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zonal basis has been proposed [23] to account for the frozen flow
hypothesis while keeping a boiling-type turbulence model. To
do so, phase prediction is performed in zonal basis by translating
the phase screen estimated thanks to a Kalman filter in Zernike
basis.

The zonal basis allows for a very simple description of the
frozen flow, and several approaches have been proposed to
derive Markovian quasi-frozen flow models. A zonal multilayer
atmosphere model has been used to design an LQG regulator for
multiconjugate AO (MCAO) in [24] or for multi-object AO in
[25]. Under the spatially invariant and frozen flow hypothesis,
an LQG regulator with a distributed Kalman filter (LQG-DKF)
has been proposed for MCAO in [26,27]. The method, as
shown later in this paper, suffers in SCAO from performance
degradation due to approximations in the measurement model
and to the finiteness of the telescope pupil.

In this article we revisit the works of [24,25,28,29] to propose
new zonal models that account for a frozen flow behavior of the
turbulence. A multilayer zonal-based model with frozen flow
assumption, similar to the hypothesis in [24,25], is proposed for
SCAO systems but with an edge compensation mechanism that
involves limited support, inducing a sparser model structure
compared to the literature. To further reduce the computational
complexity that can be problematic for multilayer atmosphere
models of AO systems, we also propose, in line with the spatio-
angular LQG (SA-LQG) [25,29], new resultant (i.e., defined
in the telescope pupil) models with AR1 and AR2 structures in
a zonal basis. The resultant AR1 model features a sparser transi-
tion matrix, and the AR2 models take full advantage of spatial
and temporal cross-correlations. (Note: They are not supposed
to have diagonal matrix parameters.) All these quasi-frozen
flow models depend on atmosphere priors, which can be esti-
mated from AO telemetry [20,30] or SCIDAR measurements
[31–33].

Global control performance of the corresponding zonal-
based LQG regulators is evaluated, thanks to end-to-end
simulations with the object-oriented MATLAB adaptive optics
(OOMAO) [34] simulator. The use of priors naturally raises
the question of robustness in performance to errors in particular
with respect to the wind profile, which we also address. The
many LQG regulators (eight in total) are compared in two quite
different configurations: an astronomical case of the very large
telescope Nasmyth adaptive optics system (VLT-NAOS) type,
and a satellite tracking case with a low earth orbit (LEO) con-
figuration similar to [35]. Our results show the high potential of
the new regulators, with impressive results in the satellite case,
and highlight the possible trade-offs between the performance
and complexity.

The paper has seven sections. Section 2 introduces the mul-
tilayer frozen flow state space modeling for LQG regulators. A
first control performance study is conducted in Section 3 for
LQG regulators based on different models of disturbance and
WFS, including the spatially invariant LQG-DKF, allowing us
to give orientations for model choices and parameters. To reduce
computational complexity, Section 4 presents the derivation of
the resultant AR models of order 1 and 2. In Section 5, end-to-
end simulations in the VLT-NAOS-like case are performed for
different turbulence behaviors. Multilayer and resultant zonal-
based LQG regulators are compared against a standard integral

action controller, LQG regulators based on Zernike AR2 boiling
models similar to the ones tested on sky [14], and against the
frozen LQG [23] adapted to a multilayer atmosphere model.
The performance robustness to errors on the wind profile is also
evaluated. In Section 6, a performance assessment in the LEO
satellite tracking case is conducted, together with an evaluation
of performance robustness to the wind parameters of the ground
layer and an assessment of the control performance when the
signal-to-noise ratio (SNR) decreases. Finally, conclusions and
perspectives are presented in Section 7.

2. ZONAL LQG REGULATOR UNDER FROZEN

FLOW HYPOTHESIS

AO systems include real-time controllers that compute discrete
time commands to be applied to the DM through a zero-order
hold. It has been shown in [11] that the optimal continuous time
optimal minimum variance control problem could be solved
equivalently using a discrete time formulation. Each discrete
time quantity then corresponds to the average of its continuous
time value over one sampling period T, where T is the AO loop
sampling period. This optimal control can be obtained under
the form of an LQG controller if one can built a linear state-
space representation of the AO loop including the disturbance.
After a short reminder of the LQG AO control principle and
equations (in Section 2.A), we focus in Sections 2.B and 2.C on
the design of an adequate state-space model of the disturbance.
Section 2.D details the measurement model associated with the
disturbance state-space representation.

A. LQG Regulator for SCAO Systems

A block diagram presenting the principle of an AO loop is given
in Fig. 1. The LQG regulator minimizes the residual phase
variance φres [11]. At time t = kT, the optimal control u

opt
k is

obtained by minimizing the criterion,

J d
k (uk)

1
= E(||φres

k ||2|Jk)
1
= trace

(

Var(φres
k |Jk)

)

, (1)

where φres = φTel − φcor is the residual phase in the telescope
pupil and Jk = {y0, . . . , yk, u0, . . . , uk−1} represents all past
information (WFS measurements y and DM commands u).
The turbulent phase in the volume restricted to the telescope
pupil footprints is denoted by φTel, and φcor is the correction
phase generated by the DM. The DM is considered here to have
a settling time fast enough with respect to the AO loop sampling
period so that its dynamics can be neglected. However, a DM
with slower response and/or badly damped dynamics could
be considered as well to compensate for possible performance
degradation, as explained in [10,36].

As φcor
k = Nuk−1 and φres

k = φTel
k − φcor

k (see Fig. 1), the opti-
mal control is written as

u
opt
k

1
= arg min

uk

(

J d
k (uk)

)

= (NT N)−1 NTφ̂Tel
k+1|k, (2)

where φ̂Tel
k+1|k = E(φTel

k+1|Jk) is the minimum variance estimate

of φTel
k+1 knowing Jk . The prediction φ̂Tel

k+1|k can be computed
by a Kalman filter, assuming that a Markovian state-space
representation can be provided, for example, under the form



Fig. 1. Block diagram of an AO control loop. All blocks are linear
and the total loop delay is supposed here to be two frames. The incom-
ing (multilayer) turbulence above the telescope is denoted by φTel.

X k+1 = AX k + Ŵvk, (3)

φTel
k = C1 X k, (4)

yk = C X k + wk − DNuk−2, (5)

where A, Ŵ and C1 depend on the chosen disturbance model,
C depends on the chosen measurement model, and {v} and {w}
are mutually independent Gaussian white noises with known
covariance matrices 6v and 6w, respectively. The matrix DN
corresponds to the interaction matrix Mint, and appears in
the measurement model in Eq. (5) because the WFS provides
closed-loop measurements y (see Fig. 1). In this paper, the state
vector X k stores the turbulent phase temporal occurrences
needed to describe the dynamical model. The predicted state

X̂ k+1|k is recursively updated by the Kalman filter prediction
equation,

X̂ k+1|k = (A − L∞C)X̂ k|k−1 + L∞(yk + Mintuk−2), (6)

where L∞ is the asymptotic Kalman gain, computed offline
from the solution of the discrete algebraic Riccati equation (see
[37]),

L∞ = A6∞C T(C6∞C T + 6w)−1, (7)

6∞ = A6∞ AT + Ŵ6vŴ
T

− A6∞C T(C6∞C T + 6w)−1C6∞ AT, (8)

where 6∞ is the asymptotic estimation error covariance matrix.

The prediction φ̂Tel
k+1|k is obtained from X̂ k+1|k using Eq. (4), so

φ̂Tel
k+1|k = C1 X̂ k+1|k . (9)

The optimal control is readily obtained through Eqs. (9), (6),
and (2) as soon as a state representation has been established.
The purpose of the next two sections (2.B and 2.C) is to build a
state-space representation in the form of Eqs. (3–5) under the
hypothesis of a frozen flow atmospheric turbulence.

