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Abstract.

We study the elastic scattering time τs of ultracold atoms propagating in optical

disordered potentials in the strong scattering regime, going beyond the recent work of J.

Richard et al. Phys. Rev. Lett. 122 100403 (2019). There, we identified the crossover

between the weak and the strong scattering regimes by comparing direct measurements

and numerical simulations to the first order Born approximation. Here we focus

specifically on the strong scattering regime, where the first order Born approximation

is not valid anymore and the scattering time is strongly influenced by the nature of the

disorder. To interpret our observations, we connect the scattering time τs to the profiles

of the spectral functions that we estimate using higher order Born perturbation theory

or self-consistent Born approximation. The comparison reveals that self-consistent

methods are well suited to describe τs for Gaussian-distributed disorder, but fails

for laser speckle disorder. For the latter, we show that the peculiar profiles of the

spectral functions, as measured independently in V. Volchkov et al. Phys. Rev. Lett.

120, 060404 (2018), must be taken into account. Altogether our study characterizes

the validity range of usual theoretical methods to predict the elastic scattering time

of matter waves, which is essential for future close comparison between theory and

experiments, for instance regarding the ongoing studies on Anderson localization.
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1. Introduction

Ultracold atoms propagating in disordered potentials offer controllable platforms to

study a large variety of quantum transport phenomena [1, 2], from the celebrated

Anderson localization at the single particle level [3–6], to the study of superfluid

to insulator transitions [7–9] or the concept of many-body localization [10–12] for

interacting atoms. One of the major interest of these systems is the ability to confront

directly experiments and theory for a wide range of parameters. In this context, the

precise knowledge of the elastic scattering time τs, which corresponds to the mean time

between two scattering events, is essential. This fundamental time scale is indeed at

the heart of our basic understanding of wave propagation in disordered media, and it is

used by theoreticians as an elementary building block in order to elaborate quantitative

descriptions of these complex systems [13–23].

However, while the elastic scattering time can be predicted with a rather good

confidence in the weak scattering regime using perturbative approaches, much less is

known in the strong scattering regime [24–27]. One enters this regime, which is the one

of interest for Anderson localization, when the mean free path becomes smaller than

the (de Broglie) wavelength, i.e., when passing the well-known Ioffe-Regel like criterion

kls ∼ 1 (k: wave number, ls = vτs: mean free path, v being the group velocity). Despite

a large amount of work, either with electronic waves [28–31] or classical waves [32–42], a

complete description of τs relying on a close comparison between theory and experiments

is still lacking.

In a recent paper [43], we made an important step into that direction. There,

the elastic scattering time of ultracold atoms in laser speckle disordered potential was

directly measured over a very broad range of experimental parameters, and found to be

in excellent agreement with numerical simulations. By comparing the deviations of τs to

first order Born calculations [22,23], we have identified the crossover between the weak

and the strong scattering regime, revealing that its location is strongly influenced by

the disorder statistics. This was done by using both attractive or repulsive laser speckle

disordered potentials, whose amplitude probability distributions follow exponential laws,

and by complementing our study by a numerical investigation of a Gaussian-distributed

random potential, as usually considered in condensed matter [24,25].

Here we focus on the description of the mean scattering time in the strong scattering

regime, where the first order Born approximation is not valid anymore. To do so, we

relate our measurements of τs to the width of the spectral functions. These functions

give the energy-momentum relation for one particle excitation [44]. They are estimated

for our specific system via two different approaches: either by extending the perturbative

Born expansion to higher order terms [14,25,45] or by the use of the self consistent Born

approximation (SCBA) [16, 17]. While we find that the perturbative approach allows

us to extend the quantitative prediction of τs only in a limited range, a first important

result is the striking agreement obtained between the SCBA predictions and the mean

scattering time for the Gaussian-distributed disorder case. However this method cannot
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cope with the specific statistics of the laser speckle potentials, for which large deviations

are observed. To get further insight, we show in a second step that these deviations

can be traced to the peculiar behavior of the spectral functions for such disordered

potentials [46, 47]. Indeed, we recover full consistency between our measurements of τs

and the width of the spectral functions when considering the real profiles that have been

measured independently using an radio-frequency spectroscopic method, see Ref. [48].

The manuscript is organized as follows. In section 2, we review the measurements

of the elastic scattering time and the comparison with the 1st order Born approximation

as presented in Richard et al. [43]. Section 3 provides the adequate framework, based on

the direct connection between time properties and spectral functions, to further describe

elastic scattering time beyond the first order Born approximation. Finally, we link in

section 4 our observations of elastic scattering time with experimentally obtained profiles

of the spectral functions, both for attractive and repulsive laser speckle disorders.

2. Elastic scattering time along the crossover from weak to strong

scattering

Using ultracold atoms propagating in optical disordered potentials, we experimentally

and numerically determined in Ref. [43] the scattering time τs of a matter wave launched

in a disordered potential V (r) with a well-defined momentum ki. By exploring a broad

range of microscopic parameters, we collected an extensive set of data that we use all

along this study as a support to explore the behavior of τs in the strong scattering

regime. This section reviews the main results of Ref. [43], especially the comparison

with the first order Born predictions, providing all the details relevant to the remainder

of this work.

