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Abstract 

Optical resonators are widely used in modern photonics. Their spectral response and temporal dynamics are 

fundamentally driven by their natural resonances, the so-called quasinormal modes (QNMs), with complex frequencies. 

For optical resonators made of dispersive materials, the QNM computation requires solving a nonlinear eigenvalue 

problem. This rises a difficulty that is only scarcely documented in the literature. We review our recent efforts for 

implementing efficient and accurate QNM-solvers for computing and normalizing the QNMs of micro- and nano-

resonators made of highly-dispersive materials. We benchmark several methods for three geometries, a two-

dimensional plasmonic crystal, a two-dimensional metal grating, and a three-dimensional nanopatch antenna on a 

metal substrate, in the perspective to elaborate standards for the computation of resonance modes. 

 

KEYWORDS: electromagnetic resonance, quasinormal mode, microcavity, nanoresonator, nanoantenna, plasmonic 

crystals. 

1. Introduction 

Optical resonances play an essential role in current developments in nanophotonics. By providing an eagle view of the 

resonant features of nanostructures, they are at the heart of the design of artificial materials, integrated photonic 

resonators, optical sensors, and nanoparticle traps for instance, and find use in many areas of science and technologies. 

Modes in optics are defined as factorized solutions [𝐄̃𝑚(𝐫), 𝐇̃𝑚(𝐫)] exp(−𝑖𝜔̃𝑚𝑡) of the time-harmonic source-
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free Maxwell’s equations [Lal18] 

[
0 𝑖𝜺−1(𝐫,𝜔̃𝑚)∇×

−𝑖𝝁−1(𝐫,𝜔̃𝑚)∇× 0
] [

𝐄̃𝑚(𝐫)

𝐇̃𝑚(𝐫)
] = 𝜔̃𝑚 [

𝐄̃𝑚(𝐫)

𝐇̃𝑚(𝐫)
], (1) 

where the electromagnetic field satisfies the far-field outgoing wave conditions at infinity (Sommerfeld conditions for 

instance in uniform media), 𝜺(𝐫, 𝜔)  and 𝝁(𝐫, 𝜔)  are the position and frequency-dependent permittivity and 

permeability tensors of the resonator and its surrounding background. Equation (1) takes the form of an eigenproblem, 

with 𝜔̃𝑚 and [𝐄̃𝑚(𝐫), 𝐇̃𝑚(𝐫)]
𝑇

 being the eigenvalues and eigenvectors, respectively. 

There are different types of modes in optics. For optical (lossless) dielectric waveguides, truly-guided modes have 

a real (angular) frequency 𝜔, implying that the mode lifetimes are infinite. These modes that live forever in the 

waveguide are not considered in this work, since efficient mode solvers already exist for their computation. In the 

presence of leakage or material Joule losses, the eigenvalue problem of Eq. (1) becomes non-Hermitian and its 

eigenvalues lie in the complex plane (lower half plane, in the case of the 𝑒−𝑖𝜔𝑡 time dependence that is assumed 

throughout the paper) 

𝜔̃𝑚 = 𝛺𝑚 − 𝑖𝛤𝑚/2, (2) 

where the real and imaginary parts give the resonance frequency and the damping rate, or the mode lifetime 𝜏𝑚 =

1/𝛤𝑚. In a spectrum, small (resp. large) values of 𝛤𝑚 therefore correspond to narrow (resp. broad) resonances. The 

damping has two origins, absorption (Joule loss) or leakage into the claddings for open systems. Realistic resonant 

systems usually consist of resonators connected to the outside world through one or several radiative channels and 

thus, even in the absence of absorption, 𝛤𝑚 ≠ 0. To emphasize their difference with the normal modes of Hermitian 

systems (without any damping), the modes of non-Hermitian systems with complex eigenfrequencies are called 

quasinormal modes (QNMs) [Cha96,Lal18]. These modes are also known in the literature as decaying states [Mor71], 

resonant states [Mor73,Mul10], leaky modes [Sny83], scattering modes…  

QNMs are initially loaded by a driving field and then decay exponentially with time due to power leakage and 

absorption. In general, one expects that the electromagnetic field [𝐄(𝐫, 𝑡), 𝐇(𝐫, 𝑡)] scattered by a resonator driven 

by an external source can be expanded over the QNMs of the system, [𝐄(𝐫, 𝑡), 𝐇(𝐫, 𝑡)] =

Re{∑ 𝛽𝑚(𝑡)𝑚 exp(−𝑖𝛺𝑚𝑡) exp(−𝛤𝑚𝑡/2)[𝐄̃𝑚(𝐫), 𝐇̃𝑚(𝐫)]} , with 𝛽𝑚  the modal excitation coefficient. 

Recovering the resonator response in the modal basis is called the reconstruction problem. Modal methods are 

important as they help interpreting experimental results and highlighting the physics [Lal18]. In this paper, we do not 

consider the reconstruction problem but focus on the first essential step: the computation of normalized QNMs. We 

benchmark different techniques by considering three different examples. 

 It is convenient to consider step by step the impact of damping on the mode computation. When the damping is 

only due to absorption (there is no leakage), the system is closed. This case is the simplest one and is studied in the 

first benchmarked structure, a two-dimensional (2D) plasmonic crystal composed of a periodic array of metallic wires. 

The complexity of this example comes from the dispersive nature of the resonator material, which makes the 

eigenproblem of Eq. (1) a nonlinear one. Note that for non-dispersive materials, the eigenproblem is linear and efficient 

QNM solvers already exist in several commercial software packages. 

For the second benchmark, we are again concerned by a 2D geometry, but an open one that is periodic in one 

direction only: a grating composed of an array of slits etched into a metal membrane suspended in air. QNMs now have 



to fulfill the outgoing-wave boundary conditions for |𝒓| → ∞ to ensure that the QNM energy leaks away from the 

resonator. The open nature of the eigenproblem results in an unusual yet critical feature of QNMs, being that the field 

distributions [𝐄̃𝑚(𝐫), 𝐇̃𝑚(𝐫)] diverge outside the resonator as |𝒓| → ∞. Indeed, the temporal response imposes 

an exponential decay for exp[−𝑖𝜔̃𝑚(𝑡 − 𝑟/𝑐)] and thus a negative imaginary part for 𝜔̃𝑚. As a consequence, an 

outgoing wave of the form exp[−𝑖𝜔̃𝑚(𝑡 − 𝑟/𝑐)]/𝑟 , as encountered in the far field of the resonator, grows 

exponentially as exp[ 𝛤𝑚𝑟/(2𝑐)]/𝑟 because of the necessary minus sign of the causal propagation term (𝑡 − 𝑟/𝑐). 