B. From Pure Frozen Flow to Localized Quasi-Frozen

Flow Models

The frozen flow (or Taylor) hypothesis has been considered
in several works for control-oriented atmospheric turbulence

modeling [23–27,38–41]. Each layer is moving according to a
pure translation, and can therefore be expressed with a spatially
invariant convolution equation,

φk+1 = h ∗ φk, (10)

where h is the two-dimensional (2D) convolution kernel
describing the translation, and φk is the infinite dimensional
turbulent phase layer at time k. For a spatially sampled turbu-
lence layer, φ can be represented by a 2D Gaussian stationary
discrete random field with zero mean and spatial covariance
Cφ . To design an optimal controller implementable in finite
dimension, a finite-dimensional Markovian dynamical model
of the atmospheric perturbation is needed, as explained in [38].
To update the portion φTel of the turbulence located inside the
telescope pupil P , the convolution product from Eq. (10) uses
points that are either inside P , or in a finite area E outside the
telescope pupil. The phase points in E shall be denoted by φEdge

(see Fig. 2). The domain E contains points needed to compute
φTel

k+1, so its size depends on the wind direction and norm (for
each layer) and on the AO loop frequency. The convolution
product in Eq. (10) for the phase points inside P can also be
expressed with matrix vector products as

φTel
k+1 = ATelφ

Tel
k + AEdgeφ

Edge
k , (11)

where ATel and AEdge simply code the application of h to phase
points in P and E , respectively. This model is not localized, as

φ
Edge
k cannot be computed recursively from past values of φTel

and φEdge. To localize it in the telescope pupil, so that the phase
evolution can be represented on a finite support, additional

information on φ
Edge
k is needed. The simplest solution is to

assume that we have no clues about points outside the tele-

scope pupil, so we take φ
Edge
k = 0. This assumption leads to the

Markovian dynamical model,

φTel
k+1 = AφTel

k + vk, (12)

where A = ATel and {v} is a Gaussian and temporally white
noise that ensures adequate spatial statistics for φ through

6v = E (vkv
T
k ) = 6φ − A6φ AT, (13)

where 6φ
1
= E(φTel(φTel)T)

1
= Var(φTel) is the covariance

matrix of the sampled turbulent phase and is evaluated from
the spatial covariance function Cφ . Due to stationarity, Cφ only
depends on the distance ρ between two phase points [1]. Under
von Kármán statistics, it is given by

Cφ(ρ) =

(

L0

r0

)5/3[(

24

5

)

Ŵ(6/5)

]5/6
Ŵ(11/6)

25/6π8/3

(

2πρ

L0

)5/6

× K5/6

(

2πρ

L0

)

,

(14)

where Ŵ is Euler’s Gamma function, K5/6 is a modified Bessel
function of the 2nd kind, with order 5/6, and the Fried param-
eter r0 and the outer scale L0 are two macroscopic turbulent
parameters [1]. For ρ = 0, we recover the theoretical variance σ 2

φ

of one phase point, so



Fig. 2. Principle of the update step for the frozen flow dynamical
model in Eq. (11). P is the telescope pupil and E is the set of points
outside P that are needed for the update of Eq. (11). As an example,
the point φTel

k+1(i, j ) located at coordinates (i, j ) has been updated

with the convolution kernel h from Eq. (10) using points φ
Edge
k ∈ E

and φTel
k ∈P .

σ 2
φ = Cφ(0) =

(

L0

r0

)5/3[(24

5

)

Ŵ(6/5)

]5/6
Ŵ(11/6)

25/6π8/3

Ŵ(5/6)

21/6
.

(15)

As ATel is nilpotent, the dynamical model in Eq. (12) is
obviously stable. However, as pointed out by [23,29], this solu-
tion leads to poor performance and a maximum a posteriori

(MAP) estimation of φ
Edge
k , knowing φTel

k (i.e., a static mini-
mum variance estimation) is known to give much better results
[23–25,29,38].

C. Stochastic Dynamical Model with Edge

Compensation

This MAP estimator requires only prior knowledge of the spatial
covariance Cφ and can be written in compact form as

φ̂Edge = E(φEdge|φTel) = MMAPφ
Tel, (16)

where MMAP is the MAP reconstruction matrix,

MMAP = Cov(φEdge, φTel)6−1
φ , (17)

with Cov(φEdge, φTel) the cross-covariance matrix of φEdge

and φTel. We then replace φEdge in Eq. (11) by φ̂Edge in
Eq. (16) and define the dynamical stochastic model with
edge compensation as

φTel
k+1 =

(

ATel + AEdge MMAP

)

φTel
k + vk, (18)

where, as previously, the Gaussian white noise {v} has a variance
6v chosen to ensure proper statistics:

6v = 6φ −
(

ATel + AEdge MMAP

)

6φ

(

ATel + AEdge MMAP

)T
.

(19)

From Eq. (14), it is clear that the matrix MMAP defined in
Eq. (17) is independent from r0 and thus, also from the layers,
and only depends on the global outer scale L0. As pointed out
in previous works [42,43], to simulate very large turbulent and
sampled phase screens, a static MAP estimation needs very few
points inside the telescope pupil to deliver spatial statistics that

Fig. 3. Patch K(i, j ) containing the subset of points used to esti-
mate the phase point with coordinates (i, j ) in E . The width of the
intersection between K(i, j ) and P is denoted by r . The point in E

located at the furthest distance fromP is denoted by f .

are consistent with theoretical values. We define the circular
patch K(i, j ) centered in (i, j ) and containing the points of
P used in Eq. (16) to estimate the point in E with coordinate
(i, j ). This circular patch K(i, j ) has an intersection with P

of width denoted by r , as illustrated in Fig. 3. The quality of the
MAP reconstruction will thus depend on r .

To determine an appropriate value of r , we introduce the
quality-of-reconstruction criterion,

Q f (r ) = 1 −
σ

2,l

f̃
(r )

σ
2,l
φ

, (20)

which represents a normalized estimation error variance. In

this formula, σ 2,l

f̃
(r ) is the MAP estimator error variance of the

furthest point f in E for the turbulent layer l , and σ
2,l
φ = βlσ

2
φ

is the turbulence variance for layer l , where the weights βl are
given by the C 2

n normalized profile and satisfy

nL
∑

l=1

βl = 1. (21)

This MAP estimation uses only points that belong to the
intersection K(i, j ) ∩P of width r (see Fig. 3). As point f is
the furthest point fromP , located on one of the main diagonals
due to the pixelized square geometry of the convolution kernel
h , it exhibits the slowest convergence of Q f (r ) compared with
other points inE , when r increases.

Note that both σ
2,l
φ and σ

2,l

f̃
depend linearly on βl and r

−5/3
0 ,

so that Q f (r ) is independent from the turbulence C 2
n profile.

Therefore, the criterion Q f (r ) does not depend on l , and can be
rewritten as

Q f (r ) =
1

σ 2
φ

Cov(φ f , φP∩K)Var(φP∩K)−1Cov(φ f , φP∩K)T,

(22)

where Cov(φ f , φP∩K) is the cross-covariance matrix of φ f and
φP∩K, and Var(φP∩K) is the variance matrix of φP∩K. As Q f

does not depend on the C 2
n profile, it can be computed directly

from Cφ and r for a given value of the outer scale L0. We choose
to set the value of r according to



Fig. 4. Convergence of Q f (and thus of the MAP estimator) for points estimated outside the telescope pupil, for two outer scales L0 = 25 m (left)
and L0 = 10 m (right). Values of V T (phase translation norm for one AO frame) range from 5.4 cm to 62.5 cm. The worst value of rmin is 19 cm for
L0 = 25 m and 26.7 cm for L0 = 10 m.

rmin =
{

min(r )|Q f (r ) > 0.995Q f (D)
}

, (23)

with D the telescope diameter. This means that the maximum
loss on criterion Q f is of 0.5% with respect to taking all the
points in D. Figure 4 illustrates the behavior of Q f as a function
of r for two outer scales (L0 = 25 m and L0 = 10 m) and
different values of V T (wind speed times sampling period). The
values chosen for V T represent the turbulent phase transla-
tion in one AO frame from astronomy cases (low values below
30 cm), to high altitude layers in LEO satellites tracking cases
(high values close to 60 cm).

The estimation error variance σ
2,l

f̃
increases when L0

decreases, so that Q f decreases with L0. However, the variation
of convergence speed of Q f (r ) toward its final value Q f (D)

is negligible. The MAP estimation can thus be forced to be
spatially well localized, leading to a highly parallelizable struc-
ture. It can be compared to results obtained in [42] for phase
screens generation, where the MAP estimation needed only two
columns (25 cm) of the previous turbulent phase screen (8 m
sampled by 64 × 64 pixels) to ensure spatial statistics consistent
with theoretical values.