2.1. Lifetime of excitation in disorder: the first order Born approximation

In the weak scattering regime, the propagation of a wave can be described as a succession

of independent scattering events that are separated on average by a time τs, and between

which the wave freely propagates. This approximation is known as the first order Born

approximation, since it can be obtained by restricting the Born pertubative series to

its first order (see section 3 for more details) [24,25]. In this simple picture, each event

results in a transfer from the initial momentum state |ki〉 toward a continuum of final

momentum states |k′〉, with |k′| = |ki|, see figure 1(a). The elastic scattering time τs

can be then interpreted as the lifetime of the initial state |ki〉, this time being inversely

proportional to the transfer rate to the continuum. The population ñi(t) of |ki〉 is thus

expected to decay exponentially with time t, with a characteristic time τs:

ñi(t) = ñi(0) e−t/τs . (1)

The scattering time τs can be calculated using Fermi golden rule. The coupling

rate | 〈ki|V |k′〉 |2 (where · · · refers to disorder averaging) to each state |k′〉 is given

by the spatial frequency distribution of the disorder C̃(ki − k′). Here, C̃ refers to the
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Figure 1. Elastic scattering time and Born approximation. (a) Illustration

of a scattering event in the Born approximation. An initial momentum state |ki〉
is scattered by the potential towards a momentum state |k′〉 after a mean time τs.

The repulsive potential, shown in blue, is generated by a laser blue-detuned from

an atomic transition. An attractive potential can be generated with a red-detuned

laser (see inset). (b) Measured momentum distribution n(k, t), for ki = 1.62σ−1 and

|VR|/h = 72 Hz. At time t = 0 we see the initial momentum distribution of the

state |ki〉. After a time evolution t = 27 ms, the wave has been partially scattered,

resulting in a reduced peak at k = ki on top of a ring of radius k = ki. The height

of the peak, normalized by its value at t = 0, gives the population of the initial state

ñi(t). (c) Evolution with time t of the population ñi(t) (dots) for ki = 1.62σ−1 and

VR/h = 72 Hz (inset: VR/h = 1.30 kHz). The solid line is an exponential fit from which

we extract τs.

Fourier transform of the two-point correlation function C(∆r) = δV (r)δV (r + ∆r), with

δV (r) = V (r)−V (r) the fluctuations of the disordered potential. It leads to an estimate

of the elastic scattering time in the Born approximation

h̄

τBorn
s

= 2π
∑
k′
C̃(ki − k′) δ(Eki − Ek′) , (2)

where Ek = h̄2k2/2m is the free-state energy, with m the atomic mass and h̄ = h/2π

the reduced Plank constant. Hence τBorn
s depends only on the spatial correlations of the

potential given by C(∆r). Since its amplitude is proportional to |VR|2, with |VR| the rms

value of the disorder potential, an important feature of (2) is the simple 1/|VR|2 scaling.

As a direct consequence, the Born prediction τBorn
s is not sensitive to the specific form

of the amplitude probability distribution P (V ).

2.2. Measurements of the elastic scattering time

As discussed in Ref. [43], we experimentally measure τs by monitoring the decay of

the population in the initial momentum state |ki〉 given by (1). The experimental

setup relies on an ultracold, non-interacting Bose-Einstein condensate of 87Rb that

expands in a quasi-2D laser speckle field [49, 50]. We prepare the atoms with an

initial momentum ki along the y direction, the norm ki ranging from 1 to 20µm−1,

by pulsing an external magnetic gradient for a tunable duration. The laser wavelength

for the speckle can be either red- or blue-detuned with respect to the atomic transition,
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yielding attractive or repulsive disordered potentials (see figure 1(a)). They exhibit

inverted amplitude probability distributions that follow the asymmetrical exponential

laws Psp(V ) = |VR|−1e−V/VR · Θ(V/VR), with Θ the step function. While the averaged

amplitude is given by VR (negative for attractive and positive for repulsive laser speckle),

the disorder strength is characterized by the rms disorder amplitude |VR|. It can be

tuned from |VR|/h = 39 Hz to 3.88 kHz by varying the laser power and detuning. The

laser speckle is shine on the atoms along the x axis, resulting in a very elongated

speckle pattern in this direction. This yields to a quasi-2D disorder geometry in the

(y − z) plane, whose transverse two-point correlation function C(∆r) is found to have

a Gaussian shape of size σ = 0.50(1) µm (1/e radius), see Supplemental Material of

Ref. [43].

To extract τs, we record the momentum distribution n(k, t) at different time t

by performing fluorescence imaging after a long time-of-flight (see figure 1(b)). The

overall momentum resolution is ∆k = 0.2µm−1, limited by the finite temperature of

the initial state and imaging resolution. From those images we monitor the decay of

the population in the initial momentum state ñi(t) (see figure 1(c)) [43]. For weak

scattering, we observe an exponential decay over typically two orders of magnitude,

which we fit with (1) to extract the value of τs. Although the exponential decay is not

expected to persist beyond the Born approximation (see e.g., [27]), at strong scattering

we do not observe significant deviations from such a decay within the experimental error

bars (see inset in figure 1(c)). The extraction procedure is thus kept the same over the

whole range of parameters.

The experimentally measured τs are plotted in figure 2 for both attractive (left

panel) and repulsive (middle panel) laser speckle disorder. The broad range of

parameters ki and VR we explore allows us to observe variations of τs over more than

three orders of magnitude. We compare the measurements with numerical simulations,

performed by propagating in time a wave packet of initial momentum ki in a purely 2D

disordered potential (solid lines). The agreement is in general very good and confirms

the excellent control over the experimental parameters. It also highlights the quasi-

2D nature of our geometry. For simplicity, we thus only compare in the following our

measurements to purely 2D theoretical predictions ‡.
Numerically, we have also explored disordered potential with Gaussian amplitude

probability distribution Pg(V ) = (
√

2πVR)−1e−V
2/(2V 2

R) (right panel in figure 2). The

two-point correlation function C(∆r) is chosen to have a Gaussian shape of size σ, i.e.,

to be the same as for the laser speckle [43]. It is indeed of primordial interest to further

explore the role of disorder statistics, in particular because Gaussian-distributed disorder

is the model usually considered in condensed matter [24, 25]. Such potential could be

also implemented in our experiment using spatial light modulators (see e.g. [12]).

