groundStateN, n+15)

calcS = DynamicPolarizability(atom, 6, 0, 0.5)
calcS.defineBasis(atom.groundStateN, 25)

wavelengthList = np.linspace(800, 940,1000) * 1e-9 #
800-940 nm
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ax = calcP.plotPolarizability(wavelengthList,
debugOutput=True, units="au")

calcS.plotPolarizability(wavelengthList, debugOutput
=True, units="au", addToPlotAxis=ax, line="r--"
)

plt.show()

Resonances are indicated by vertical lines (as shown in Fig. 8).
The states responsible for these resonances and the correspond-
ing resonance wavelengths are also printed when the flag de-
bugOutput=True is set on.

4. Implementation notes

4.1. Handling of the spin quantum number
To allow the use of both alkali atoms and divalent atoms,

most of the methods have a new keyword argument s specifying
the spin quantum number The default value of this keyword
argument, s=0.5, is appropriate for alkali atoms. As such, s
does not have to be specified for these atoms, making the API of
ARC 3.0 completely backwards compatible with ARC 1.0. For
divalent atoms, users should specify whether they are working
with singlet or triplet states by setting the corresponding spin
quantum number to s=0 or s=1 respectively. To state that the
second atom has a different spin in PairStateInteractions, the
optional keyword argument s2 should be set explicitly.

4.2. Use of fitted quantum defects for divalent atoms
The available experimental energy level data is much sparser

and less precise for divalent atoms than for the alkalis. Inac-
curacies arising from experimental errors may be reduced by
using energies derived from a fit of the data to the Rydberg-
Ritz formula over a range of principal quantum numbers (see
Appendix Appendix B), rather than using the experimental en-
ergies directly. However, in many cases the calculations will re-
quire energies outside the range of values of n used in the fitting
to the Rydberg-Ritz formula. Using this formula is normally
justified for values of n above this range, but might be invalid
for values of n below this range (e.g., because the Rydberg-
Ritz formula does not apply to the ground state and low excited
states, or because the energy levels do not vary smoothly and
monotonically with n due to perturbers). Using the experimen-
tal energies is thus often preferable for small values of n.

For clarity, we have tabulated the range of values of n over
which the quantum defects have been fitted using a dictionary
variable defectFittingRange indexed by terms. For each term
the dictionary returns the smallest and largest principal quan-
tum numbers defining the range of principal quantum numbers
used in the calculation of the Rydberg-Ritz coefficients pro-
vided in ARC. For example, the following code will do this
for the 1F3 term in Calcium-40:

atom = Calcium40()
term = ’1F3’
if term in atom.defectFittingRange:

fitRange = atom.defectFittingRange[term]

print("Min n = %d" % fitRange[0])
print("Max n = %d" % fitRange[1])

For principal quantum numbers above the fitted range, the en-
ergies are calculated by extrapolation of the Rydberg-Ritz for-
mula to outside this range. No extrapolation is done for prin-
cipal quantum numbers below the fitted range. Instead, ARC
tries to use tabulated energies if they exist — either energies
provided by the user or the energies provided by ARC, which
are literature values as described in the online documentation
[35]. In the case of S, P or D series, the calculation is aborted
and a value error raised, explaining the problem, if the program
requires a missing tabulated energy. For L > 2, the calculation
is not aborted but a value of zero is assumed for the quantum
defect. These tabulated energies must be stored in the local data
directory (Sec. 4.3) under a file name defined for each atom in
the levelDataFromNIST variable. For example for strontium
they are stored in sr_level_data.csv. The energyLevelsEx-
trapolated variable of the used atom will be set to True if
the calculation uses energies obtained by extrapolation of the
Rydberg-Ritz formula to outside the range of values of n used
in the fitting.

4.3. Local data directory and updates to literature values

Dipole matrix elements from the literature can be added to
ARC by setting the literatureDMEfilename variable in the
DivalentAtom class to the appropriate file name and ensuring
the format of the file matches that specified in the documenta-
tion.