Matrices ATel and AEdge in Eq. (18) depend on the wind
direction through the kernel h [see Eqs. (10) and (11)]. The
complete dynamical model, describing the nL-layer turbulent

volume φTel
k =

∑nL
l=1 φ

Tel,l
k is obtained by concatenation of all

single layer models,

(24)
where the matrices A(l) have a covariance matrix defined accord-
ing to the single layer model in Eq. (12) or Eq. (18); note that the
superscript l indicates the layer number with vl if v is a vector,
and M(l) if M is a matrix. The mutually independent white

noises {vl } are defined similarly to Eq. (19), but they account for
the layer dynamics through A(l) leading to

6(l)
v = E (vl

k(v
l
k)

T) = βl

(

6φ − A(l)6φ(A(l))
T
)

. (25)

Note that in our formulation we consider a modified covari-
ance matrix computed with a reduced number of points
according to criterion in Eq. (20), instead of a MAP estima-
tion based on the full telescope pupil. This approach differs
from the optimal AR1 used in the SCAO mode in [38] and from
the Explicit LQG in [25]. As for the multilayer model MCAO
model in [24], the authors use a basis spline and the full pupil to
compute the matrices A(l).

D. Measurement Models

Assuming a linear wavefront sensor and an integration time
of one frame on the WFS camera (see Fig. 1), the closed-loop
measurement equation would be

yk = Dφres
k−1 + wk = DφTel

k−1 + wk − Mintuk−2, (26)

where D is the WFS matrix, {w} is a Gaussian white noise with
a known covariance matrix 6w, and φres

k = φTel
k − Nuk−1.

However, as the Kalman gain L∞ computation does not depend
on the command values, we only need to describe the open-loop
measurement model y OL

k :

y OL
k = DφTel

k−1 + wk . (27)

The matrix D must be adapted to the sampling grid chosen
for the phase representation in the state-space model. As an
example, the case of a Shack–Hartmann WFS with a phase
sampling grid three times finer than the WFS grid is illustrated
in Fig. 5.

The operations modeled by D simply consist of taking the
difference of the average values along the subaperture edges
using Simpson weights, based on a Fried geometry. It can be
described using the stencils wx and wy for the x- or y-slopes:



Fig. 5. Measurement model in the case of a Shack–Hartmann WFS
where the phase sampling grid of the model is three times finer than
the WFS resolution. Four subapertures are represented with blue lines.
Phase points are indicated by red points, and slope measurements by
green crosses. All 16 phase points of a subaperture are used to compute
one measurement.
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, wy = −wT
x , (28)

where d is the subaperture diameter. Matrix D is then built
directly from the values given for wx and wy so that the matrix
multiply corresponds to the stencil operation.

When a spatially invariant operator is used for perturba-
tion and system modeling, as for example, for the distributed
Kalman filter (DKF) in [44], phase samples and measurements
must be at the same resolution. A convolution operator hwfs is
used instead of a matrix multiply, leading to the measurement
model,

y OL
k = hwfs ∗ φk−1 + wk, (29)

where φk−1 =
∑nL

l=1 φl
k−1. A measurement model with over-

sampled measurements and phases can then be written in the
telescope pupil in matrix form, as

y OL
k = DOSφTel

k−1 + wk, (30)

where DOS represents the operator that computes oversampled
measurements from oversampled phases.

A model error analysis of LQG control design with dynamical
and measurement models from Sections 2.B to 2.D will be stud-
ied in Section 3.C.

3. FIRST PERFORMANCE EVALUATION WITH

ZONAL-BASED LQG REGULATORS

A. Simulation Parameters and Setup

Simulations are conducted with the object-oriented MATLAB
adaptive optics (OOMAO) simulator in a VLT-NAOS-
like case. We consider a science camera image wavelength
at λscience = 1.654 µm and a WFS analysis wavelength at
λwfs = 0.55 µm. The values are gathered in Table 1.

Table 1. VLT-NAOS-Like AO Parameters

Diameter 8 m
Central occultation 1 m
DM cartesian grid (Fried geometry) 15 × 15 actuators with 185 valid

Gaussian influence function
Coupling factor 0.3

Shack–Hartmann (squared
subaperture grid)

14 × 14 sub-apertures with 152
valid

AO loop frequency 500 Hz
λwfs 0.55µm
λscience 1.654µm

Table 2. Pseudo-Boiling Atmosphere Dynamical

Parameters for End-to-End Simulations
a

Layer 3 1
Fractional C 2

n energy [0.5, 0.2, 0.3] 1
Wind speed (m/s) [7.5, 12, 15] 10
Wind direction (◦) [0,120,240] 0

Turbulence
configuration

aBlue corresponds to the first layer, green to the second layer, and purple to

the third layer.

We select a middle range turbulence condition, with
r0 = 10 cm cm at 0.55 µm and an outer scale of L0 = 25 m.
In this section, two turbulence configurations are considered:
a pseudo-boiling resultant turbulence, and a frozen flow tur-
bulence, with the parameters given in Table 2. Note that in all
cases, each turbulent layer has a pure frozen flow behavior. For
the pseudo-boiling case, we consider a three-layer atmosphere
with wind profile, directions, and layers energy giving a resultant
turbulent perturbation in the telescope pupil with a behavior
very close to boiling. A graphical representation of each wind
direction and speed is also proposed in Table 2, where the arrow
lengths are proportional to the wind speed and represented on a
15 m/s circle radius, arrow directions are winds directions, and a
fractional energy coefficient is written for each arrow.

In this paper, closed-loop performance is evaluated in terms
of the Strehl ratio at the science camera wavelength, using the
Maréchal approximation,

S R = exp(−σ 2
φres), (31)

where σ 2
φres is the residual phase variance in the telescope pupil

computed from 15000 phase occurrences of the AO loop. This
ensures a numerical accuracy under 0.05 point of the Strehl ratio
at the science camera wavelength.

B. Zonal Basis Sampling Choice

Zonal LQG regulators are, of course, affected by the spatial
sampling of the turbulent phase model and by the phase inter-
polation needed when projecting the phase on the DM space
to compute the commands through Eq. (2). The interpolation
has been systematically done to correspond to the fine sampling



Table 3. Strehl Ratio at 1.654 µm of Zonal-Based LQG

Regulator with a Boiling AR1 Dynamical Model, Using

Different Sampling of the Zonal Basis

Linear sampling
(points/actuator pitch) 1 2 3 4

LQG-KF AR1 boiling 42.2% 50.9% 51.7% 52.1%

of the influence functions. We have tested linear and nearest
interpolation, which gave similar results, so we have chosen
the nearest interpolation. As for the spatial sampling of the
turbulent phase model, its effect on the closed-loop control
performance can be studied with a simple dynamical model
without edge effects: We use a simple dynamical model in the
form φTel

k+1 = αφTel
k + vk , where α < 1 and associated with the

standard measurement model in Eq. (27). This zonal LQG
regulator will be called LQG-KF AR1 boiling. The spatial
sampling ranges from one to four linear points estimated per
actuator pitch (distance between two neighbored actuators);
that is, from four to 16 points per subaperture.

As shown in Table 3, the performance increases very fast
between one and two linear points per pitch, probably due to
the ability of the model to represent a large part of the spatial
frequencies that can be generated by the DM. We can deduce
from that result that a sampling higher than two linear points
per pitch mainly reduces the WFS aliasing, which is similar to
LQG regulators when increasing the size of the Zernike modal
basis (see [12,45]). We will thus select a minimum linear phase
sampling of two points per pitch to analyze the closed-loop
performance of zonal-based LQG regulators.

C. AO Model Impact on LQG Regulator Performance

The purpose of this section is to evaluate the performance of
the DKF-based LQG regulator and the impact of edge errors
for zonal models. To do so, we need to evaluate the impact of
the different error sources, thanks to models that are built using
different hypotheses. We thus consider several combinations
of nL-layer turbulence dynamical models and measurement
models from Sections 2.B to 2.D for the LQG regulators sum-
marized in Table 4. The oversampling is two linear points per
actuator pitch, as proposed in the previous section. For the WFS
model, the oversampling is done by measurement duplication,
as in [26].

We study the three main sources of model errors identified
hereafter. Table 5 gathers the performance of regulators [labeled
(a)–(d) in the table] in terms of the Strehl ratio for a single frozen
flow layer.

The first source of model error is the measurement model
error when the measurement model resolution is higher than the
real WFS. To evaluate this, (b) and (c) in Table 5 are compared
as the only modification between them is that the WFS model
is oversampled in (b). It is the main performance loss with 7.4
SR points. In SCAO, using oversampled LQG-DKF is therefore
not a good solution. This result is contrary to the MCAO case
[26], where measurements better span the telescope pupil.