‡ As detailed in the supplemental material of Ref. [43], no significant deviations were found between

3D and 2D calculations for our configuration.
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Figure 2. Experimental and numerical determination of τs. Experimental

measurements (dots) and numerical simulations (solid lines) of τs as a function of the

initial momentum ki for different values of the disorder strength |VR|, in the cases of

attractive disorder (left panel), repulsive disorder (central panel) or Gaussian disorder

(right panel). The first order Born approximation (2) appears in dashed lines, while

the second order Born approximation is shown in dotted lines (only for the three

first disorder strengths). The initial momenta are shown in units of the characteristic

frequency σ−1 of the disorder. The shaded area indicates the strong scattering regime

kils < 1.

2.3. Comparison to Born prediction

We compare the experimental and numerical data to the prediction of the first order

Born approximation τBorn
s given by (2) (dashed lines in figure 2). As already mentioned,

the prediction is identical for the three types of disorder since they have the same two-

point correlation function C(∆r). Note that when changing the disorder strength |VR|,
the curves in the vertical logarithmic scale are simply shifted down according to the

scaling τBorn
s ∝ 1/|VR|2.

As expected, the agreement is very good for all three types of disorder in weak

scattering regime kils � 1, corresponding to low disorder strength |VR| and large

initial momentum ki. For increasing scattering strength, distinct behaviors are observed

between Gaussian-distributed and laser speckle disorders. For Gaussian-distributed

disorder, the good agreement persists up to kils ∼ 1 (indicated by the limit of the

shadded area in figure 2). It validates the latter as an accurate criterion to estimate

the position of the crossover between weak and strong scattering regimes [43]. For

laser speckle disorders, however, the Born approximation fails at much lower scattering

strength. A quantitative analysis of the deviations performed in Richard et al. shows

that the position of the crossover is shifted up to kils ∼ 40 [43]. In addition, we

note substantial differences between attractive and repulsive laser speckle disorder. The

latter, commonly used in the experimental studies of Anderson localization [3,5,6], leads

to much larger deviations from the Born prediction in the strong scattering regime.

The emergence of differences between the three types of potential indicates the

break down of the first order Born approximation, revealing that the elastic scattering

time becomes sensitive to higher-order correlation functions [25]. To push further
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theoretical investigation of the elastic scattering time, we develop the connection

between time evolution of the system and spectral properties, which requires introducing

the concept of spectral functions [44].

3. Scattering time and spectral functions of matter waves in disordered

potentials

The spectral function A(E ,ki) gives the probability distribution for an excitation

of momentum ki to have a certain energy E , thereby generalizing the concept of

dispersion relation. It is for instance used to describe quasi-particles in many-body

physics [44,51–56] or in disordered systems [14,16,17,46–48]. Of particular interest for

the latter is the width of the spectral function, which is related to the time scale of the

scattering processes.

In order to get a intuitive understanding of this fundamental link, it is worth to

consider once again the weak disorder picture. In the absence of disorder, an excitation

of well-defined momentum |ki〉 is an eigenstate of the Hamiltonian with infinite lifetime:

it has a well-defined energy and the spectral function is a Dirac distribution centered

on the kinetic energy Eki . When propagating into a weak disordered potential, the

excitation |ki〉 is no longer an eigenstate: it acquires a finite lifetime τBorn
s , given by

the Fermi golden rule (2), which translates in energy space into a Lorentzian spectral

function A(E ,ki) of finite width h̄/τBorn
s . This link between energy width and time

scale remains formally relevant even for strong scattering regimes. Provided that the

spectral function has no apparent substructures §, it is indeed always possible to define

a characteristic time

τ sf
s = h̄/∆E (3)

based on the full-width at half-maximum (FWHM) ∆E of A(E ,ki), regardless of its

exact profile. In the following, our approach consists in confronting different theoretical

estimates of this timescale to the scattering time τs that we extracted from the decay

of time evolution (see section 2).

To do so, we first present (section 3.1) some basic features of the spectral functions

and we discuss the expected profiles associated to the various scattering regimes. We

then investigate how relevant are perturbative treatments (sections 3.2 and 3.3) and self-

consistent Born theory (section 3.4) in describing, within this framework, the scattering

time τs beyond the weak scattering regime.

3.1. Generalities about spectral functions

For disordered systems, the spectral function is generally defined from the averaged

Green function Ḡ as

A(E ,ki) = − 1

π
Im[Ḡ(E ,ki)] . (4)

§ In the case of multiple substructures, the scattering processes are characterized by various timescales,

as seen in 4 for repulsive laser speckle disorder.
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The calculation of the spectral functions is thus directly related to the one of Ḡ(E ,ki)
and we briefly review below the main steps of the derivation.

In the absence of disorder, the system is characterized by the free Green function

G0(E ,ki) = (E − Eki + i0+)−1, and the spectral function is indeed a Dirac function with

infinitely small width. When taking into account the presence of a disordered potential,

the averaged Green function Ḡ cannot be easily determined. In a general way, the effect

of the disordered potential on Ḡ is encoded into a complex self-energy Σ, defined by the

relation

Ḡ(E ,ki) =
(
E − Eki − V − Σ(E ,ki)

)−1
, (5)

where we have explicitly isolated the energy shift V associated to the mean energy

of the potential, such that Σ is only associated to the disorder fluctuations [17].

