https://hal-iogs.archives-ouvertes.fr/hal-02956231Bouchoule, IsabelleIsabelleBouchouleLaboratoire Charles Fabry / Gaz Quantiques - LCF - Laboratoire Charles Fabry - IOGS - Institut d'Optique Graduate School - Université Paris-Saclay - CNRS - Centre National de la Recherche ScientifiqueDoyon, BenjaminBenjaminDoyonKing‘s College LondonDubail, JeromeJeromeDubailLPCT - Laboratoire de Physique et Chimie Théoriques - INC - Institut de Chimie du CNRS - UL - Université de Lorraine - CNRS - Centre National de la Recherche ScientifiqueThe effect of atom losses on the distribution of rapidities in the one-dimensional Bose gasHAL CCSD2020[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph][PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Bouchoule, Isabelle2020-12-02 17:18:512023-02-08 17:11:152020-12-04 13:27:24enJournal articleshttps://hal-iogs.archives-ouvertes.fr/hal-02956231/document10.21468/SciPostPhys.9.4.044application/pdf1We study the out-of-equilibrium properties of a classical integrable non-relativistic theory , with a time evolution initially prepared with a finite energy density in the ther-modynamic limit. The theory considered here is the Non-Linear Schrödinger equation which describes the dynamics of the one-dimensional interacting Bose gas in the regime of high occupation numbers. The main emphasis is on the determination of the late-time Generalised Gibbs Ensemble (GGE), which can be efficiently semi-numerically computed on arbitrary initial states, completely solving the famous quench problem in the classical regime. We take advantage of known results in the quantum model and the semiclassical limit to achieve new exact results for the momenta of the density operator on arbitrary GGEs, which we successfully compare with ab-initio numerical simulations. Furthermore, we determine the whole probability distribution of the density operator (full counting statistics), whose exact expression is still out of reach in the quantum model.