The second source of model error is the phase model edge
error, present with the spatially invariant dynamical model, but
also present with the localized dynamical model such as Eq. (12)

Table 4. Zonal LQG Regulators According to

Associated Models
a,b

Regulator Names Associated Models

(a) LQG-DKF multilayer AR1 φl
k+1 = αh l ∗ φl

k + vl
k

y OL
k = hwfs ∗ φk−1 + wk

(b) LQG-KF multilayer AR1 OS φ
Tel,l
k+1 = A(l)

Telφ
Tel,l
k + vl

k

y OL
k = DOSφTel

k−1 + wk

(c) LQG-KF multilayer AR1 φ
Tel,l
k+1 = A(l)

Telφ
Tel,l
k + vl

k

y OL
k = DφTel

k−1 + wk

(d) LQG-KF + MAP multilayer
AR1

φ
Tel,l
k+1 =

(A(l)
Tel + A(l)

Edge MMAP)φ
Tel,l
k + vl

k

y OL
k = DφTel

k−1 + wk

aAll turbulence models are of AR1 type in each layer, oversampling is two lin-

ear points per actuator.
bTo ease reading of the table, here are a few short descriptions:

(a): spatially invariant models based on convolution kernels (that is, the DKF

case based on the infinite pupil hypothesis) where the coefficient α < 1 insures

stability;

(b): same oversampling for phase and measurements in matrix form (finite

pupil) and without edge compensation;

(c): any sampling of the phase, but non-oversampled measurements, in matrix

form (finite pupil) without edge compensation; and

(d): any sampling of the phase, but non-oversampled measurements, in matrix

form (finite pupil) with edge compensation using MAP estimation.

without MAP edge compensation. By comparing (a)–(c) to (d),
we can see that a localized phase dynamical model without MAP
compensation for the pupil edge leads to a loss greater or equal to
4.6 SR points.

The last source of model error is the measurement model
edge error, when a spatially invariant measurement model is
used, although WFS measurements are localized in the telescope
pupil. The corresponding loss is evaluated by comparing (a)
with (b), and the loss is only 1.2 SR points.

We can deduce from these results that a spatially invariant
LQG-DKF regulator is not appropriate for AO systems of the
VLT-NAOS type. Moreover, the best results are obtained with
a localized measurement model at WFS resolution, and with
MAP compensation in the localized dynamical phase model.
It is therefore a regulator that will be considered in the rest of
the article. This regulator features a multilayer reconstruction
with priors on wind profile (speeds and directions) and on the
C 2

n profile. Although this kind of modeling has been shown
to improve performance in wide field AO [24,40], computa-
tional complexity is an issue even in SCAO, especially when the
number of reconstructed layers increases. Indeed, the offline
computational complexity of the Riccati equation grows with
O(n3

L), where nL is the number of reconstructed layers, and the
online prediction equation of the Kalman filter in Eq. (6) grows
with O(n2

L). An appealing strategy to reduce computational
complexity while controlling performance degradation is to
design resultant dynamical models in the telescope pupil, which
is the topic of the next section.

4. AUTO-REGRESSIVE RESULTANT

DYNAMICAL MODELS

This section builds on the works of [24,25,29]. We propose
zonal AR1 and AR2 models in SCAO instead of wide-field AO



Table 5. Strehl Ratio at 1.654 µm of Zonal-Based LQG Regulators with Spatially Invariant or Localized Dynamical

and Measurement Models
a

Regulator Names
Measurement Model

Edge Error
Measurement Model
Interpolation Error

Dynamical Model
Edge Error

Performance
(Strehl Ratio)

(a) LQG-DKF multilayer AR1 YES YES YES 45.7%
(b) LQG-KF multilayer AR1 OS NO YES YES 46.9%
(c) LQG-KF multilayer AR1 NO NO YES 54.3%
(d) LQG-KF + MAP multilayer AR1 NO NO FEW 58.9%

Turbulence configuration

aWe evaluated the performance with one turbulent layer in frozen flow with a wind of 10 m/s on x-direction.

and propose an easy computation of the transition and covari-
ance matrices. Stability is addressed in Section 4.C. The models
are associated with the measurement model in Eq. (27) to obtain
the state-space representations gathered in Section 4.D and
used to design the LQG regulators. End-to-end performance
is evaluated in Sections 5 and 6 through a comparison of many
LQG regulators, in Zernike or zonal basis.

A. Resultant Auto-Regressive Model of Order 1 (Lazy

SA-LQG)

The SA-LQG in [25,29] corresponds to a resultant AR1
dynamical model with MAP estimation of the points outside the
telescope pupil based on all the points inside the telescope pupil,
and resorts to bilinear interpolation to estimate the translated
phase points. When resorting to bilinear interpolation, the one-
step covariance matrix has a simple expression, leading to easy
updates of the transition matrix and of the covariance matrix of
the process noise v, as shown below.

We briefly present the SA-LQG principle in a SCAO configu-
ration, which is a simplified case of the wide-field AO configu-
ration proposed in [24,25]. The resultant phase in the telescope
pupil, φpup, is obtained as the summation of nL turbulent phases
φTel,l in the telescope pupil,

φpup =

nL
∑

l=1

φTel,l . (32)

The resultant AR1 dynamical model is

φ
pup
k+1 = Apupφ

pup
k + vk, (33)

where the process noise {v} is a Gaussian white noise with the
appropriate spatial covariance matrix 6v . The MAP estimation
of φpup knowing φTel in Section 2.C is applied here in the mul-
tilayer case with a given wind profile (speed and directions) and
C 2

n fractional energy distribution. It leads to

Apup = C [1]
φ 6−1

φ , (34)

where the one-step temporal covariance matrix C [1]
φ =

E (φ
pup
k+1(φ

pup
k )

T
) of the resultant phase is evaluated with the

multilayer model,

C [1]
φ =

nL
∑

l=1

Cov(φTel,l
k+1 , φ

Tel,l
k ). (35)

Instead of computing Cov(φTel,l
k+1 , φ

Tel,l
k ) in an exact way using

the theoretical spatial covariance matrix Cφ(ρ) in Eq. (14),
this one-step temporal covariance matrix is computed from the
dynamical model in Eq. (18):

Cov(φTel,l
k+1 , φ

Tel,l
k ) = βl

(

A(l)
Tel + A(l)

Edge MMAP

)

6φ, (36)

where A(l)
Tel and A(l)

Edge are defined in Eq. (11) for each turbu-

lent layer and MMAP is defined in Eq. (17). It is immediately

checked that Cov(φTel,l
k+1 , φ

Tel,l
k ) in Eq. (36) can be easily updated

when turbulence and wind profiles change: A(l)
Tel and A(l)

Edge are

modified according to the wind profile using bilinear inter-
polations, and the matrix MMAP is modified according to the
support defined by rmin. From Eq. (36), the transition matrix

in each layer is thus A(l)
pup = βl (A(l)

Tel + A(l)
Edge MMAP), so that the

resultant transition matrix becomes

Apup =

nL
∑

l=1

βl

(

A(l)
Tel + A(l)

Edge MMAP

)

, (37)

where this expression benefits from the easy updates men-
tioned above, which is not the case of the global expression

used generally under the form Apup = C [1]
φ 6−1

φ . Finally, the
spatial statistics of {v} are adapted to atmospheric turbu-
lence priors through the covariance matrix 6v = E (vkv

T
k ) =

6φ − Apup6φ AT
pup. The Lazy SA-LQG is the LQG regulator

based on the AR1 resultant model defined by the transition
matrix in Eq. (37) where the criterion in Eq. (23) is used to limit
the number of phase points used for the MAP estimation.

To have a better idea of the sparsity of A(l)
pup, sparse and

non-sparse matrices are shown in Fig. 6 for one layer in the
NAOS-like case used for the simulations in Section 5. The struc-
ture of the sparse matrix (Fig. 6, right) is clearly mainly diagonal,
and its density (number of nonzero elements divided by total
number of matrix elements) is 0.64%. It is less populated than
the one shown in [29] (6, middle), where the density of 7.68%
as more points are used for the MAP estimation.