Determining the self energy is a complex task and it is in general not possible to have an

exact expression. Various theoretical approaches render possible its estimate in certain

regimes, such as perturbative treatments using a Born expansion [14,45], self-consistent

approximations [16,17] or semi-classical considerations [46,47].

Without going further on the derivation of the self-energy (see below for the

perturbative treatment and the self-consistent approach), it is nevertheless possible

to gain some physical insight on the expected profiles of the spectral function in the

different regimes of scattering. Indeed, equations (4) and (5) allow us to express the

spectral function as

A(E ,ki) = − 1

π

Im[Σ(E ,ki)](
E − Eki − V − Re[Σ(E ,ki)]

)2
+ (Im[Σ(E ,ki)])2

. (6)

When the scattering strength is weak, one can show that the self-energy is almost

constant around the energy Eki and A(E ,ki) can be approximated by a Lorentzian

function (see figure 3(a)) [14,22]. As we will see in section 3.2, this case corresponds to

the Born regime. In a more general case, the energy dependence of the self-energy must

be considered and the spectral function exhibits a different profile (see figure 3(b)) that

depends on the details of the disordered potential.

When approaching infinitely large disorder strength |VR|, the so-called “classical

disorder regime” ‖, it is again possible to predict the profile of the spectral function.

Since quantum effects become negligible, the energy distribution converges towards the

amplitude probability distribution P (V ) of the potential shifted by the kinetic energy

Eki , i.e., A(E ,ki) ' P (E − Eki) (see figure 3(c) for the specific case of a repulsive laser

speckle disorder) [46,47]. In that case, the FWHM ∆E of the spectral function is always

proportional to |VR|, with a factor that depends on the specific profile of P (V ), yielding

the limit τ sf,cl
s ∝ 1/|VR| at large disorder. We therefore expect the scattering time τs

to be larger than the Born prediction (τBorn
s ∝ 1/|VR|2) when approaching the classical

disorder regime, in accordance with the observations in figure 2.

‖ This regime refers to the limiting case |VR| � Eσ = h̄2

mσ2 , with Eσ the correlation energy associated

to the spatial correlation σ (see, e.g., [57] and references therein). For our parameters, one has

Eσ/h ∼ 460 Hz.



Elastic scattering time in the strong scattering regime 9

Figure 3. Illustration of the profiles of the spectral function in different

regimes in the case of repulsive laser speckle disorder. (a) In the Born regime,

A is a Lorentzian function with FWHM ∆E = −2Im[Σ], inversely proportional to the

scattering time τ sf
s . (b) In the intermediate regime, no general predictions can be done

about the profile of the spectral functions, but an effective scattering time τ sf
s can be

defined from the FWHM ∆E . (c) In the classical limit of strong disorder strength, A

approaches the probability distribution of the potential P (V ). The effective scattering

time τ sf
s converges towards the classical limit τ sf,cl

s .

3.2. Perturbation theory: first order Born approximation

To quantitatively estimate the self-energy, a standard method is to decompose it as an

infinite sum of terms known as the Born series

Σ = Σ1 + Σ2 + · · · , (7)

each term Σn involving n + 1 occurrences of the disordered potential, as for instance

Σ1 = δV G0δV or Σ2 = δV G0δV G0δV . Formally each term yields a contribution that

corresponds to specific scattering processes, which can be illustrated using the so-called

“irreducible diagrams” [24,25]. For instance the first term Σ1 only describes independent

scattering events, while interference between successive scattering events is taken into

account starting from the next term. Giving a detailed description of each term is

beyond the scope of this paper, and we refer for instance to Ref. [14] for a pedagogical

derivation.

As a first step, we consider in this section the first order term of the Born

series (7). This approximation, known as the first order Born approximation, yields

Σ ' Σ1 = δV G0δV . This expression can be written in terms of the convolution product

of the two-point correlation function C̃(kdis) and the free Green function as

Σ1(E ,ki) = C̃(ki) ∗G0(E ,ki) =
∑
k′
C̃(ki − k′)

1

E − Ek′ + i0+
. (8)

An important feature of Σ1 is that it varies slowly around the energy Eki , such that

Σ1(E ,ki) ' Σ1(Eki ,ki) (see e.g. [14,22]). As shown in figure 3(a), it results in that weak

disorder case in a quasi Lorentzian profile

A(E ,ki) '
1

π

∆E/2
(E − E ′ki)2 + ∆E2/4

. (9)
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This function is centered around the energy E ′ki ' Eki + V + Re[Σ1(Eki ,ki)] and has

a FWHM ∆E ' −2Im[Σ1(Eki ,ki)]. The real part of the self-energy can then be

directly interpreted as a light-shift induced by the disorder, while the imaginary part is

responsible for the finite lifetime τ sf
s = h̄/∆E , with

h̄/τ sf
s = −2Im[Σ1(Eki ,ki)] = 2π

∑
k′
C̃(ki − k′)δ(Eki − Ek′). (10)

As announced before, we recover the prediction (2) of τBorn
s based on the Fermi

golden rule. It is expected since the first order term Σ1 is obtained by considering that

the successive scattering events are independent from each other, neglecting all possible

interference between them [24,25]. It provides then a clear physical picture of the Ioffe-

Regel like criterion kls ∼ 1: when the mean free path ls = vτs is much larger than the de

Broglie wavelength (kls � 1), the phase accumulated between two successive scattering

events is random and the interference is washed out.