The exponential divergence has raised problems and even debates in the past for normalizing the QNMs, but this issue 

is solved nowadays, even for complicated 3D geometries [Lal18]. Normalization is a key point of QNM computation, 

since only normalized fields can be used to define the modal excitation coefficients of the reconstruction problem. 

Hereafter, all the computed QNMs are normalized and the convergence of the methods towards the normalized fields 

is systematically considered in the benchmarks. 

The last benchmark is related to a 3D geometry, a silver nanocube deposited on a gold substrate. With a tiny 

dielectric gap separating the two metals, the geometry offers deep-subwavelength confinements at visible frequencies, 

for which we compute the fundamental magnetic-dipole mode. With two different metals, this is the most challenging 

test case. As a simpler version, we also consider an axisymmetric geometry with a nanocylinder. 

The article is divided into four additional sections. Section 2 provides a short theoretical background on the 

normalization of QNMs and an overview of the different techniques used to compute QNMs in electromagnetism. The 

purpose of this section is to provide the reader with sufficient background in order to obtain a basic understanding of 

the numerical approaches used by the different research groups involved in the benchmarks. In Section 3, we 

summarize the main results obtained for the three benchmarks and compare the numerical results obtained by the 

different groups. We additionally discuss the discrepancies between the results of the different methods. Details 

concerning the implementations of the methods are described in Section 4 together with additional data and related 

literature. We include, however, a description of all specific modifications made in order to improve the performance of 

the methods for the considered geometry. Wall times and memory requirements are likewise provided in this section. 

We conclude this paper in Section 5 with a summary of the derived insights. 

2. Quasinormal mode normalization and mode volume 

2.1 Reconstruction 

An important objective, not comprehensively discussed in this article, of QNM theories consists in reconstructing the 

field [𝐄S(𝐫,𝜔), 𝐇S(𝐫,𝜔)] exp(−𝑖𝜔𝑡) scattered by a resonator (at least in a compact subspace of ℝ𝟑) under a 

driving field at a real frequency 𝜔 with a QNM expansion of the form  

[
𝐄S(𝐫, 𝜔)

𝐇S(𝐫,𝜔)
] = ∑ 𝛼𝑚(𝜔)𝑚 [

𝐄̃𝑚(𝐫)

𝐇̃𝑚(𝐫)
], (3) 

in the frequency domain, or  

[
𝐄S(𝐫, 𝑡)

𝐇S(𝐫, 𝑡)
] = Re(∑ 𝛽𝑚(𝑡)𝑚 [

𝐄̃𝑚(𝐫)

𝐇̃𝑚(𝐫)
]), (4) 

in the time domain, provided that the excitation pulse can be Fourier transformed. In Eqs. (3) and (4), the 𝛼𝑚’s and 

𝛽𝑚’s are complex modal excitation coefficients, which measure how much the QNMs are excited. There are different 



analytical formulas to compute the 𝛼𝑚’s and the 𝛽𝑚’s, see [Lal18] for a review. Note that throughout the manuscript, 

we will use a tilde to differentiate the QNM fields from other fields, for instance the scattered or driving fields. 

Consistently, we will also use a tilde to denote the QNM complex frequency 𝜔̃𝑚, 𝑚 = 1,2…, in contrast with the real 

excitation frequencies that will be denoted by 𝜔. The intrinsic strength of QNM expansions is to provide important 

clues towards understanding the physics of the resonator response. Since the modes are explicitly considered, their 

impact on the resonance is readily available and unambiguous, in sharp contrast with classical scattering theories. 

2.2 Mode normalization 

The modal excitation coefficients contained in expansions such as those of Eqs. (3) or (4) are functions of normalized 

QNMs [Lal18]. Normalization has been a long standing issue because of the spatially exponential divergence of the 

QNM field. Initial works on QNM normalization [Leu94] focused on simple geometries for which the field is known 

analytically in the whole space, i.e., 1D Fabry-Perot cavities and spheres. For resonators with complex shapes and 

materials, analytic solutions are not available and the continuous Maxwell’s operator of Eq. (1) has to be approximated 

and expressed using a numerical discretization scheme, which preserves the outgoing-wave condition at |𝒓| → ∞. 

For a long time, the norm 

∭ (𝜀|𝐄̃𝑚|
2
+ 𝜇|𝐇̃𝑚|

2
)

Ω
𝑑3𝐫, (5) 

which comes from Hermitian (closed) systems and represents the field energy, has been used [Ger03] to normalize 

QNMs of resonators with a high quality factor 𝑄. In practice, the integration domain Ω has to be truncated to some 

appropriate volume, which is large enough to include most of the physically-reasonable field energy and small enough 

not to feel the spatial divergence of the QNM field. This approximate way is only valid in the limit of infinitely large 𝑄’s. 

However, for low-𝑄 resonators such as plasmonic antennas, Eq. (5) becomes incorrect, and the classical energy 

normalization must be replaced by [Sau13] 

∭ [𝐄̃𝑚 ∙
∂(𝜔𝛆)

∂𝜔
𝐄̃𝑚 − 𝐇̃𝑚 ∙

∂(𝜔𝛍)

∂𝜔
𝐇̃𝑚]

Ω
𝑑3𝐫 = 1. (6) 

The replacement of modulus-squared terms, e.g. |𝐄̃𝑚|
2

in Eq. (5), by unconjugated scalar products, e.g. 𝐄̃𝑚 ∙ 𝐄̃𝑚 in 

Eq. (6), enable convergence, as we replace a positive exponentially diverging quantity by an oscillating exponentially 

diverging quantity that is alternatively positive and negative in space. However, convergence is not guaranteed and, 

without any particular precautions being taken, the integral defined by Eq. (6) is also diverging if the integration is 

performed over the entire space [Mu16b]. 

Actually, it is possible to show that Eq. (6) defines a normalization by surrounding the resonator with perfectly-

matched layers (PMLs) [Sau13]. PMLs are often seen as a numerical trick, but they are mainly a mathematically 

powerful tool: complex coordinate transforms implemented by changing material parameters. The PML mapping offers 

a precious advantage. The mapped QNMs do not grow exponentially away from the resonator; instead they are even 

exponentially damped inside the PMLs, and thus become square-integrable and easy to normalize. In practice, this 

means that QNMs can be easily normalized by integrating over the whole numerical space including the PML regions 

[Sau13]. 