As bilinear interpolation is used to compute the translation
associated with the dynamical model in Eq. (18), this model will



Fig. 6. A matrices in the case of a frozen flow atmosphere with a 10 m/s wind speed, π

4
wind direction, and a 500 Hz loop sampling frequency in

logarithmic scale. Left: Matrix A for the AR1 model in Eq. (18) build with a MAP estimation on the full telescope pupil, like in the Explicit LQG from
[25]. Middle: Corresponding model matrix A of the SA-LQG from [29] with a density of 7.68%. Right: Sparse matrix Apup using a limited number of
points according to (23); the density is 0.64%. White corresponds to null values.

be marginally stable in the case of an infinite telescope pupil.
However, for a finite telescope pupil P , the dynamical model at
the telescope edges will affect the stability of Eq. (18) through
the update of the phase points that lie inside P . Since a frozen
flow prediction using a MAP estimation based on all points
in the telescope pupil (like in the Explicit LQG from [25]) is
stable (i.e., its spectral radius is strictly less than 1), the modified
transition matrix [(Eq. (37) with criterion from Eq. (22) and
Eq. (23)] is also a stability matrix. Indeed, it also corresponds
to a MAP estimation with respect to a smaller support, so the
spectral radius of the corresponding operator is strictly less than
1 also, ensuring the stability of the dynamical model in Eq. (18).

B. Resultant Auto-Regressive Model of Order 2

It is well known that the phase temporal correlation is better
represented with an AR2 model than with an AR1 model (see
[29,46]). The AR2 model with diagonal matrices A1 and A2 has
been proposed using either a Zernike basis, as in [14,28], or a
zonal basis in [29]. In this section, we do not suppose the matri-
ces to be diagonal anymore and derive from the Yule–Walker
equations a fully resultant AR2 model in a SCAO configuration.

The model is defined in the pupil using the same priors (wind
and turbulence profiles) as the AR1, and

φ
pup
k+1 = A1φ

pup
k + A2φ

pup
k−1 + vk, (38)

where the process noise {v} is a Gaussian white noise with the
appropriate spatial covariance matrix 6v . From the above
equation, the matrix-valued Yule–Walker equations are readily
obtained as

{

C [1]
φ = A16φ + A2(C

[1]
φ )

T
,

C [2]
φ = A1C [1]

φ + A26φ .
(39)

The one- and two-step temporal covariance matrices of

the resultant phase, respectively, C [1]
φ = E (φ

pup
k+1(φ

pup
k )

T
) and

C [2]
φ = E (φ

pup
k+1(φ

pup
k−1)

T
), are computed from a multilayer

frozen flow atmosphere model,

{

C [1]
φ =

∑nL
l=1 Cov(φTel,l

k+1 , φ
Tel,l
k ) =

∑nL
l=1 βl Cφ(ρ − V l T),

C [2]
φ =

∑nL
l=1 Cov(φTel,l

k+1 , φ
Tel,l
k−1 ) =

∑nL
l=1 βl Cφ(ρ − 2V l T)

,

(40)

with Cφ coming from Eq. (14). From Eqs. (39) and (40) we get

{

A1 =
(

C [1]
φ − C [2]

φ 6−1
φ (C [1]

φ )
T)(

6φ − C [1]
φ 6−1

φ (C [1]
φ )

T)
−1

,

A2 =
(

C [2]
φ − A1C [1]

φ

)

6−1
φ .

(41)

Because 6φ and C [1]
φ 6−1

φ (C [1]
φ )T are close, their difference in

Eq. (41) cannot be inverted using the approximated covari-
ance matrix in Eq. (36) that was used in the AR1 case. The two
matrices A1 and A2 will, therefore, be full.

We then choose 6v to ensure the proper value of 6φ :

6v =6φ − C [1]
φ AT

1 − C [2]
φ AT

2 − A1(C
[1]
φ )

T

+ A16φ AT
1 + A1C [1]

φ AT
2 − A2(C

[2]
φ )

T

+ A26φ AT
2 + A2(C

[1]
φ )

T
AT

1 . (42)

Finally, the resultant AR2 model is put in state-space form by

taking X k = (
φ

pup
k

φ
pup
k−1

), which leads to







X k+1 =

(

A1 A2

I 0

)

X k +

(

I
0

)

vk,

φ
pup
k = C1 X k,

(43)

with C1 = (I , 0).

C. Stability of Resultant Auto-Regressive Dynamical

Models

An important property of the resultant AR turbulence models
is that they are necessarily stable. In the AR1 case, this stems
directly from the fact that the model in Eq. (37) is a weighted
sum [see Eq. (21)] of mono-layered and stable dynamical
models. The resultant AR1 dynamical model (37) is then
obviously stable.



Table 6. Zonal Models with Localized Resultant AR1

and AR2 Dynamical Models and Their Measurement

Equation
a ,b

Regulator Names Associated Models

Lazy SA-LQG (resultant AR1) φ
pup
k+1 = Apupφ

pup
k + vk .

yk = Dφ
pup
k−1 + wk .

LQG-KF + MAP (resultant AR2) φ
pup
k+1 = A1φ

pup
k + A2φ

pup
k + vk .

yk = Dφ
pup
k−1 + wk .

aThe spatial sampling of the zonal basis used for the turbulent phase model

can be chosen independently of the WFS spatial resolution.
bThe left column gives the labels used for the associated LQG regulators.

For the resultant AR2 model, the state matrix of the dynami-
cal model in Eq. (43), namely,

A =

(

A1 A2

I 0

)

, (44)

verifies a Lyapunov equation of the form P = APAT + Q, with

P =





6φ C [1]
φ

(

C [1]
φ

)T

6φ



 , Q =

(

6v 0
0 0

)

. (45)

As 6φ is a covariance matrix with full rank, it is strictly def-
inite positive. It is then immediately checked that, in this case,
P is strictly definite positive, Q is semi-definite positive, and
the pair (A, Q1/2) is controllable. Taken together, these three
conditions are sufficient to guarantee that A is a stability matrix,
as explained in [47] (Chap. 11, pp. 456–457).

D. Associated Measurement Model

We have defined two new resultant zonal-based models: an easy
updatable localized AR1 with a sparse structure and a simplified
one-step covariance matrix, and a resultant AR2 dynamical
model with a full structure that should hopefully deliver a
better performance. They are associated with the measure-
ment model in Eq. (27), where the WFS matrix D is naturally
sparse in the zonal basis and easily adaptable to any sampling
grid. Expressions are gathered in Table 6. The associated LQG
regulators are then readily computed from the corresponding
state-space formulations.

5. PERFORMANCE ASSESSMENT OF ZONAL

LQG REGULATORS: ASTRONOMY CASE

A. Simulation Parameters and Controllers for a

VLT-NAOS-Like System

We consider the same AO system configuration as in Section 3.A
(Table 1), and we simulate five different turbulence configu-
rations (see Table 7), ranging from a pseudo-boiling to a pure
frozen flow turbulent behavior. These different behaviors allow
the evaluation of control performance in various configurations
of the resulting turbulence and also to discriminate between the
candidate regulators.

The multilayer and the AR1 and AR2 resultant LQG regula-
tors developed in this article are built from a zonal model with a
sampling of two linear points per actuator pitch (see regulators 7
to 9 in Table 8). It corresponds to a 29 × 29 Cartesian grid. Six
other controllers that have been proposed previously in the liter-
ature are also evaluated:

1. The classical integral action controller with global gain
g = 0.6.

2. A modal LQG regulator based on a boiling AR2 dynami-
cal model, named LQG AR2 boiling, using 495 Zernike
modes and similar to the controller that has been suc-
cessfully implemented on the CANARY demonstrator
[14].

3. The LQG AR2 boiling—large, same model as LQG AR2
boiling above, but with 779 Zernike modes.

4. The Frozen LQG multilayer regulator from [23], the
first LQG regulator that combines pure frozen flow with
a modal basis. The Frozen LQG multilayer includes an
estimation step with the AR2 boiling dynamical model of
point 2, and a prediction step in a zonal basis using frozen
flow assumptions. It is implemented here for a multilayer
reconstruction with the best edge compensation pro-
posed in [23] (that is, a filling of the empty crescent with a
prediction using the AR2 boiling model).

5. A zonal LQG regulator with a multilayer atmosphere
model, tested for wide-field AO in [24] and in [25] where it
is called Explicit LQG. The model corresponds to a MAP
prediction in each layer using the entire pupil to estimate
the predicted phase points. Note that this regulator in
SCAO mode needs an additional scalar α coefficient close
to 1 in the multilayer dynamical model,

Table 7. Atmosphere Configurations Used in End-to-End Simulations, from Pseudo-Boiling to Frozen Flow

Behavior
a,b

Atmosphere Resultant
Behavior

Pseudo-Boiling
(3 layers)

Mainly Boiling
(3 layers)

Mainly Frozen Flow
(3 layers)

Frozen Flow
(1 layer)

Frozen Flow
(1 layer)

Fractional C 2
n (%) [0.5, 0.2, 0.3] [0.7, 0.1, 0.2] [0.7, 0.1, 0.2] 1 1

Wind speed (m/s) [7.5, 12, 15] [7,10,15] [7, 10, 15] 10 20
Wind direction (◦) [0, 120, 240] [0, 120, 240] [0] 0 0

Turbulence
configuration

aOn the graphical representations, blue corresponds to the first layer, green to the second and purple to the third layer.
bOnly one layer is considered in pure frozen flow configuration.