3.3. Second order Born approximation

The comparison between our measurements and the first order Born approximation has

been extensively discussed in section 2. To go beyond, we calculate now the correction

to the self-energy at the second order of perturbation Σ2, from which we deduce the

correction to the width of the spectral function −2Im[Σ2]. Since it involves third-order

cumulants of the potential V (r), this term vanishes for Gaussian-distributed disorder

due to the symmetry of its probability distribution P (V ).

In contrast, it is relevant for laser speckle disorder, being of opposite signs for

attractive (V 3
R < 0) or repulsive (V 3

R > 0) potential. The calculation in the current

case of 2D laser speckle potential is detailed in Appendix A. The results are shown

in figure 2 (dotted lines), only for the three lowest disorder strengths for clarity. For

attractive disorder, the correction −2Im[Σ2] is positive, of same sign as the first order

term −2Im[Σ1], leading to a reduction of the estimated scattering time. For the lowest

disorder strength |VR|/h = 39 Hz, it yields closer prediction to the numerics than the

first order Born approximation τBorn
s (dashed lines). However, the corrected scattering

time remains always smaller than τBorn
s , while the observed τs lies below τBorn

s at low

|VR| but above at high |VR|. Very rapidly, second order prediction deviates as well and

higher order corrections must be included.

For repulsive disorder, the second order correction −2Im[Σ2] is negative and thus

of opposite sign to the first order term −2Im[Σ1], yielding larger prediction for the

scattering time. At very low disorder strength |VR|/h = 39 Hz, it is also in very good

agreement with measurements of τs. However, already for relatively small disorder

strength, the second order correction becomes comparable to the first order term, leading

to the annulation of Im[Σ] and a diverging prediction for τs. To restore the convergence,

higher orders must be included as well.

In summary, the second order Born approximation expands the range of validity

of the model only to the limited regime of low initial momenta ki and low disorder
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strength |VR|. Qualitatively, it is expected since only first and second order terms,

which scale respectively as |VR|2 and |VR|3, cannot reproduce the expected τ sf,cl
s ∝ 1/|VR|

scaling when approaching the strong scattering regime. Increasing the predictability

range would then demand to extend the Born series to many orders. However, it is an

asymptotic series that is known to diverge (see, e.g., Ref. [14]). There is thus an intrinsic

limitation for the perturbative approach to describe τs far beyond the weak scattering

regime.

3.4. Self-Consistent Born Approximation

Rather than developing a perturbative treatment, the self-energy and thus the spectral

function can be estimated using a self-consistent approach. In the first order Born

approximation, the initial momentum state |ki〉 is coupled to the free states |k′〉
(see figure 1(a)). Instead, the self-consistent Born approximation (SCBA) considers

couplings to states dressed by the disorder. In order to account for the energy shift

and the lifetime of those states, the self-energy is calculated by replacing the free Green

functionG0 in (8) with the averaged Green function Ḡ, leading to the system of equations

Σscba(E ,ki) = C̃(ki) ∗ Ḡscba(E ,ki) (11)

Ḡscba(E ,ki) =
(
E − Eki − V − Σscba(E ,ki)

)−1
(12)

that must be solved self-consistently.

It is known that SCBA cannot predict the exact form of the spectral function,

since, by construction, it takes only into account the two-point correlation function

of the disorder C, regardless of the amplitude probability distribution P (V ) [46, 58].

Nonetheless, it is an open question whether SCBA provides a good estimate of the width

of spectral function, and therefore can predict τs better than the Born approximation. To

address this question, we compute the spectral function Ascba in the SCBA, from which

we deduce the FWHM ∆Escba and its corresponding scattering time τ scba
s = h̄/∆Escba.

We perform the calculation for a disorder with a Gaussian-shaped correlation function,

as considered so far, to allow for comparison of τ scba
s with the extracted scattering time

τs.

We solve (11) and (12) by iteration, up to reaching convergence (see Appendix

B). From the solution Σscba, we compute the spectral function using (6). Figure 4(a)

shows examples of such spectral functions, at fixed ki and for different disorder strength

|VR|. At low disorder strength (top left), the spectral function almost coincides with

a Lorentzian function of FWHM h̄/τ scba
s ' h̄/τBorn

s , reproducing the expected result of

the Born approximation, see (9). For intermediate (top right) and strong (bottom left)

disorder strength, the spectral function is broadened and its profile deviates largely from

a Lorentzian distribution. In the classical limit of infinite disorder strength (bottom

right), it approaches an asymptotic function Acl
scba corresponding to a semi-circle of

radius 2VR centered around the energy Eki +V [46]. This profile sets an analytical limit

for the scattering time τ scba,cl
s = (2

√
3VR)−1.
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Figure 4. Scattering time in the self-consistent Born approximation:

comparison to τs for Gaussian-distributed disorder. (a) Spectral functions

computed with SCBA at ki = 0.93σ−1 for disorder strength |VR| = 39 Hz (top left),

|VR| = 459 Hz (top right) and |VR| = 3.88 kHz (bottom left). The vertical dashed

lines indicates the kinetic energy Eki . At infinite disorder strength (bottom right), it

approaches the asymptotic function Acl
scba(E ,ki) = (2πV 2

R)−1(4V 2
R − (E −Eki −V )2)1/2

(brown solid line), that corresponds to a half circle. Besides, the infinite disorder limit

for the true spectral function has a Gaussian shape (green dashed line) that reflects

the amplitude probability distribution Pg(V ) (Gaussian-distributed disorder): it has

a different profile than the limit Acl
scba but with a similar FWHM. (b) Comparison

between numerical simulations of τs (solid lines) and SCBA predictions τ scba
s (dash-

dotted lines) for Gaussian-distributed disorder. The agreement is remarkable over the

whole range of parameters. The square dots refer to the parameters used to plot the

spectral functions in (a).

