Article Dans Une Revue Machine Learning Année : 2024

A General Framework for the Practical Disintegration of PAC-Bayesian Bounds

Résumé

PAC-Bayesian bounds are known to be tight and informative when studying the generalization ability of randomized classifiers. However, they require a loose and costly derandomization step when applied to some families of deterministic models such as neural networks. As an alternative to this step, we introduce new PAC-Bayesian generalization bounds that have the originality to provide disintegrated bounds, i.e., they give guarantees over one single hypothesis instead of the usual averaged analysis. Our bounds are easily optimizable and can be used to design learning algorithms. We illustrate this behavior on neural networks, and we show a significant practical improvement over the state-of-the-art framework.
Fichier principal
Vignette du fichier
manuscript.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03143025 , version 1 (16-02-2021)
hal-03143025 , version 2 (08-10-2021)
hal-03143025 , version 3 (18-09-2023)

Identifiants

Citer

Paul Viallard, Pascal Germain, Amaury Habrard, Emilie Morvant. A General Framework for the Practical Disintegration of PAC-Bayesian Bounds. Machine Learning, 2024, 113 (2), pp.519-604. ⟨10.1007/s10994-023-06391-0⟩. ⟨hal-03143025v3⟩
203 Consultations
297 Téléchargements

Altmetric

Partager

More