Table 8. Strehl Ratio at 1.654 µm of Zonal Based LQG Regulators, Compared to a Standard Integral Action

Regulator for Five Different Atmosphere Behaviors for a VLT NAOS-Like Case
a

Atmosphere

Controller State Vector Size
Pseudo-
Boiling

Mainly
Boiling

Mainly Frozen
Flow

Frozen Flow
(10 m/s)

Frozen Flow
(20 m/s)

1. Integral action g = 0.6 185 50.5% 50.6% 50.3% 50.7% 46.4%
2. LQG AR2 boiling from [14],

495 Zernike modes
990 53.7% 53.7% 53.6% 53.8% 51.8%

3. LQG AR2 boiling—large
from [14], 779 Zernike modes

1558 54.6% 54.5% 54.4% 54.7% 52.5%

4. Frozen LQG multi-layer from
[23], 495 Zernike modes

2970 (multi-layer)
990 (frozen flow)

52.6% 53.4% 54.6% 55.6% 55.6%

5. Explicit LQG from [24,25],
29 × 29 points

2319 (multi-layer)
773 (frozen flow)

55.5% 55.8% 56.5% 58.9% 59.3%

6. SA-LQG from [25,29],
29 × 29 points

773 52.5% 53.6% 55.3% 57.7% 57.4%

7. LQG-KF + MAP multi-layer
AR1, Table 4, 29 × 29 points

2319 (multi-layer)
773 (frozen flow)

55.6% 56.0% 56.4% 57.7% 57.4%

8. Lazy SA-LQG (resultant
AR1), Table 6, 29 × 29 points

773 52.5% 53.6% 55.3% 57.7% 57.4%

9. LQG-KF + MAP resultant
AR2, Table 6, 29 × 29 points

1546 53.8% 54.3% 55.9% 58.9% 59.5%

Turbulence configuration

aThe numerical accuracy of the Strehl ratio calculations is under 0.05 point at the science camera wavelength.

φ
Tel,l
k+1 = αA(l)φ

Tel,l
k + vl

k, (46)

where α is chosen between 0.9950 and 1 to ensure best per-
formance, and must be tuned for each turbulence behavior.

6. A zonal LQG regulator with a resultant AR1 dynamical
model, the SA-LQG, proposed in a wide-field AO in
[25,29].

B. Control Performance Results

No less than a total of nine regulators have been evaluated
exactly in the same conditions for the five turbulence con-
figurations described in Table 7. The results are gathered in
Table 8.

1. PerformanceAnalysis

The worst performance for all atmosphere configurations is
given by the integral action controller (1), which means that all
the other regulators benefit from the Kalman filter phase pre-
diction, whatever the model. The best performance is obtained,
as expected, by the regulator that is built on the most inform-
ative model; that is, the Explicit LQG (5). Its turbulent phase
dynamical model is indeed the closest one from the simulated
turbulence, with all layers reconstructed using the complete
knowledge of wind and turbulence profiles.

The two LQG AR2 boiling regulators (2 & 3) are well
adapted to pseudo-boiling and mainly boiling atmosphere
configurations, and the increase of Zernike modes in the model

(495 to 779) improves the overall performance as expected.
However, their performance in the two frozen flow turbulence
configurations (54.7% SR and 52.5% SR) is lower than all
the LQG regulators (4–9) that are designed using frozen flow
models.

As for the LQG regulators 4 and 7 that are based on a mul-
tilayer reconstruction, the Frozen LQG multilayer in Eq. (4)
improves performance when the turbulence configuration
tends to a frozen flow behavior, but is less interesting than the
LQG-KF + MAP multilayer AR1 in Eq. (8), which gives slightly
better results for less complexity. (See the state vector size and
remember that the LQG-KF + MAP multilayer AR1 has a very
sparse state matrix.)

Finally, we analyze the performance of the three LQG regula-
tors based on the resultant models in the pupils 6, 8 and 9. The
two SA-LQG regulators 6 and 8 give the worse performance in
the pseudo-boiling configuration, with only a 52.5% SR. The
approximations made to derive the very sparse model of the Lazy
SA-LQG induce no visible performance degradation compared
to the SA-LQG. The LQG-KF + MAP resultant AR2 in Eq. (9)
gives good average performance in all three-layer turbulence
configurations (pseudo-boiling, mainly boiling, and mainly
frozen flow columns), and gives excellent performance in the
two frozen flow configurations, with 58.9% SR and 59.5%
SR. The increase of the model order (from AR1 to AR2) leads,
as expected, to an improvement for all turbulence configura-
tions because it allows for a better modeling of the resultant
turbulence temporal correlation, as shown below.



Fig. 7. Top: temporal correlation of one central pixel for AR1
(dotted-dashed) and AR2 (dashed) models compared with true
turbulence (plain). Bottom: zoom on 0.1 s.

2. AR1 andAR2Temporal Correlations

The temporal correlations are presented in Fig. 7 to appreciate
the different behaviors between the AR1 and the AR2 resultant
models.

Figure 7 (top) shows that the AR1 and AR2 models do not fit
the true correlation (corresponding to the resultant three-layer
turbulence). The zoom on the first 0.1 s in Fig. 7 (bottom) shows
why the AR2 model gives better control results: The short-term
correlation (time < 0.01 = 5 AO frames) is better represented
with the AR2 model, which has a significant impact on the

accuracy of the short-term phase prediction φ̂Tel
k+1|k in Eq. (9)

given by the Kalman filter.

3. Implementation

We have made all our calculations using MATLAB on a CPU-
based computer featuring two processors Xeon E5-2699 V4 (22
cores each, 2.2 to 3.6 GHz, 35 Mb cache) and 512 Gb DDR4
ECC RAM.

For the most demanding regulator (the Frozen LQG mul-
tilayer with nx = 2070 state components), less than 50 s were
needed to compute the regulator given the C 2

n and wind profiles
(7 s to compute the state model and 40 s to compute the Kalman
gain, which includes the resolution of the Riccati equation). For
the regulator with best results (Explicit LQG with nx = 2319),
about 40 s are needed (5 + 35). The two resultant AR1 and AR2
regulators stay below 4 s and 13 s, respectively. There is, there-
fore, no problem for the update of such controllers regarding the
evolution of atmospheric and wind profiles.

As for real-time implementation, it can be divided into two
main parts: the command calculation, and the state and control
term updates. The command calculation has exactly the same
structure as an integrator equation: uk = u + M1 yk , where
M1 is a matrix of dimensions nu × n y , nu being the number of
actuators and n y the number of measurements. This structure
is obtained from the update of the regulator using Eqs. (2), (6),

and (9). The state and control term u updates can be separated
in different parallel threads according to available memory
and hardware, so we only give the number of matrix vector
multipliers (MVMs) and their dimensions: There are four
MVMs, corresponding to nx × nx , nx × n y , nx × nu , and
nu × nx operations. For the Explicit LQG with three layers
and an upsampling of 2, nx = 2319 roughly corresponds to
12 times the DM size. For the LQG-KF + MAP resultant AR2
and in the same configuration, nx = 1546 is about eight times
the DM size, whereas it is only four times for the Lazy SA-LQG
(nx = 773).

C. Performance Robustness of Resultant Models to

Errors on Wind Profile

To analyze the robustness of the Lazy SA-LQG and LQG-
KF + MAP resultant AR2, several tests have been done with a
pseudo-boiling behavior and a mainly frozen flow behavior of
the simulated multilayer atmosphere (see Table 7). We consider
model errors consistent with wind profile measurements errors
of the Stereo-SCIDAR [48] as indicated in [32]. We thus took
two cases of wind profiles mismatch:

• weak errors, with a variation range of ±2.5 m/s for the
wind speed norm and ±10◦ for the wind direction; and

• strong errors, with a variation range of ±5 m/s for the
wind speed norm and ±20◦ for the wind direction.

The weak errors case corresponds to the Stereo-SCIDAR res-
olution on wind norms and directions for the slowest layers that
are detected with nonzero speed, as described in [32].