To benchmark the method, we compare in figure 4(b) the resulting time τ scba
s (dash-

dotted lines) to the numerically estimated τs in the case of Gaussian-distributed disorder

(solid lines). We find that SCBA provides an excellent estimate of the scattering time

over the whole range of parameters, even in the strong scattering regime kils < 1 (shaded

area). It is particularly remarkable considering that SCBA does not reproduce spectral

function in the classical limit, as illustrated in figure 4(a) by comparing Acl
scba with the

actual limit Pg (bottom right, dashed line). Nonetheless, the FWHMs of those two

distributions are roughly similar, justifying the good agreement observed between τ scba
s

and τs. This is also confirmed by analytical calculation of the FWHMs, which indicates

that they only differ by a close-to-unity factor
√

3/(2ln2) ' 1.5.

In this section, we have compared the scattering times, as extracted from the

exponential decay of the initial momentum distribution, to the widths of the spectral

functions computed by different methods. We found that, as expected, the first order

Born approximation gives a good estimate for low disorder. Considering the second

order term of the Born series accounts for deviations but only on a limited range of

parameters. In contrast, for Gaussian disorder, the SCBA yields fair estimates for τs
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while not reproducing correctly the complete spectral function.

However, since the SCBA prediction depends only on the two-point correlation

function, it cannot be sufficient to describe the behavior of τs for arbitrary probability

distribution of disordered potentials [46]. This is especially the case for laser speckle

disorders that are further discussed in next section.

4. Elastic scattering time and real spectral functions for laser speckle

disorders

We investigate here the limitations of the SCBA in describing τs for both attractive

and repulsive laser speckle potentials. A full understanding requires to explore in detail

the features of the real spectral functions, which can in those cases exhibit complicated

profiles. We perform such an analysis on the basis of the spectral functions measured in

Ref. [48] in the specific case of ki = 0. We show that the differences reported between

attractive and repulsive laser speckle disorder are at the root of the distinct behaviors

that we observe on the scattering time τs.

4.1. Limitations of SCBA prediction for laser speckle disorder

In figure 5(a) we compare the SCBA prediction τ scba
s to the experimental determination

of τs for attractive laser speckle disorder. Already at low initial momentum ki and

low disorder strength |VR|, SCBA does not perform better than the first order Born

approximation. Since it only contains even powers of the fluctuations of the disorder,

it does not include the second order corrections modeled by Σ2 and is thus less reliable

than second order perturbation theory.

For intermediate disorder strength |VR|, SCBA yields apparently closer predictions

to the experimental data than the 1st order Born approximation, but it deviates again

when approaching the classical limit of strong disorder strength |VR|. Although both τs

and τ scba
s scale as 1/|VR| in this regime, a quantitative mismatch is observed that can

be attributed to the singular profile of the amplitude probability distribution Psp(V ) of

the attractive laser speckle field. Indeed, the latter is much more peaked than Acl
scba,

resulting in a substantially smaller FWHM and thus larger elastic scattering time. Based

on these asymptotic profiles, we calculate a ratio between τ sf,cl
s and τ scba,cl

s of 5, which

is consistent with the value of 3.2(5) that we measure at the lowest ki.

The case of repulsive laser speckle disorder is shown in figure 6(a). At low initial

momentum ki, low disorder strength |VR|, deviations of similar magnitude compared to

an attractive laser speckle are observed, originating from the same absence of odd order

correction terms. For increasing disorder strength |VR|, however, deviations become

much more pronounced, reaching more than 1 order of magnitude at the largest disorder

strength. This cannot be simply justified by the profile of the amplitude probability

distribution and therefore requires deeper analysis of the profile of the spectral functions.
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Figure 5. SCBA and real spectral functions for attractive laser speckle

disorder. (a) The experimental measurements of τs (diamonds) substantially deviate

from predictions computed with SCBA (dash-dotted lines, same than in figure 4). On

the contrary, they are fully consistent with the values τ sf
s extracted from measured

spectral functions in the extreme limit ki = 0. For better visibility, the numerical

simulations are not shown. (b) Experimentally measured (dots) and simulated (lines)

spectral functions extracted from Ref. [48], for ki = 0 and various disorder amplitudes

VR. We fit them with the convolution of an exponential and a Lorentzian distributions,

and we extract τ sf
s from the obtained FWHM. For the strongest disorder amplitude

VR = −4008 kHz, the green dashed line indicates the distribution Psp(V ).