PMLs are very convenient, but they are not necessarily required. Another approach to normalize QNMs relies on 

the fact that QNMs are poles of the scattering operator. With any modern frequency-domain Maxwell’s equation 



software, the scattered field can be computed for complex frequencies very close to the pole. Since for 𝜔 ≈ 𝜔̃𝑚, the 

scattered field of any resonator is proportional to the normalized QNM field 𝐄̃𝑚(𝒓)  with an analytically known 

proportionality factor [Bai13,Lal18], the normalized mode can be obtained just by computing scattered fields at complex 

frequencies with or without PMLs. 

Periodic structures deserve special care. The normalization relies on two QNMs with opposite Bloch wavevectors 

[Lec07]. For illustration, let us consider a grating that is periodic in the 𝑥-direction, translationally symmetric in the 𝑧-

direction, and aperiodic in the 𝑦-direction. Denoting by 𝑘𝑥 the 𝑥-component of the Bloch wavevector, we may write 

the QNM field  as [𝐄̃𝑘𝑥
(𝐫), 𝐇̃𝑘𝑥

(𝐫)] = [𝐞̃𝑘𝑥
(𝐫), 𝐡̃𝑘𝑥

(𝐫)] exp(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦), 𝐞̃𝑘𝑥
and 𝐡̃𝑘𝑥

 being periodic. If the 

constitutive materials are reciprocal, as it is assumed in the benchmarks, there always exists a QNM with an opposite 

propagation constant −𝑘𝑥 [Lec07], [𝐄̃−𝑘𝑥
(𝐫), 𝐇̃−𝑘𝑥

(𝐫)] = [𝐞̃−𝑘𝑥
(𝐫), 𝐡̃−𝑘𝑥

(𝐫)] exp(−𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦) , and the 

normalization becomes 

∭ [𝐄̃𝑘𝑥
∙
∂(𝜔𝛆)

∂𝜔
𝐄̃−𝑘𝑥

− 𝐇̃𝑘𝑥
∙
∂(𝜔𝛍)

∂𝜔
𝐇̃−𝑘𝑥

]
Ω

𝑑3𝐫 = 1, (7) 

where the integral runs over the unit cell for periodic crystals (example 1) or a unit cell including PMLs for gratings 

(example 2). Note that (𝐄̃−𝑘𝑥
, 𝐇̃−𝑘𝑥

) can be deduced from (𝐄̃𝑘𝑥
, 𝐇̃𝑘𝑥

) for symmetric gratings. For instance, in the 

grating example 2, 𝜀(𝑥) = 𝜀(−𝑥)  and we have 𝐱̂ ∙ 𝐄̃−𝑘𝑥
(−𝑥, 𝑦) = 𝐱̂ ∙ 𝐄̃𝑘𝑥

(𝑥, 𝑦) , 𝐲̂ ∙ 𝐄̃−𝑘𝑥
(−𝑥, 𝑦) = −𝐲̂ ∙

𝐄̃𝑘𝑥
(𝑥, 𝑦) and 𝐳̂ ∙ 𝐇̃−𝑘𝑥

(−𝑥, 𝑦) = 𝐳̂ ∙ 𝐇̃𝑘𝑥
(𝑥, 𝑦). Otherwise, two QNMs have to be computed, one with 𝑘𝑥 and 

the other one with −𝑘𝑥  [Lec07]. Figure 1 illustrates the symmetry and the absence of symmetry between 

(𝐄̃−𝑘𝑥
, 𝐇̃−𝑘𝑥

)  and (𝐄̃𝑘𝑥
, 𝐇̃𝑘𝑥

)  for symmetric and non-symmetric gratings, respectively. Note that in the non-

symmetric case, two different calculations will in general yield two different values for the normalized field 𝐄̃𝑘𝑥
, but the 

product 𝐄̃𝑘𝑥
. 𝐄̃−𝑘𝑥

 is uniquely defined [Wei17]. 

 
Figure 1. Normalized magnetic field distributions for 𝑘𝑥 and −𝑘𝑥  and for a symmetric grating (a-b), 𝜀(𝑥) =

𝜀(−𝑥), and a non-symmetric one (c-d), 𝜀(𝑥) ≠ 𝜀(−𝑥). The symmetric case corresponds to Example 2 (see 

Section 3.2 for  any details on the geometry, polarization …). Note that 𝐳̂ ∙ 𝐇̃−𝑘𝑥
(𝑥, 𝑦) = 𝐳̂ ∙ 𝐇̃𝑘𝑥

(−𝑥, 𝑦). A 

dielectric inclusion (𝜀 = 2.25) has been added to break the symmetry in (c-d). In that case, there is no symmetry 

relation between 𝐇̃𝑘𝑥
 and 𝐇̃−𝑘𝑥

. The normalized field maps are computed with the FMM3. Note that the colorbars 

in (c) and (d) are different. 



2.3 Mode volume 

Just like the quality factor in the temporal domain, the mode volume is an important parameter of resonators in the 

spatial domain [Rig97]. Initially used by the cavity quantum electrodynamics community for high-𝑄 microcavities, the 

mode volume was considered as a real quantity, 𝑉(𝒓0) =
∭[𝛆|𝑬̃|

2
+𝜇0|𝑯̃|

2
]𝑑3𝒓

2𝜀(𝒓0)|𝐄̃(𝒓0)⋅𝒖|
2 , which gauges the coupling strength 

of an emitting dipole located at 𝒓0 and parallel to the direction 𝐮 (|𝐮| = 1) with the cavity mode [Lal18,Ger03]. The 

mode volume is usually defined for dipoles placed at the field-intensity maximum, where the coupling is also maximum, 

but it may also be considered as spatially-dependent to directly take into account the dependence of the coupling 

strength with the dipole position. As one escapes from the Hermitian limit 𝑄 → ∞, the definition of a mode volume 

through energy consideration has obvious shortcomings and is largely inaccurate for low-𝑄 resonators [Lal18]. The 

real mode volume 𝑉 should then be replaced by a complex one 𝑉̃ =
∭(

∂𝜔𝛆

∂𝜔
𝑬̃2−𝜇0𝑯̃𝟐)𝑑3𝒓

2𝜀(𝒓0)(𝐄̃(𝒓0)⋅𝒖)
2  , which tends towards the 

classical one in the limit of 𝑄 → ∞. For a normalized mode, 𝑉̃ is inversely proportional to the square of the normalized 

modal electric field at the emitter position 𝒓0 and takes the simple expression 

𝑉̃ = [2𝜀(𝐫0)(𝐄̃(𝐫0) ⋅ 𝐮)
2
]
−1

. (8) 

Complex 𝑉̃s are rooted in important phenomena of light-matter interactions in non-Hermitian open systems [Lal18]. 