We have applied the maximum error bounds described above
to the true profiles (three simulated layers = 43 cases), for each
weak or strong case in a pseudo-boiling or in a mainly frozen
flow atmosphere, which makes 43 × 4 = 256 profiles combina-
tions. These 256 different profiles have been used to compute
the models of the Lazy SA-LQG and the LQG-KF + MAP
resultant AR2, leading to 512 end-to-end simulations of 15000
samples each. The results are shown in Table 9 and Fig. 8.

From these results, we can see that the mean loss in perform-
ance due to wind profile mismatch is globally limited. We can
thus expect a good performance robustness with respect to
wind profile errors in various turbulence configurations. It also
appears that, according to Table 9, the Lazy SA-LQG is more
robust in performance than the LQG-KF + MAP resultant AR2,
in particular with strong errors on the wind profile measure-
ments and an atmosphere configuration with a dominant frozen
flow behavior. However, better average and min–max results are
obtained with the AR2 resultant model, except for the case with
frozen flow atmosphere and strong errors on all wind profile
values (see Table 9). In this case, a few simulations led to less than
52%, with a worse case at 48%. To limit performance variation,
these model-based controllers could be complemented with
a real-time characterization of the wind profile, as proposed
in [32].

For other applications such as LEO satellite tracking in
Section 6, turbulence dynamics are much faster and very high
wind speeds due to satellite motion are known with good
accuracy, as explained in next section.



Table 9. Performance of the Lazy SA-LQG and LQG-KF + MAP Resultant AR2 Regulators at 1.654 µm without

Model Error, and with Weak and Strong Errors on Wind Profiles Priors Used for Model Computations
a,b,c

Regulator Atmosphere No Error Weak Error ± Std Dev Strong Error ± Std Dev

Lazy SA-LQG
(resultant AR1)

Pseudo-Boiling
Mainly Frozen Flow

52.5%
55.3%

52.4% ± 0.1
55.0% ± 0.2

52.0% ± 0.2
54.5% ± 0.4

LQG-KF + MAP
(resultant AR2)

Pseudo-Boiling
Mainly Frozen Flow

53.8%
55.9%

53.5% ± 0.3
55.2% ± 0.6

52.7% ± 0.6
53.4% ± 1.8

aThe value of the standard deviation is also indicated. The numerical accuracy of the Strehl ratio is under 0.05 points at the science camera wavelength.
bThe two different atmosphere configurations can be found in Table 7.
cThe linear sampling of the zonal basis is two points per actuator pitch.

Fig. 8. Histogram of the performance results in four different cases
(two different atmosphere and two wind profile error configurations),
for AR1 and AR2 LQG regulators (see Table 6). Each bin width is 0.5
point of the Strehl ratio at 1.654 µm. The number of simulated trajec-
tories in each of the four cases is 64.

6. PERFORMANCE ASSESSMENT OF ZONAL

LQG REGULATORS: SATELLITE TRACKING

CASE

A. Simulation Parameters

We consider here a low earth orbit observation, with a satellite
at zenithal coordinates, an altitude of 765 km, and a speed of
7.5 km/s. We take the worst atmospheric condition proposed in
[35], namely, a seeing condition of 2”, equivalent to r0 = 5.67
cm at 0.55 µm, and an outer scale of L0 = 25 m. In this appli-
cation the telescope is affected by both the natural behavior of
the turbulence layers and the apparent layers translations due
to the satellite motion above the telescope. For our end-to-end
simulations, we consider a six-layer atmosphere with altitude
and fractional energy distribution described in Table 10. The
satellite speed induces very high values of the apparent wind
norms in altitude and all with the same direction, as they cor-
respond to the projection of the satellite speed on the layers.
For the altitude layers (here from two to six), the atmospheric
wind is comparatively very low and has been neglected. Only the
ground layer keeps its natural atmospheric wind speed, with a
10 m/s norm and a different direction (see Table 10).

Table 10. Atmosphere Parameters for the LEO

Satellite Tracking End-to-End Simulations
a,b

Layers
Fractional C

2
n

Energy (%)
Altitude

(km)
Wind Speed

(m/s)
Wind

Direction (◦)

1 0.45 0 10 60
2 0.1 2 19.60 0
3 0.125 5 49.02 0
4 0.125 7 68.63 0
5 0.15 10 98.04 0
6 0.05 12 117.64 0

aThe C 2
n profile is adapted from the six-layer atmosphere considered in [35].

bLayers two to six have wind speeds that are the projection of the satellite

speed on their altitudes.

We simulate a Shack–Hartmann WFS, with a 16 × 16
subaperture grid (204 valid), and with a measurement noise
variance σ 2

φ = 0.2 rad2 at the edge of the subaperture, at
0.55 µm. The DM has a cartesian grid of 17 × 17 actuators
in a Fried geometry, with 265 valid actuators. The AO loop rate
is 2 kHz. The telescope diameter of the primary mirror is 1.8 m,
with a central occultation of 20 cm. The WFS guide star is the
satellite itself and a geometric Shack–Hartmann model is used
for slopes computation. As we compare the performance of
different controllers, we do not consider pointing errors of the
tracking systems, and therefore assume that the science direction
is fixed on the center of the satellite.

B. LQG Control Loop Settings

Closed-loop end-to-end simulations of the LEO satellite track-
ing case are performed on 15000 iterations, and the results
are summarized in Table 11. The performance is evaluated
at 800 nm. We keep the same numeration as Table 8, and
description of the regulators is in Section 5.A.

The multilayer reconstruction with the LQG-KF + MAP
multilayer AR1 from Table 4 has been evaluated with a recon-
struction on all six layers or with a reconstruction on less than
six layers, using for each resultant layer the modeling defined
for the Lazy SA-LQG in Eq. (37) to reduce the computational
complexity. The wind speed norm Veq of a resultant layer is then
computed according to

Veq =











nl
∑

l=n1

βl (V l )
5/3

nl
∑

l=n1

βl











3/5

, (47)



Table 11. Strehl Ratio at 800 nm for Several LQG

Regulators with Zonal or Modal Basis Dynamical

Models Compared to a Standard Integral Action

Regulator
a

Controller
State Vector

Size
Strehl Ratio
at 0.8µm

1. Integral action g = 0.55 265 10.4%
8. Lazy SA-LQG (Table 6), 33 × 33

points
989 27.2%

6. SA-LQG from [29], 33 × 33 points 989 28.3%
2. LQG AR2 boiling from [14], 495

Zernike modes
990 29.0%

4. Frozen LQG multi-layer from [23],
495 Zernike modes

5940 39.5%

7. LQG-KF + MAP 2-layer AR1
Table 4), 33 × 33 points

1978 46.0%

9. LQG-KF + MAP resultant AR2
(Table 6), 33 × 33 points

1978 50.1%

7. LQG-KF + MAP 4-layer AR1
(Table 4), 33 × 33 points

3956 51.6%

7. LQG-KF + MAP 6-layer AR1
(Table 4), 33 × 33 points

5934 51.9%

5. Explicit LQG from [24], 33 × 33
points

5934 53.2%

aThe LEO tracking atmosphere behavior is described in Table 10.

Table 12. Atmosphere Parameter for Zonal LQG

Regulators with a Multilayer Reconstruction with a

Reduced Number of Layers
a

Controller
Fractional C

2
n

Energy (%)
Wind Speed

(m/s)
Wind Direction

(◦)

LQG-KF + MAP
2-layer AR1

[0.45, 0.55] [10, 72.54] [60, 0]

LQG-KF + MAP
4-layer AR1

[0.45, 0.1, 0.25,
0.2]

[10, 19.60,
59.37,

103.18]

[60, 0, 0, 0]

aThe wind speeds and the C 2
n profiles are computed with the atmosphere

parameters from Table 10.

which is similar to the astronomy case [49], and where
{n1, . . . , nl } are the indexes of the layers with same wind
direction to be concatenated in the model. We chose to take into
account either two or four layers in the multilayer models to
reduce the complexity with atmosphere parameters and wind
profiles defined in Table 12.

C. Performance Results and Analysis

As expected, the multilayered zonal LQG regulators give very
good performance. The Zernike LQG AR2 boiling regulator
is close to a 30% Strehl ratio, giving much better results than
the standard integral action controller. The latter performs
poorly due to the bad seeing conditions and very fast dynamics
of the perturbation. The Frozen LQG multilayer significantly
improves the performance with respect to the LQG AR2 boiling
in Zernike basis, but is much heavier in terms of computational
complexity.