When ARC 3.0 is first used, a local hidden directory named
.arc-data is created in the user’s home folder. The results of
calculations of, e.g, dipole matrix elements are saved in human-
readable files in this folder, forming a look-up table that can
be used to speed up future calculations. There is an option to
add dipole matrix elements from the literature (or obtained us-
ing other calculation methods) by modifying the correspond-
ing files. For example, to add a new literature value for a 88Sr
dipole matrix element, the user should modify the file stron-
tium_literature_dme.csv as per the table header. This can
be conveniently done by loading the appropriate .csv file in any
spreadsheet program, as long as the file format is preserved
in terms of separators and header comments. To change other
atomic properties, like quantum defects, users should make their
own subclasses which inherit classes defined in the ARC. An
example is given in the following code, which could be used to
update the quantum defects for calcium:

class MyCalcium40(Calcium40):
quantumDefect = ...
# write updated quantum defects
# list in order specified in documentation
dipoleMatrixElementFile = "my_ca_dme.npy"

Once defined, MyCalcium40 can be used instead of Calcium40
in all the ARC calculations. To ensure the program does not
use old cached values, new names of caching files should be
provided when redefining atomic species in this way. Also,
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note that if a new version of arc-data is released (changing the
version number in version.txt in the data directory), the data
entered manually in the .arc-data folder may be overwritten
automatically if no new file names had been specified.

We encourage users to submit new experimental data and
parameters for use by the community via a pull request on the
ARC GitHub page [36].

4.4. Looking under the hood with debugOutput=True

As for ARC 1.0, setting the keyword argument debugOut-
put=True results in verbose output, which may be useful for
checking basis states and other intermediate results. Addition-
ally, many methods have a progressOutput=True option which
can be used for tracking the progress of the calculations.

5. Outlook

In summary, we have presented ARC 3.0, a major new re-
lease of the ARC Python library that extends the library to di-
valent atoms and adds a number of new methods of general in-
terest in Rydberg physics and beyond. We believe this common
code base and consistent interface for many different atomic
properties can speed up the development of new applications
and lower knowledge barriers, e.g, in quantum technologies
based on neutral atoms. The library also offers rich possibili-
ties of advanced educational projects for students in atomic and
quantum physics.

Future improvements of ARC could include the addition of
the calculation of wave functions for divalent atoms and addi-
tional methods for the accurate calculation of low-lying wave
functions [61], support for multi-channel quantum defect the-
ory calculations [55], and the calculation of scattering proper-
ties. New experimental data can be straightforwardly added to
the existing base. ARC is a community-oriented open source
package, and the authors welcome contributions of new core
data or algorithms to the main library as well as contributions
of more specialized codes to arc.advanced.
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Appendix A. The single active electron approximation

Atomic structure calculations for Rydberg states are simpli-
fied by the rapid scaling of the size of the wave function of the
Rydberg electron with principal quantum number n. In atoms
with a single valence electron, the calculation of energy lev-
els and wave functions is achieved by solving the Schrödinger
equation with a modified “model” potential that accounts for
the screening effects of the closed-shell core. Each Rydberg
series labelled by the quantum numbers L, S and J is charac-
terized by a quantum defect δn that quantifies the deviation of
each energy level from its hydrogenoic equivalent. This method
works well for alkali atoms and is used by alkali_atom_functions.

For divalent atoms, the situation is complicated by two ef-
fects. The first is that the ionic core is no longer a closed
shell, since it contains the remaining valence electron. The
core is therefore more strongly polarized by the Rydberg elec-
tron, leading to an additional n dependence in the quantum de-
fects. The second effect is the existence of compact states where
both electrons are excited (e.g., a 5p2 configuration), known as
perturbers. These perturber states exhibit strong interelectronic
correlation effects and lead to perturbations of nearby Rydberg
levels. Even away from the energy of a perturber, Rydberg
states may acquire a small admixture of doubly excited states
[62].

Nevertheless, under many circumstances the properties of
Rydberg states in divalent atoms can be described under a sin-
gle active electron approximation [28]. Under this approxima-
tion, Russell-Saunders L − S coupling is assumed to hold, and
L, S and J are regarded as good quantum numbers. The effects
of core polarizability and perturbers are partially included via
the energy dependence of the quantum defects. Calculations
can then be made in a similar way to those performed in alkali
atoms, with the appropriate generalization of the angular mo-
mentum algebra to integer spin. Previous work has shown that
this treatment gives good agreement with experiment for quan-
tities that depend on the long-range part of the wave function,
such as the DC Stark effect [26, 63].

The interaction between two divalent Rydberg atoms is also
dominated by the long-range character of the wave function.
Therefore a single active electron approach may be used here
also [28]. A study of the effect of perturbers on the interactions
[64] demonstrated that the single-electron treatment is valid to
a high degree of accuracy (<2%) except for Rydberg states in
the immediate vicinity of perturbers.