For instance, the ratio Im 𝑉̃−1 Re 𝑉̃−1⁄  quantifies the spectral asymmetry of the mode contribution to the modification 

of the Lorentizan shape of the spontaneous-emission-rate spectrum (Purcell effect) of an emitter weakly coupled to a 

cavity [Sau13]. For strong coupling, it modifies the usual expression of the Rabi frequency by blurring and moving the 

boundary between the weak and strong coupling regimes [Lal18,Las18], and for cavity perturbation theory, the ratio 

Im 𝑉̃−1 Re 𝑉̃−1⁄  also directly impacts the narrowing or broadening of the resonance linewidth due to the perturber 

[Lal18,Cog18]. The third 3D example benchmarks 𝑉̃ for a plasmonic antenna. 

2.4 Overview of QNM solvers 

For resonators with complex shapes and materials, analytic solutions for QNMs are not available and the continuous 

Maxwell’s operator has to be approximated using a numerical discretization scheme, which preserves the outgoing-

wave condition at |𝒓| → ∞. It is not the purpose of this Section to review all the methods that can be used to compute 

QNMs. The literature is so vast that we restrict the discussion to methods that have been used, not only to compute, 

but also to normalize QNMs. 

In practice, the numerical discretization of the Maxwell’s operator is correctly implemented only for a finite spectral 

interval. Thus only a sub-set of the true QNMs is accurately recovered, namely the states for which the outgoing-wave 

conditions and discretization are well implemented, and other discrete numerical eigenmodes, the so-called PML 

modes [Vi14a,Vi14b,Yan18], emerge as a direct consequence of the truncation of the open space. Unlike QNMs, PML-

modes depend on the PML material and geometric parameters. 

QNMs are preferentially computed by solving Eq. (1) with frequency domain methods operating at a complex 

frequency. A first option is to calculate the QNMs from a Fredholm type integral equation [Las13,Ber16,Pow17,Pow14, 

Zhe14,Kri12], in which case the outgoing-wave condition is perfectly fulfilled by construction. However, since the QNM 

resonance frequency (i.e., the unknown) enters in the outgoing-wave condition, the integral equation defines a 

nonlinear problem even for nondispersive materials, thereby requiring particular care. 



An alternative way is to surround the resonator by PMLs. For nondispersive materials with frequency-independent 

permittivities and permeabilities, Eq. (1) defines a linear eigenvalue problem and various mode solvers, including 

commercial ones such as COMSOL Multiphysics [COMSOL], are available to compute many QNMs very efficiently. 

Normalization is then performed by evaluating the integral of Eq. (6) (or Eq. (7) in the case of periodic structures) over 

the whole numerical space including the PML regions. For the general case of resonators made of dispersive materials, 

for which Eq. (1) defines a nonlinear eigenvalue problem, one needs to know the analytic continuation of the permittivity 

and permeability tensors, 𝜺(𝜔) and 𝝁(𝜔), at complex frequencies. This strict requirement is usually met by using 

physical models, which provide fully-analytic expression for the material parameters. This is for instance the case for 

the Drude electrical conduction for free carriers in metals or highly-doped semiconductors. Alternatively, one may fit 

material parameters measured at real frequencies to ad hoc analytic expressions, such as multiple-pole Lorentz-Drude 

expansions [Zha13,Pow17,Ram10], which guarantee causality and the frequency symmetry (𝜀(−𝜔∗) = 𝜀∗(𝜔)) 

resulting from the real nature of the susceptibility. Systematic and effective procedures for fitting experimental data 

exist, see for instance the procedure developed with Hermitian functions in the form of polynomial fractions and 

proposed in [Gar17]. 

Three general approaches to compute and to normalize QNMs are used in general. 

Pole-search approach 

The pole-search approach is probably the simplest and most general method. It relies on the fact that the resonator 

response to any driving field diverges as the driving frequency approaches a QNM eigenfrequency. Thus the QNMs 

can be computed by searching poles in the complex frequency plane for some representative quantities that are 

complex functions of the frequency, such as the electromagnetic field response to a driving source or some elements 

of the discretized scattering matrix [Pow14,Zhe14]. Some iterative algorithms, such as the Newton method, are well 

suitable for the pole searching [Kra00]. They usually require an initial guess value as close as possible to the actual 

QNM eigenfrequency for fast numerical convergence, and compute QNMs one by one by iteratively exploring the 

complex plane around every QNM pole. Pole-search approaches are particularly relevant when only a few QNMs need 

to be computed. 

Alternatively, a non-iterative method, the so-called Cauchy Integration Method, has also been developed 

[Zol05,Del67]. This method is capable to find all the poles in a closed predetermined region of the complex frequency 

plane, but it needs an extra computational cost associated with the contour integration over the outer boundary of the 

closed region to invert the discretized Maxwell’s matrix [Byk13,Pow14]. For a better accuracy, the pole found with the 

Cauchy Integration Method can be further refined with the Newton’s method [Pow14]. 

A pole-search QNM-solver freeware, QNMPole, which computes and normalizes QNMs for arbitrary resonators by 

approximating the inverse of the electric field response with a Padé approximant is available since 2013 [Bai13]. The 

freeware can be used with any Maxwell’s equations solver, including commercial software such as COMSOL 

Multiphysics. 

Auxiliary-field eigenvalue formulation 

A different approach consists in computing all the QNMs “at one time” by solving a linearized version of the eigenvalue 

problem, for which a myriad of efficient and stable numerical methods exists. A general approach consists in 

transforming the nonlinear eigenvalue problem into a linear one by introducing auxiliary fields to account for material 

dispersion. Several variants exist, but for the sake of simplicity, we will just provide a generic presentation of auxiliary-

field techniques [Ram10,Zha13,Luo10,Che06,Taf13,Zi16a,Zi16b,Bru16,Yan18]. The latter have been initially used for 

computing band diagrams of dispersive photonic crystals [Ram10,Zha13,Luo10,Che06,Bru16] and in time-domain for 



modelling wave propagation in dispersive media [Taf13,Yan18]. 