4.2. Comparison with measured spectral functions

To further investigate the different behaviors of τs, a comparison to the real spectral

functions is needed. Experimentally, spectral functions of matter-waves in laser speckle

disorder have been measured in the specific case ki = 0 and for a large set of

disorder strength |VR|/h ranging from 60 Hz to 4 kHz [48]. Three examples are shown

in figure 5(b) in the case of attractive speckle potential. At weak disorder strength

|VR|/h = 60 Hz (top panel), the spectral function exhibits an approximately Lorentzian

profile, consistent with the Born interpretation. The profile changes at intermediate

disorder strength (central panel) to approach for strong disorder the classical limit

Psp(V ) (green dashed line in the bottom panel), although deviations due to quantum

corrections still persist around E ∼ 0 [48]. For those measured spectral functions, we

extract the FWHM from a fit and we deduce the elastic scattering time τ sf
s in the limit

ki = 0 as a function of |VR| (Appendix C). The results, plotted in figure 5(a) (circle

dots) for the same values of |VR| than considered so far. They are in good agreement

with the low momentum limit of τs, especially at strong disorder. This shows that our

measurements of τs are fully consistent with the specific profiles of the spectral functions



Elastic scattering time in the strong scattering regime 15

Figure 6. SCBA and real spectral functions for repulsive laser speckle

disorder. (a) The experimental measurements of τs (diamonds) strongly deviate

from SCBA predictions (dash-dotted lines), while they are fully consistent with the

values τ sf
s extracted from measured spectral functions in the extreme limit ki = 0.

(b) Experimentally measured (dots) and simulated (lines) spectral functions extracted

from Ref. [48], for ki = 0 and various disorder amplitude VR. We fit them with

an heuristic function, which models the bimodal structure, in order to extract τ sf
s .

The grey area indicates the forbidden negative energies. For the strongest disorder

amplitude VR = 4008 kHz, the green dashed line indicates the distribution Psp(V ).

for the attractive laser speckle case.

For repulsive laser speckle, the spectral functions at ki = 0 are plotted in figure 6(b).

Since negative energies are strictly forbidden in repulsive potential (depicted by the grey

area), the profiles are intrinsically different in comparison to the previous case. At weak

disorder strength, spectral functions still follow Lorentzian-like profile typical of the

Born regime. In the strong disorder regime, they exhibit a narrow resonance peak on

top of the broad distribution that would have been expected from the classical limit Psp

(green dashed line). The presence of this peak is related to an accumulation of bound

states around the averaged ground state harmonic oscillator energy [46–48].

As a consequence of this double structure, the time evolution is expected to show

two different timescales: a short one associated to the broad part of the spectral function

and a long one associated to the narrow peak. Experimentally, the measured time

evolution is dominated by the slowest decay. The characteristic time we have extracted

when measuring τs is thus related to the long timescale, and should be compared to the

FWHM of the narrow peak. To perform the comparison, we fit the spectral functions

by an heuristic function accounting for the bimodal structure (see Appendix C), and we

extract τ sf
s from the FWHM of the peaked function. As shown in figure 6(a), it agrees

once again very well with the low momentum limit of τs.
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In conclusion, analysing the profiles of the real spectral functions allows us to

interpret the observed differences in the scattering time τs between attractive and

repulsive laser speckle disorder. The striking agreement between time domain and

energy domain measurements validates our method to extract τs in a broad range of

scattering regimes. It also highlights the key issue here, which is to find theoretical

models that reproduce the specific features of the spectral functions [46,47].

5. Summary and outlook

We have investigated in this paper the behavior of the elastic scattering time τs

of ultracold atoms in disordered potentials in the strong scattering regime. A first

important result is the remarkable agreement between the observed behavior of τs and

predictions based on the self consistent Born approximation (SCBA), in the case of

Gaussian-distributed disordered potentials. However, this method, which inherently

doesn’t take into account the specific form of the disorder amplitude distribution, is not

accurate for laser speckle disorder. Instead, we have shown that the calculation of the

second order term in the Born series, which is sensitive to the distribution skewness, is

able to explain the differences reported between the attractive and the repulsive speckle

disorders when entering the strong scattering regime. The validity of this pertubative

approach is nevertheless limited to a narrow range of parameters. As a second main

result, we show that one has then to rely on the real shape of the spectral functions, as

measured in [48], in order to interpret our data.

Altogether, our study clarifies the validity range of common theoretical methods to

predict the elastic scattering time of matter waves in disordered potential. It highlights

the need for developing adequate formalisms in order to cope with the full statistics of

the disorder, especially in the case of laser speckle disorder that are commonly used with

ultracold atoms. Beside semiclassical approaches, dedicated to the asymptotic classical

regime [46,47], or the coherent potential approximation [58–60], a very interesting follow

up would be to confront our measurements to the recent theoretical framework of the

hidden landscape [61, 62]. Such development of quantitative predictions is essential for

the understanding of complex transport phenomena, such as the Anderson localization

where discrepancies remain between experiments, numerics and available theories (see

e.g. [63]).
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Appendix A. Second order Born approximation for laser speckle disorder

We show here how to calculate the second order correction Σ2 = δV G0δV G0δV of

the Born expansion. It involves the three-point correlation function C3(∆r,∆r′) =

δV (r)δV (r + ∆r)δV (r + ∆r′), which is strictly null for Gaussian-distributed disorder

and equals to

C3(∆r,∆r′) = 2V 3
Re−[∆r2+∆r′2+(∆r−∆r′)2]/(2σ2) (A.1)

for a 2D laser speckle disordered potential.

The operator Σ2 is diagonal in the |k〉 basis, with matrix elements Σ2(E ,ki) =

〈ki|Σ2|ki〉 given by

Σ2(E ,ki) =
∑
k′,k′′

C̃3(ki − k′,ki − k′′)G0(E , Ek′)G0(E , Ek′′), (A.2)

where C̃3(kdis,k
′
dis) is the Fourier transform of the three-point correlation function (A.1).