Note that other observables that depend on the short-range
properties of the wave function, such as the coupling to low-
lying states (eg radiative lifetimes), are significantly modified
by the presence of even small amounts of perturbing states, and
are not well treated in the single active electron approximation
[55]. Here other methods such as multi-channel quantum de-
fect theory (MQDT) [55] that explicitly include the effects of
perturbers must be used.
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Appendix B. Atomic Data for Divalent Atoms

As outlined in section 3.1, calculations involving divalent
atoms rely on fitted values for the quantum defects. In the case
of Ca, no new data was available, and so values compiled in
[28, 65] are used. For Sr and Yb, we provide a new analysis of
the available data for Sr and Yb that takes into account recent
improvements in the spectroscopic data.

Experimental energy levels were fitted to the modified Rydberg-
Ritz formula

E(n) = Ia −
Rya(

n −
[
δ0 +

δ2

(n − δ0)2 +
δ4

(n − δ0)4

] )2 (B.1)

using δ0, δ2 and δ4 as free parameters. The ionization energy Ia
was constrained to the values obtained from the analysis of the
best available spectroscopic data. Rya is the atom-specific Ry-
dberg constant: Rya = R∞ ma/(ma + me), where R∞ is the Ry-
dberg constant, and ma and me are the mass of the considered
isotope and the electron respectively. The fine-structure split-
ting of the ionization threshold was neglected. A least-squares
fitting method was used, implemented via the curve_fit func-
tion from the scipy Python package.

The results, along with references to the experimental dataset
are provided in Table B.1

The choice of the range of n used for each series was a
compromise between maximising the number of data points,
and reducing the effect of series perturbations not described by
equation B.1 and experimental systematic uncertainties. Partic-
ular care should be taken in extrapolating to values of n below
the stated range, where the fits are often poor.

The uncertainties on the Rydberg-Ritz parameters are 68%
confidence limits obtained using a “bootstrap" method based on
resampling with replacement [66], such that each confidence
interval includes 68% of the results falling above the quoted
value of the corresponding parameter as well as 68% of the re-
sults falling below it. For each series the fitted range was re-
sampled 150 times. The asymmetry of the confidence limits
reflects the asymmetric dependence of the value of the energy
on the quantum defects encapsulated in Eq. (B.1), as well as the
limitations of the experimental data. Note that correlations in
the uncertainties are expected to be strong and are not explicitly
considered here; users seeking to set rigorous error bounds on
derived quantities should take this into account.

Appendix C. ARC 3.0 API

The tables C.1 to C.14 list the APIs of ARC 3.0. All old
methods have been amended to allow handling of divalent atoms
with two possible spin states. Additionally, methods that are
newly introduced, or have significant new functionality, are marked
with a � . Since for divalent atoms the calculation of electronic
wave functions in the model potential approach is not imple-
mented, some methods are available only when working with
AlkaliAtom instances, and these are marked by a ◦.
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Table C.2: Methods and function listing of the alkali_atom_functions.AlkaliAtom and alkali_atom_functions.DivalentAtom classes. getRadialCou-
pling now uses semiclassical calculations (see 3.1) for DivalentAtom. The typical relative uncertainties are obtained from comparison to measured values.

Name (parameters) Short description (units) Typical rel. accuracy
getDipoleMatrixElement(n1, l1, ...) Reduced dipole matrix element (a0e) ∼ 10−2

getDipoleMatrixElementHFS(n1, l1, ...) � Hyperfine-structure resolved transitions 〈n1`1 j1 f1m f 1|er|n2`2 j2 f2m f 2〉 (a0e) ∼ 10−2

getTransitionWavelength(n1, l1, ...) Calculated transition wavelength in vacuum (m) ∼ 10−6

getTransitionFrequency(n1, l1, ...) Calculated transition frequency (Hz) ∼ 10−6

getRabiFrequency(n1, l1, j1, mj1, ...) Returns a Rabi frequency (angular, i.e. Ω = 2π × ν) for resonant excitation
with a specified laser beam in the center of TEM00 mode (rad s−1) ∼ 10−2

getRabiFrequency2(n1, l1, j1, mj1, ...) Returns a Rabi frequency (angular, i.e. Ω = 2π × ν) for resonant excitation
with a specified electric field driving amplitude (rad s−1) ∼ 10−2