For the sake of illustration, we consider an isotropic (to simplify) medium with a dispersive permittivity described by 

the single-pole Lorentz model, 𝜀(𝜔) = 𝜀0𝜀∞ (1 −
𝜔𝑝

2

𝜔2−𝜔0
2+𝑖𝜔𝛾

), and a nondispersive permeability 𝜇 = 𝜇0 . We 

introduce two auxiliary fields, the polarization 𝐏 = −𝜀0𝜀∞
𝜔𝑝

2

𝜔2−𝜔0
2+𝑖𝜔𝛾

𝐄 and the current density 𝐉 = −𝑖𝜔𝐏. With 

elementary algebraic manipulations, we can reformulate Eq. (1) into an extended eigenvalue problem 

[
 
 
 

0 −𝑖𝜇0
−1𝛁 ×

𝑖(𝜀0𝜀∞)−1𝛁 × 0

0 0
0 −𝑖(𝜀0𝜀∞)−1

0 0
0 𝑖𝜔𝑝

2𝜀0𝜀∞

0 𝑖
−𝑖𝜔0

2 −𝑖𝛾 ]
 
 
 

[
 
 
 
 
𝐇̃𝑚(𝐫)

𝐄̃𝑚(𝐫)

𝐏̃𝑚(𝐫)

𝐉̃𝑚(𝐫) ]
 
 
 
 

= 𝜔̃𝑚

[
 
 
 
 
𝐇̃𝑚(𝐫)

𝐄̃𝑚(𝐫)

𝐏̃𝑚(𝐫)

𝐉̃𝑚(𝐫) ]
 
 
 
 

, (9) 

The approach can be straightforwardly extended to multiple-pole Lorentz models by increasing the number of auxiliary 

fields. It is worth mentioning that the support of both auxiliary fields 𝐏  and 𝐉  is not necessary in the whole 

computational domain but only in the subdomains that contain the dispersive material. Note that the Drude model, a 

particular case for which 𝜔0 = 0, requires a single auxiliary field 𝐉. 

QNM eigensolvers based on an auxiliary-fields method have been initially implemented with finite-difference 

methods [Zi16a,Zi16b]. The latter may introduce inaccuracies for complex geometries, which may lead to the prediction 

of spurious modes when discretizing curved metallic surfaces on a rectangular grid for instance. QNM solvers based 

on finite element methods may be preferable. In [Yan18], a general freeware using the COMSOL Multiphysics platform 

is tested. 

Polynomial eigenvalue formulation 

A purely algebraic linearization is possible, in which the auxiliary fields are no longer related to physical quantities such 

as the polarization vector and the current density, but to successive time derivatives of the electric or magnetic field. 

Consider for instance a non-magnetic dispersive medium with a dielectric permittivity described by the same single-

pole Lorentz model as in the previous paragraph, 𝜀𝑟(𝜔) = 𝜀∞ (1 −
𝜔𝑝

2

𝜔2−𝜔0
2+𝑖𝜔𝛾

). The source free propagation 

equation for the electric field 𝑐2𝛻 × 𝛻 × 𝐄 + 𝜔2 𝜀𝑟(𝜔)𝐄 = 0 can be written as a polynomial eigenvalue problem 

𝜔4ℳ4𝐄 + 𝜔3ℳ3𝐄 + 𝜔2ℳ2𝐄 + 𝜔ℳ1𝐄 + ℳ0𝐄 = 0 , where the operators ℳi  are given by ℳ4 = 𝜀∞ , 

ℳ3 = 𝑖γ𝜀∞ , ℳ2 = 𝑐2𝛻 × 𝛻 × (⋅) − 𝜀∞(𝜔𝑝
2+𝜔0

2), ℳ1 = 𝑖γc2∇ × ∇ × (⋅) and ℳ0 = −𝜔0
2𝑐2∇ × ∇ × (⋅). 

Introducing three extra fields 𝐄1 = 𝜔𝐄, 𝐄2 = 𝜔𝐄1, and 𝐄3 = 𝜔𝐄2, a generalized linear eigenvalue problem of the 

form 𝐋𝐕 = 𝜔𝐑𝐕 is obtained: 

[

−ℳ0 −ℳ1

0 1
−ℳ2 −ℳ3

0 0
0       0
0       0

1        0
0        1

] [

𝐄
𝐄1

𝐄2

𝐄3

] = 𝜔 [

0 0
1 0

0 ℳ4

0 0
0 1
0 0

0 0
1 0

] [

𝐄
𝐄1

𝐄2

𝐄3

]. (10) 

As opposed to the physically-meaningful auxiliary fields 𝐏 and 𝐉, the supplementary fields 𝐄1, 𝐄2, and 𝐄3 have 

the same support as the electric field 𝐄, i.e., the whole computational domain. Hence, both linearization schemes 

clearly lead to distinct discrete systems. 



3. Numerical results and comparison 

Several groups in Europe and in China have been contacted to participate in the benchmark using their in-house 

developed software. In the following sections, three different numerical exercises are benchmarked in relation with the 

computation and normalization of QNMs. 

In Table 1 we present the twelve different implementations of fully-vectorial methods that have been benchmarked. 

We have classified these implementations into three general categories: modal methods (MM), finite- difference (FD) 

methods, finite-element methods (FEM). The methods represent a selection of the most popular numerical methods 

used nowadays in computational electrodynamics. 

Clearly, they do not cover all existing methods, but nevertheless the results of the benchmark may be used with 

confidence by other researchers in the field to test their in-house or commercial software. 

 

Numerical method Affiliation Completed 

Benchmark 

Acronym 

Finite difference  Delft-TU 3 FD 

Finite element  ZIB, Berlin 1-3 FEM1 

a-Fourier Modal Method  Nankai Univ. 1-3 FMM1 

Finite element (COMSOL) LP2N, Bordeaux 1-3 FEM3 

a-Fourier Modal Method  

Finite element  

LCF, Palaiseau 1-3 

1-3 

FMM3 

FEM2 

Fourier Modal Method Stuttgart Univ. 1-2 FMM2 

Finite element Institut Fresnel, Marseille 1-3 FEM4 

Table 1. Benchmarked methods. The last column presents the acronyms used throughout the article. All methods are 

performed with in-house developed software, except FEM1 and FEM3 that rely on JMCSuite and COMSOL Multiphysics. 

3.1 Example 1: plasmonic crystals 

We consider as the first example the case of a two-dimensional (2D) plasmonic crystal composed of a periodic array 

of metallic squares in air. The structure is depicted in Fig. 2(a). It was previously studied by Raman et al. with a finite 

difference frequency domain method [Ram10], and then by Brûlé et al. with a finite elements method [Bru16]. In both 

studies, the dispersion diagram and modes of this absorbing and dispersive system have been computed by 

implementing an auxiliary-field formulation with a finite difference frequency domain method, but different results have 

been reported. The period of the square lattice is denoted by a and the size of the square metallic inclusions is 𝑤 =

0.25𝑎. The relative permittivity of the metal is described by a Drude model of the form 𝜀(𝜔) = 1 − 𝜔𝑝
2/(𝜔2 +

𝑖𝜔𝛾), with 𝜔𝑝𝑎/(2𝜋𝑐) = 1 and 𝛾 = 0.01𝜔𝑝.  