Fig. 9. Top: temporal correlation of one central pixel for AR1
(dotted-dashed) and AR2 (dashed) resultant models compared with
true turbulence (plain). Bottom: zoom on 0.1 s.

From this point of view, the implementation of the 4, 5, and 7
regulators with a six-layer reconstruction and large state vectors
may benefit from the latest developments in high-performance
computing for tomographic AO (see, e.g., [50,51]). It can be
noted that the approximations in regulator 7 (the six-layer
LQG-KF + MAP multilayer AR1 with truncated MAP estima-
tion and bilinear interpolation) lead to limited performance loss
when compared with Explicit LQG. The latter gives the best
results with a 53.2% of Strehl ratio. It is also almost the most
demanding one with nx = 5934 state components, leading to
approximately 316 s to compute the regulator (16 s for the state
model and 300 s for the Kalman gain). Considering the discus-
sion on complexity in Section 5.B.3, it would be interesting to
further study its challenging real-time implementation at 2 kHz.

The Lazy SA-LQG, SA-LQG, and LQG AR2 boiling have
similar performance, so that the LQG AR2 boiling stays very
attractive with its low-size state vector (leading to less than 5 s for
the offline calculations) and ease of use.

At last, the best compromise is obtained by the LQG-
KF + MAP resultant AR2 with a 50.1% Strehl ratio and a
limited state vector size of nx = 1978, so that only 20 s are
needed (6 s + 14 s) for the offline calculations. This regulator
should not be too difficult to implement for real-time operations
and thus seems perfectly adapted to this LEO satellite tracking
application. Indeed, the priors used to compute its dynamical
model are reliable because the value of the satellite speed is
known with good accuracy. With such a level of performance,
the hardware constraints could be relaxed to improve the SNR
by lowering the frequency rate and thereby the measurement
noise.

In terms of temporal covariance behavior, it can be seen
that even though the AR1 model seems to give a correlation
closer to the true average turbulence in Fig. 9 (top), it is clear in
Fig. 9 (bottom) that the short-term correlation is much better



Fig. 10. Histogram of the performance results for the LQG regula-
tors based on AR1 (Lazy SA-LQG) and AR2 (LQG-KF + MAP result-
ant AR2) resultant models (see Table 6). Each bin width is 0.5 point of
Strehl ratio at 800 nm. The number of simulated trajectories for each
model is 200.

Fig. 11. Strehl ratio at 0.8 µm of Lazy SA-LQG and LQG-
KF + MAP resultant AR2, compared with a standard integral action
controller for seven different values of the WFS measurement noise
variance. The numerical accuracy of the Strehl ratio calculations is
under 0.05 point at the science camera wavelength.

represented with the AR2. This largely explains the significant
performance improvement brought by the LQG-KF + MAP
resultant AR2 over the Lazy SA-LQG and the SA-LQG (which
behave similarly).

Performance histograms for the LQG regulators based on the
AR1 and AR2 resultant models are shown in Fig. 10. Errors on
wind speed and direction of the natural wind (first layer only)
are taken uniformly over [−2.5, 2.5] m/s and [−10, 10] degrees,
respectively. Results show a very good performance robustness
with less than two points of Strehl ratio variation.

To further analyze the performance with different WFS
measurement noise variances, simulations have been conducted
with a range of variance values from 0.2 rad2 to 3 rad2 at the
edge of the subaperture, at 0.55µm. The results are displayed in
Fig. 11, which helps us appreciate the performance robustness
with the increasing values of the measurement noise variance.

The gain of the integral action controller was not best-tuned
because its performance is too poor. It stays below 10% of Strehl
ratio for a measurement noise variance greater than 0.5 rad2.
The Lazy SA-LQG stays roughly at 20 points under the LQG-
KF + MAP resultant AR2. It therefore appears not as well
adapted as the LQG-KF + MAP resultant AR2 regulator, which
remains above 30% of Strehl ratio, even for a large measurement
noise variance value of 3 rad2, and above 40% of Strehl ratio for
a measurement noise variance of 1 rad2 or less. Considering the
high sampling AO loop rates usually used for space situational
awareness (SSA) applications, the DM’s dynamics may become
non-negligible as the AO sampling frequency increases. As men-
tioned in Section 2.A, they can be accounted for in the design
using standard control tools.

7. CONCLUSION

In this article we investigate LQG AO control with zonal
turbulence models based on the frozen flow hypothesis for VLT-
type systems in a SCAO configuration and for a LEO satellite
tracking-type AO system. We propose a localized edge com-
pensation mechanism consisting of an offline MAP estimation
with reduced support, which leads to a sparser state matrix in
the turbulence state models (a 0.64% density in our example).
The support is defined by selecting a set of phase points so that
less than 0.5% of the normalized estimation error variance is lost
with respect to taking all the phase points inside the telescope
pupil. We show that this change does not lead to any signifi-
cant performance degradation. Based on a VLT-NAOS-type
configuration, we first test the DKF [44] that appears to gives
disappointing performance results. To understand the reason
for this low performance, we identify the impact of the different
approximations affecting zonal-based regulators, from the spa-
tially invariant DKF (infinite pupil hypothesis) to a multilayer
dynamical model with finite pupil. We show that the DFK
measurement model has a major impact on this performance
degradation.

We then propose to design turbulence dynamical models that
are resultant in the pupil, based on turbulence and wind pro-
files priors. This approach is similar to [24,25,29], where AR1
models are proposed for LQG regulators. Using the reduced
support for MAP estimation and a simplification of the one-step
covariance matrix calculation in the Yule–Walker equation
resolution, we derive the Lazy SA-LQG, an AR1 model close to
the zonal SA-LQG in [29]. A new AR2 resultant model (LQG-
KF + MAP resultant AR2) is also proposed with full regression
matrices. Note that these resultant regulators can be built using
any number of layers without modifying their final dimensions.

No less than eight LQG regulators based on different mod-
eling assumptions are then evaluated and compared with the
integrator for an AO system in a VLT-NAOS-like case with an
average seeing condition and good SNR. Performance results
are compared, in particular with the regulator used on sky in
[52], with the Explicit LQG in [25], and with the SA-LQG
in [29]. Five different multilayer atmosphere configurations
are simulated, from a quasi-boiling resultant atmosphere to a
quasi-pure and pure frozen flow atmosphere. Among all the
LQG regulators using resultant models, the LQG-KF + MAP
resultant AR2 gives the best results, in particular when the



atmosphere is of the quasi-pure or pure frozen flow type. An
analysis of model behavior through temporal covariances shows
the AR2 resultant model is much more accurate for short-term
covariance values, leading to a better phase prediction. As for
robustness with respect to wind profile errors, we show that per-
formance loss is globally limited, with a stronger robustness for
AR1 models. Typical errors on wind profiles have been chosen
from the Stereo-SCIDAR accuracy values in [32].

The LEO satellite tracking case starts with an integrator that
gives about 10% of Strehl ratio. We show that a 50% Strehl
ratio can be obtained with the LQG-KF + MAP resultant AR2,
which exhibits the best compromise in terms of computational
complexity. Similar to the astronomical case, model behaviors
are analyzed through their temporal covariances, and a study
with respect to wind value errors of the ground layer shows
a good robustness of the control performance. In addition,
performance assessment has been conducted under average or
poor SNR conditions, showing that performance improvement
stays high. It is clear that the predictive capabilities of these zonal
LQG regulators take advantage of the quasi-pure frozen flow
behavior of the altitude layers. Several simplifying hypothesis
have been considered in our simulations. First, several layers
close to the ground (and not only the ground layer) could have
their own wind speed in addition to the apparent tracking speed
due to the telescope motion. Second, interframe motion is not
considered in our simulations, and the satellite motion during
the WFS exposure time would probably lead to an increase in
the measurement noise. Third, as the satellite is an extended
source, the WFS measurement model should rely on intercor-
relation of subaperture images, instead of using a natural guide
star with a geometric WFS model. Finally, among the many
additional sources of errors that could be accounted for when
simulating a complete system, scintillation effects may strongly
affect performance in the satellite case, as in [53], but is beyond
the scope of this paper. However, considering the large perform-
ance gap between the regulators, accounting for these effects
should still allow for a significant performance improvement.
Implementation in a real system, besides being obviously of
great interest, would probably also require some model adjust-
ments. It is, for example, possible to mix boiling and frozen flow
behaviors by combining several models, such as a boiling AR2
Zernike model with an AR2 resultant zonal model based on the
frozen flow hypothesis. Real experimentation would allow even
further development of the zonal models presented here, which
would be a natural extension of this work.
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