getStateLifetime(n, l, j[, ...]) Returns the lifetime of the state (s) ∼ 10−2

getTransitionRate(n1, l1, j1, n2, ...) Transition rate due to coupling to vacuum modes (black body included) (s−1) ∼ 10−2

getReducedMatrixElementJ_asymmetric(n1, ...) Reduced matrix element in J basis, defined in asymmetric notation (a0e) ∼ 10−2

getReducedMatrixElementJ(n1, l1, ...) Reduced matrix element in J basis, symmetric notation (a0e) ∼ 10−2

getReducedMatrixElementL(n1, l1, ...) Reduced matrix element in L basis, symmetric notation (a0e) ∼ 10−2

getRadialMatrixElement(n1, l1, ...) Radial part of the dipole matrix element (a0e) ∼ 10−2

getQuadrupoleMatrixElement(n1, ...) Radial part of the quadrupole matrix element (a2
0e) ∼ 10−2

getPressure(temperature) Vapour pressure at a given temperature (Pa) ∼ (1 − 5) · 10−2

getNumberDensity(temperature) Atom number density at a given temperature (m−3) ∼ (1 − 5) · 10−2

getAverageInteratomicSpacing(...) Returns the average inter-atomic spacing in the atomic vapour (m) ∼ (1 − 5) · 10−2

corePotential(l, r) ◦ core potential felt by the valence electron (a.u)
effectiveCharge(l, r) ◦ effective charge of the core felt by the valence electron (a.u)
potential(l, s, j, r) ◦ potential(l, s, j, r) (a.u)
radialWavefunction(l, s, j, ...) ◦ Radial part of the electron wave function
getEnergy(n, l, j) Energy of the level relative to the ionisation level (eV) ∼ 10−6

getZeemanEnergyShift(l, j, mj, ...) � Returns the linear (paramagnetic) Zeeman shift. (J)
getQuantumDefect(n, l, j) Quantum defect of the level.
getC6term(n, l, j, n1, l1, j1, ...) C6 interaction term for the given two pair-states (h × Hz m6)
getC3term(n, l, j, n1, l1, j1, ...) C3 interaction term for the given two pair-states (h × Hz m3)
getEnergyDefect(n, l, j, n1, l1, ...) Energy defect for the given two pair-states, E(|rr〉) − E(|r′r′′〉) (eV)
getEnergyDefect2(n, l, j, nn, ll, ...) Energy defect for the given two pair-states, E(|r1r2〉) − E(|r′r′′〉) (eV)
updateDipoleMatrixElementsFile() Updates the file with pre-calculated dipole matrix elements
getRadialCoupling(n, l, j, n1, l1, j1) � Returns the radial part of the coupling between two states (dipole,

quadrupole) (a0e or a2
0e) ∼ 10−2

getAverageSpeed(temperature) Average one-dimensional speed at a given temperature (m/s)
getLiteratureDME(n1, l1, j1, n2, ...) Returns literature information on requested transition
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Table C.5: Method listing of the calculations_atom_single.LevelPlot(atomType) class.
Name (parameters) Short description
makeLevels(nFrom, nTo, lFrom, lTo) Constructs an energy level diagram in a given range
drawLevels() Draws a level diagram plot
showPlot() Shows a level diagram plot

Table C.6: Method listing of the calculations_atom_single.StarkMap(atom) class.
Name (parameters) Short description
defineBasis(n, l, j, mj, nMin, ...) Initializes a basis of states around the state of interest
diagonalise(eFieldList[, ...]) Finds atom eigenstates in a given electric field
plotLevelDiagram([units, ...]) Makes a plot of a Stark map of energy levels
showPlot([interactive]) Shows plot made by plotLevelDiagram
savePlot([filename]) Saves plot made by plotLevelDiagram
exportData(fileBase[, exportFormat]) Exports StarkMap calculation data
getPolarizability([maxField, ...]) Returns the polarizability of the state (MHz cm2/V2)
getState(state, electricField, ...) � Returns the state composition for the state with a largest contribution of a target state in given E-field

Table C.7: Method listing of the calculations_atom_single.Wavefunction() class
Name (parameters) Short description
getRtimesPsiSpherical(theta, phi, r) � ◦ Calculates the list of r · ψms (θ, φ, r) for all possible ms
getRtimesPsi(x, y, z) � ◦ Calculates the list of r · ψms (x, y, z) for all possible ms
getPsi(x, y, z) � ◦ Calculates the list of ψms (x, y, z) for all possible ms
getRtimesPsiSquaredInPlane([...]) � ◦ Calculates |r · ψ|2 on a mesh in a given plane
plot2D([plane, pointsPerAxis, ...]) � ◦ 2D colour plot of |r · ψ|2 wave function in a requested plane
plot3D([plane, pointsPerAxis, ...]) � ◦ 3D colour surface plot of |r · ψ|2 wave function in a requested plane