 We first present the dispersion diagram of the plasmonic crystal (complex eigenfrequencies as a function of the 

wavevector) and then we compare the results given by seven different numerical methods. The benchmark consists of 

the calculation of one mode (complex eigenfrequency and normalized field) for a given value of the wavevector. 

3.1.1 Dispersion diagram 

We have computed the QNMs of the plasmonic crystal in TE polarization (magnetic field along the z direction) for 

different values of the wavevector 𝑘𝑥 and 𝑘𝑦 = 0. Figure 2(b) displays the real part of the eigenfrequencies 𝜔̃𝑚 as 



a function of the wavevector 𝑘𝑥 and Fig. 2(c) shows the distribution of the eigenfrequencies in the complex frequency 

plane. The calculations have been performed with the FEM2. 

 

 

Figure 2. Band diagram of a 2D plasmonic crystal. (a) The structure consists of a 2D array of metallic inclusions 

in air. The size of the square Drude inclusions is 𝑤 = 0.25𝑎. (b) Real part of the QNMs eigenfrequencies as a 

function of the wavevector 𝑘𝑥 for 𝑘𝑦 = 0. (c) Distribution of the eigenfrequencies in the complex frequency plane 

for the same wavevector values. (d) 𝑎|𝐻𝑧| distribution for the normalized QNM with the lowest frequency for 

𝑘𝑥 = 0.5𝜋/𝑎 (red arrow in (b)). 

A remarkable feature of the dispersion diagram is the existence of many flat bands. The latter correspond to slow 

high-order surface-plasmon QNMs [Yan18] with high parallel momenta and a strong degree of confinement at the 

metal/air interfaces. They are highly sensitive to the radius of curvature of the wire corners as we have shown by 

several computations performed by slightly rounding the corners, in particular in the spectral interval corresponding to 

−1/3 < Re[𝜀(𝜔)] < −3 [Bon14a,Bon14b,Bon18,Dem18]. 

It is noticeable that the spectral positions of these bands are significantly different from those reported in Fig. 2 in 

[Ram10], although they are computed exactly for the same geometry. To check the numerical results, we have 

computed the dispersion diagram with three other numerical methods, FEM3 and FEM4 and one in-house FD method 

specifically implemented at LCF for this benchmark. An excellent agreement between the four numerical methods has 

been obtained, providing virtually the same spectra for the flat bands. Since the four methods have been implemented 

independently, we are inclined to think that the results reported in [Ram10] suffer from numerical inaccuracies. 

3.1.2 Numerical benchmark for a single mode 

We have benchmarked several methods for computing the eigenfrequency and the normalized field of the QNM with 

the lowest frequency at 𝑘𝑥 = 0.5𝜋/𝑎, red arrow in Fig. 2(b). Its magnetic-field modulus is shown in Fig. 2(d). The 

field is calculated at the center of the metallic inclusion and normalized according to Eq. (7). Table 2 summarizes the 

most accurate results obtained by each method. 

To improve the numerical accuracy, the three FMM implementations increase the number of Fourier harmonics 

2𝑁 + 1 retained in the computation. The four FEM implementations rely on different strategies. FEM1 increases the 

FE order 𝑝 from 1 to 6, whereas FEM2-4 increase the number 𝑀 of mesh elements for a fixed FE order. FEM2 and 



FEM4 are based on a second order FE and FEM3 is using a fourth order. These results correspond to the data obtained 

with the highest number of Fourier harmonics, the largest FEM order or the finest mesh, except for FMM3, for which 

the data in Table 2 are obtained by an extrapolation of the convergence curve, see Section 4.4.  

 

Method Re(𝜔̃)𝑎/(2𝜋𝑐) Im(𝜔̃)𝑎/(2𝜋𝑐) Re(𝐻̃𝑧)𝑎 Im(𝐻̃𝑧)𝑎 Refinement parameter 

FMM1 0.23107438 -0.0001445244 3.32867 -505.074 𝑁 = 100 

FMM2 0.23107368 -0.0001440116 3.33018 -505.065 𝑁 = 50 

FMM3 0.23107371 -0.0001440087 3.33023 -505.067 Extrapolation 

FEM1 0.23107370 -0.0001440083 3.32996 -505.062 𝑝 = 6, 𝑀 =1133  

FEM2 0.23107047 -0.0001441258 3.32900 -505.130 𝑝 = 2, 𝑀 = 40k 

FEM3 0.23107349 -0.0001440188 3.32991 -505.061 𝑝 = 4, 𝑀 = 66k 

FEM4 0.23107496 -0.0001439568 3.32819 -505.041 𝑝 = 2, 𝑀 = 55k  

Table 2. Most accurate numerical values obtained for the complex eigenfrequency and the normalized magnetic field 

𝐻̃𝑧𝑎. The last column summarizes the values of the refinement parameter used to obtain the data. Note that 𝐻̃𝑧𝑎 is not 

a dimensionless quantity and is expressed in A. s.m−1/2. kg−1/2. For FMMs, 𝑁 represents the truncation rank, and 

for FEMs, 𝑝 is the FE order and 𝑀 is the number of mesh elements. Bold digits (in the present Table and in following 

ones) are believed to be correct. 

 

Figure 3 shows how the different numerical methods converge towards their best values. The convergence is 

displayed as a function of the CPU time (or wall time) in seconds. We have represented the relative difference between 

the data and a reference. For the reference, we chose the mean value of the results given by the three FMM1,2,3 that 

provide the largest number of common digits in Table 2. Figure 3 evidences that all seven methods converge towards 

the same values both for the eigenfrequency and for the normalized field. Remarkably, the real and imaginary parts of 

the eigenfrequency are obtained with at least six significant digits, see the bold numbers in Table 2. The real and 

imaginary parts of the field are obtained with two and four significant digits, respectively. 

For this 2D problem, the wall times required to reach such an excellent accuracy span between a few seconds and 

one hundred for the slowest. The three FMM implementations converge faster than the FEM implementations. Note 

that the FEM is generally fast at extracting a large number of the eigenvalues spectrum at once, whereas the 

benchmark concerns a single eigenvalue. Note also that increasing the FEM order instead of refining the mesh leads 

to a faster convergence. 