When taking the imaginary part of (A.2), we obtain

Im[Σ2(E ,ki)] = −8π3V 3
R

3

∑
k′,k′′

e−[(ki−k′)2+(k′−k′′)2+(k′′−ki)2]σ2/6

[δ(E − Ek′)p.v.(E − Ek′′) + p.v.(E − Ek′)δ(E − Ek′′)] , (A.3)

where p.v. refers to the Cauchy principal value. The two terms revealed by (A.3)

are related to the two possible third-order processes, corresponding either to a single

scattering event for the wavefunction and two scattering events for the conjugated

wavefunction, or to the other way around.

The second order Born correction is finally obtained by numerically calculat-

ing (A.3) at the energy E = Eki .

Appendix B. Calculation of the self-energy in the SCBA

We present in this section the main stages in the calculation of the self-energy Σscba(E ,ki)
in the self-consistent Born approximation. The procedure is detailed for a given set of

disorder strength |VR| and initial momentum ki, the overall process being repeated for

all the sets of parameters we have explored.

At first we define an energy range [Emin, Emax] relevant for the calculation of the

spectral function. It is chosen to be centered on the kinetic energy Eki , with a width

large enough to ensure that the spectral function area is close to unity. For each energy

E of this interval, the self-consistent equations are then solved. To do so, we calculate

in parallel the self-energy Σscba(E ,k) for all the momenta k whose kinetic energies are

contained in the range [Emin, Emax]. We proceed by iteration, initializing the solution
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with the first order Born solution Σ
(0)
scba = Σ1. Using (11) and (12), the self-energy

Σ
(n+1)
scba after n+ 1 iteration steps is given by

Σ
(n+1)
scba (E ,k) =

∫ d2k′

4π2
C̃(k− k′)

1

E − Ek′ − Σ
(n)
scba(E ,k′)

. (B.1)

The iteration loop is pursued until the convergence criterion∫ d2k

4π2

∣∣∣∣∣∣Σ
(n+1)
scba (E ,k)− Σ

(n)
scba(E ,k)

Σ
(n+1)
scba (E ,k)

∣∣∣∣∣∣ < 10−3 (B.2)

is reached.

Once the self-energy is known for each energy E , the spectral function can be

computed using (6). Its normalization is verified to make sure the energy interval was

correctly chosen.

Appendix C. Extracting the widths of real spectral functions

We present here the procedure to extract the widths ∆E of the spectral functions

experimentally measured in Ref. [48], in order to estimate the scattering time τ sf
s . Since

the spectral functions are noticeably different between attractive and repulsive laser

speckle potential, we distinguish the two cases on the following.

For attractive laser speckle disorder, we use as fit function the convolution of a

Lorentzian distribution L with an exponential distribution R:

Aatt
fit (E) = L(E , Ec, δE) ∗R(E , δE ′). (C.1)

The Lorentzian distribution

L(E , Ec, δE) =
1

π

δE/2
(E − Ec)2 + δE2/4

(C.2)

has a central energy Ec and a full-width at half-maximum δE . The exponential

distribution is defined as

R(E , δE ′) =
1

|δE ′|
e−E/δE

′
Θ(E/δE ′), (C.3)

such that it converges towards the amplitude distribution of the attractive disorder Psp

when its width δE ′ approaches VR < 0.

At low disorder strength |VR|, the width δE ′ goes to 0 and Aatt
fit approaches a

Lorentzian profile, as experimentally observed (see top panel in figure 5(b)). At high

disorder strength, δE ′ goes to VR for R(E , δE ′) to converge towards the classical limit

Psp (green dashed line in 5(b)). The convolution with L guarantees that the fit function

is smoothed around E = 0, with δE corresponding almost to the energy region where

quantum effects are relevant. In between these two extreme cases, Aatt
fit reproduces well

all the profiles of the measured spectral functions.

For each disorder strength |VR| for which the spectral function has been measured,

we extract the FWHM ∆E of Aatt
fit and we deduce the scattering time τ sf

s = h̄/∆E . The

value of τ sf
s for any disorder strength is then deduced by interpolation.
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The case of repulsive disorder is more complicated. The profiles of the spectral

functions are bimodal, made of a narrow peak at low energy on top of a broad energy

distribution. We fit those profiles by the sum of a convoluted distribution L ∗ R
accounting for the broad part of the spectrum, and a Gaussian distribution G accounting

for the narrow peak. It yields for the fit function

Arep
fit (E) = αL(E , Ec, δE) ∗R(E , δE ′) + (1− α)G(E , Ec, δE), (C.4)

with α the relative weight of the first contribution. The Gaussian distribution is defined

as

G(E , Ec, δE) =
1√
πδE

e−(E−EcδE )
2

. (C.5)

where the central energy Ec and the full width δE are chosen to be the same as the

ones of L. It results in total in only one more free parameter – α – compared to

the case of attractive disorder. Since the bimodal profile are more pronounced in the

numerical simulations, α is extracted on the numerical data and kept fixed when fitting

the experimental data.

At low |VR|, the spectral function is dominated by a narrow peak that is fitted by

G, while L ∗ R accounts for the small, broad background. When increasing |VR|, the

peak amplitude decreases and the spectral function approaches closer to its classical

limit. At high |VR|, the broad part of the spectrum resembles the one of the attractive

case, whose features are captured by L ∗ R, while the narrow peak resulting from the

accumulation of bound levels is fitted by G. Overall, the fit function (C.4) shows

remarkable agreement with the measured spectral functions at any disorder strength.

Since we are experimentally sensitive to the longer timescale when measuring τs, the

relevant energy scale ∆E is given by the width of the narrower structure δE .

Similarly to the attractive laser speckle case, the value of τ sf
s for any disorder

strength is extracted by interpolation of those measurements.
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