Table C.8: Method listing of the calculations_atom_single.AtomSurfaceVdW() class.
Name (parameters) Short description
getC3contribution(n1, l1, j1, ...) � Contribution to C3 of the |n1, `1, j1〉 state due to dipole coupling to the |n2, `2, j2〉 state. (J·m3 )
getStateC3(n, l, j, ... [, s, ...]) � van der Waals atom-surface interaction coefficient for a given state (J·m3 )

Table C.9: Method listing of the calculations_atom_single.OpticalLattice1D() class.
Name (parameters) Short description
getRecoilEnergy() � Recoil energy for atoms in given optical lattice (J)
getTrappingFrequency(...) � Atom’s trapping frequency for a given trap depth (Hz)
defineBasis([Limit]) � Define the basis for a Bloch band calculation
diagonalise(... [, ... ]) � Calculates energy levels (Bloch bands) for a given list of quasimomenta
plotLevelDiagram() � Plots energy level diagram (Bloch bands)
BlochWavefunction(... ) � Bloch wave function as a function of 1D coordinate
getWannierFunction(x[, ...]) � Gives value of a Wannier function

Table C.10: Method listing of the calculations_atom_single.DynamicPolarizability() class
Name (parameters) Short description
defineBasis(nMin, nMax) � Defines basis for the calculation of the dynamic polarizability
getPolarizability(...) � Calculates the scalar and tensor polarizabilities
plotPolarizability(...) � Plots the polarisability for a range of wavelengths

Table C.11: Class listing of the materials module. Each class inherits the abstract class OpticalMaterial() that implements the literature input of data, while getN
in each specific class has arguments according to the requirements of the material (e.g. multiple axes of reflection etc).

Name (parameters) Short description
Air()(...) � Air at normal conditions as an optical material
Sapphire(...) � Sapphire as an optical material
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Table C.12: Method listing of the � calculations_atom_pairstate.PairStateInteractions(atom, n, l, j, nn, ll, jj, m1, m2, interactionsUpTo=1) class that
calculates the Rydberg level diagram (a “spaghetti diagram") for the given pair-state. The � symbols for this class indicate significant additions of functionality:
PairStateInteractions now supports arbitrary inter-species pair-state calculations, and getC6perturbatively supports degenerate perturbation calculations.

Name (parameters) Short description
defineBasis(theta, ...) Finds the relevant states in the vicinity of the given pair-state
getC6perturbatively(...) � Calculates C6 coefficients from second order [degenerate] perturbation theory (GHz µm6)
getLeRoyRadius() ◦ Returns the Le Roy radius for the initial pair-state (µm)
diagonalise(rangeR, ...) Finds eigenstates in atom pair basis
plotLevelDiagram([...]) Plots a pair-state level diagram
showPlot([interactive]) Shows the level diagram printed by plotLevelDiagram
exportData(fileBase[, ...]) Exports PairStateInteractions calculation data
getC6fromLevelDiagram(...) Finds the C6 coefficient for the original pair-state (GHz µm6)
getC3fromLevelDiagram(...) Finds the C3 coefficient for the original pair-state (GHz µm3)
getVdwFromLevelDiagram(...) Finds the rvdW coefficient for the original pair-state (µm)

Table C.13: Method listing of the calculations_atom_pairstate.StarkMapResonances(atom1, state1, atom2, state2) class that calculates pair-state Stark maps
for finding resonances.

Name (parameters) Short description
findResonances(nMin, ...) Finds near-resonant dipole-coupled pair-states
showPlot([interactive]) Plots a Stark map for the initial state and its dipole-coupled resonances

Table C.14: Function and class listing of the wigner module providing support for angular element calculations
Name (parameters) Short description
CG(j1,m1, ...) returns a Clebsch-Gordan (CG) coefficient
Wigner3j(j1,j2, ...) returns a Wigner 3j-coefficient
Wigner6j(j1,j2,...) returns a Wigner 6j-coefficent
wignerDmatrix(theta,phi) Class for obtaining Wigner D-matrices
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