 



 

Figure 3. Convergence performance obtained for the QNM with the lowest frequency at 𝑘𝑥 = 0.5𝜋/𝑎. Data are 

displayed as a function of the CPU time in seconds. We present the relative difference between every calculation 

and a reference value obtained by averaging the results of FMM2, FMM3, and FEM1. (a) Real part of the 

eigenfrequency. (b) Imaginary part. (c) Real part of the normalized magnetic field. (d) Imaginary part. Black 

squares: FMM1. Magenta x-marks: FMM2. Green dots: FMM3. Red triangles: FEM1. Blue circles: FEM2. Brown 

pluses: FEM3. Cyan diamonds: FEM4. 

3.2 Example 2: metal grating 

3.2.1 General overview of the structure 

The second benchmark considers an open structure: a 1D grating, made of a periodic slit array etched in a free-

standing gold membrane, see Fig. 4(a). The geometry is based on [Col10]. The period is 𝑎 = 482.5 nm, the rod width 

𝑤 = 347.5 nm and the rod height ℎ =130 nm. A Drude gold relative permittivity is considered, 𝜀𝑟(𝜔) = 1 −

𝜔𝑝
2/(𝜔2 + 𝑖𝛾𝜔)  with 𝜔𝑝 = 1.15e16 𝑠−1  and 𝛾 = 0.0078 𝜔𝑝 . This model agrees well with experimental 

ellipsometric data in the near infrared, but fails to describe the response of gold in the blue region of the spectrum. 

The grating exhibits a valuable bandpass filtering behavior in transmission [Col10]. The specular transmission 𝑇0 

and absorption A are shown in Figs. 4(b) and (c) for 3 in-plane wavevector 𝑘𝑥 values and for TM polarization (i.e. 

𝐻𝑧 component parallel to the wires). The spectra are obtained using a collection of direct FE computations by iterating 

over the wavelength and the parallel momentum of the incoming plane wave [Dem07]. Note that in the frequency 

domain, handling the frequency dispersion of materials is trivial since the permittivity can be updated from tables as 

the frequency is swept. The goal of the second benchmark is to retrieve with accuracy the QNMs accounting for the 

main resonant transmission peaks in Figs. 4(b) and 4(c). 



 

Figure 4 (a) Geometry of the free-standing 1D grating. (b) Specular transmission 𝑇0  for three values of 𝑘𝑥 , 

𝑘𝑥𝑎 𝜋⁄ = 0.05, 0.4,0.6. (c) Absorption 𝐴 (fraction of the incident energy absorbed) spectra. The dotted vertical 

lines represent the Rayleigh anomalies. The dashed lines represent the real parts of the grating QNM 

eigenfrequencies 2𝜋𝑐/𝜔̃ taken from Fig. 5. The widths of the rectangular patches centered around each dashed 

line are set to be 2Im(2𝜋𝑐/𝜔̃), encoding the quality factor of each resonance. The inset is a zoom with the same 

color conventions, showing near normal incidence sharp resonances and the corresponding QNMs labelled C1 

and D1 in Fig. 5. 

3.2.2 Dispersion relation 

The dispersion relation of the grating is shown in the right panel of Fig. 5. It has been computed using FEM4 (crosses) 

and a pole search method based on FMM3 (small dots forming a seemingly continuous line). The real parts of the 

normalized eigenvalues 𝜔̃/𝜂 with 𝜂 = 2𝜋𝑐/𝑎 are represented in ordinate. The abscissa represents the normalized 

Bloch wavevector in the first reduced Brillouin zone. The imaginary part of the normalized eigenvalues is encoded into 

a jet color scale of the dots and crosses that form the dispersion curves. For Re(𝜔̃)/𝜂 < 1.2, the dispersion relation 

exhibits six branches, labeled “A”, “B” … “F” and standing below the folded light line shown with dashed gray lines. The 

insets show the QNM fields |𝐇̃|. 



 
Figure 5 Dispersion relation of the gold grating. Crosses represent the real parts of the eigenvalues obtained with 

FEM4. Dots forming an almost continuous curve represent the real parts of the eigenvalues found using a complex 

pole search. The insets represent the modulus of the magnetic field distribution of the QNM corresponding to the 

eigenvalue indicated by a black line. The left panel shows a zoom close to the center of the Brillouin zone.   

With the help of the dispersion curves, we may interpret the main features of the transmission and absorption 

spectra of Fig. 4(b)-(c). Let us begin with band B, for which Re(𝜔̃)/𝜂 lies between 0.493 and 0.83, corresponding to 

wavelengths in the interval [581; 979] nm. The QNMs can be directly linked to the absorption spectrum, when 

superimposing to the absorption peaks of Fig. 4(c) with rectangular patches centered at Re(2𝜋𝑐/𝜔̃) with widths 

2Im(2𝜋𝑐/𝜔̃). In particular, the real parts shown with dashed vertical lines exactly match the maxima of the absorption 

spectrum for the three values of 𝑘𝑥.  

Now, let us move to higher frequencies with the two high sharp absorption peaks (𝐴 ≈ 50%) observed for 𝑘𝑥 =

0.05𝜋/𝑑 and shown in the zoom Fig. 4(c). Again, when superimposing patches corresponding to 𝜔̃𝐷1 and 𝜔̃𝐶1, it 

appears again that these high peaks are attributable to the excitation of the QNMs D1 at 495 nm and C1 at 497 nm 

(see the zoom in the left panel in Fig. 5). Note that in the inset of Fig. 4(c), the central peak Re(2𝜋𝑐/𝜔̃𝐷1) is almost 

superimposed with the Rayleigh anomaly corresponding to the first diffraction order. This is consistent with the fact that 

band D meets the first folded light line for 𝑘𝑥 ≳ 0.05𝜋/𝑑 as it can be clearly seen on the zoom of the dispersion 

relation in Fig. 5. Theses QNMs cannot be excited at normal incidence for symmetry arguments and they cannot be 

excited either for large 𝑘𝑥 values since branches C and D both reach the folded light line for 𝑘𝑥 ≈ 0.05𝜋/𝑑.  

In conclusion, all the resonant features of the absorption spectrum are understood from the dispersion relation. 

Note that, to recover all the features of the transmission spectra (not only the peaks, but also the zeros of 𝑇0 on the 

blue side of every peak), one needs to compute many QNMs [Gra18]. 

3.2.3 Numerical results for one selected eigenmode 

The grating benchmark concerns the numerical computation of a single QNM (labelled B3 in Fig. 5) responsible for the 

absorption peak centered at 650 nm in Fig. 4(c). Two numerical values are benchmarked: The complex eigenfrequency 

𝜔̃𝐵3𝑎/(2𝜋𝑐) and the normalized eigenfield at one point 𝐻̃𝑧,𝐵3(0, ℎ), the origin being chosen at the center of the 

rod and ℎ being the height of the rod. The results are shown in Table 3 and Fig. 6 for seven different numerical codes. 

The real and imaginary parts of the normalized eigenfield 𝑎𝐻̃𝑧,𝐵3 are shown in Fig. 6(e-f). The refinement parameter 

for each method is indicated in the right column. All methods show remarkable agreement, with at least four significant 

digits for the eigenvalue and three for the eigenfield.  

Method 𝜔̃𝑎/(2𝜋𝑐) 𝐻̃𝑧 Refinement 



parameter 

FMM1  0.74303−0.012662𝑖 101.358+761.312𝑖 𝑁 = 100 

FMM2  0.7430756−0.0126𝑖 101.91+761.305𝑖 𝑁 = 50 

FMM3  0.74307571−0.012660590𝑖 101.867+761.313𝑖 Extrapolationa 

FEM1 0.74307569−0.012660593𝑖 101.887+761.304𝑖 𝑝 = 6, 𝑀 = 1256 b 

FEM2  0.74305−0.0126644𝑖 101.99+761.93𝑖 𝑀 = 123k  

FEM3  0.74304−0.0126608𝑖 101.46+761.64𝑖 𝑀 = 67k  

FEM4  0.74310−0.0126553𝑖 101.89+760.79𝑖 𝑀 = 281k  

Table 3.  Most accurate numerical values obtained for the complex eigenfrequency 𝜔̃𝐵3𝑎/(2𝜋𝑐) and the normalized 

magnetic field  𝐻̃𝑧,𝐵3(0, ℎ)𝑎. The refinement parameter for each method is indicated in the upper right column. 

a The convergence curve is calculated up to 𝑁 = 201 and extrapolated, see Section 4.4. 

b Refinement by the element polynomial degree 𝑝, see Section 4.3.  

 

As previously, we have represented in Fig. 6 the relative difference between the data and a reference. For the 

reference, we chose the mean value of the results given by FMM2,3, and FEM1. These methods are the ones that 

have the largest number of common digits, see Table 3. The conclusions regarding convergence are very similar to 

those made for the first benchmark. However, the convergence speed appears to depend significantly on the 

implementation, with some implementations of the FMM converging slower than the faster implementations of the FEM, 

see the convergence-rate results of Figs. 6(a)-(d). Among the FEM codes, FEM2-4 have the same refinement 

parameter, the number 𝑀 of mesh elements, whereas for the FEM1, the refinement parameters are the element 

polynomial orders 𝑝 (up to 𝑝 = 6) and of the mesh refinement around the corners that is predefined with a refinement 

length ℎ proportional to 10−𝑝/2. 

 

Figure 6 – Convergence performance obtained for the QNM labelled B3 in Fig. 5 (second lowest eigenfrequency 

for 𝑘𝑥 = 0.4𝜋/𝑎). Data are displayed as a function of the CPU time. We present the relative difference between 

every calculation and a reference value obtained by averaging the results of FMM2, FMM3, and FEM1. (a) and (b) 

Relative difference for real and imaginary parts of 𝜔̃𝐵3𝑎/(2𝜋𝑐). (c) and (d) Relative difference for real and 



imaginary parts of 𝐻̃𝑧,𝐵3(0,h). The color convention is the same as in Fig. 3: Black squares: FMM1. Magenta x-

marks: FMM2. Green dots: FMM3. Red triangles: FEM1. Blue circles: FEM2. Brown pluses: FEM3. Cyan diamonds: 

FEM4. (e) and (f) Maps of the normalized QNM 𝐻𝑧,𝐵3. 

3.3 Example 3: Nanocube antenna 

The third benchmark is related to a 3D geometry, a nanocube antenna that belongs to the family of nanoresonators 

relying on slow gap-plasmons [Lal18a]. This geometry has recently attracted much attention for various applications 

and fundamental studies, from biochemical sensors, photodetectors, metamaterials, non-linear switches or light 

sources [Mor12,Aks14], to the test of spatial dispersion (non-locality) in metals [Cir12]. The geometry is directly inspired 

by the experimental work in [Aks14], see Fig. 7(a). A 8-nm-thick polymer spacer is sandwiched between two metals, a 

silver nanocube and a gold substrate. We use a bi-pole Drude model for silver and a quadruple-pole Drude-Lorentz 

model for gold, to accurately take into account the material dispersion, see details in the caption of Fig. 7(a). 

 

Figure 7. Ag nanocube antenna of size 65 nm deposited on a 8-nm-thick polymer film (refractive index 1.5) coated 

on an Au substrate. (a) Silver is modeled as a Drude metal, with 𝜆𝑝 = 2𝜋𝑐 𝜔𝑝⁄ = 138 nm and 𝛾 = 0.0023𝜔𝑝. 

For gold, we use a Drude-Lorentz model, with 𝜔1 = 1.317 × 1016 rad/s,  𝛾1 = 6.216 × 1013 rad/s, 𝜔2 =

4.572 × 1015 rad/s, and 𝛾2 = 1.332 × 1015 rad/s. The cube corners are rounded with a 4-nm radius. The left 

panel shows the fine tetrahedral mesh used with FEM1, see Section 4.3. (b) The red point, located in the median 

plane of the polymer (𝑧 = 4 nm), shows the point 𝒓0 where the mode volume is computed. (c) Electric field 

distribution of the fundamental magnetic-dipolar mode that resonates in the red. Owing to the symmetry, another 

QNM exists at the same complex eigenfrequency with a field distribution rotated by 90° around the 𝑧-axis. The 

distributions are computed with the FD method for a 1-nm discretization-grid. 

The nanocube geometry offers deep-subwavelength field confinements and enhancements. In the visible spectral 

range, the response is governed by two dominant QNMs, the fundamental magnetic-dipole-like mode in the red 

spectrum and an electric-dipole mode in the green spectrum. Only the magnetic mode will be considered hereafter. Its 

resonance mechanism can be understood from a Fabry-Perot model with a slow gap-plasmon bouncing back and forth 

between gap extremities, and its resonance linewidth results from several contributions, photon radiation in air, surface-



plasmon launching around the nanocube, and metal absorption mainly around the nanogap in the metal. The respective 

impacts of each contribution on the QNM lifetime have been analyzed comprehensively in [Fag15]. 

We focus on two quantities related to the fundamental mode, the complex resonance wavelength 𝜆̃ and the 

complex mode volume 𝑉̃ of the magnetic-dipole-like mode for the benchmark. Figure 7b shows the precise position 

𝒓0 of the 𝑧-polarized dipole source located in the median plane of the polymer film, which is used for the computation 

of 𝑉̃ . Figure 7(c) displays the electric-field distribution of the magnetic-dipole mode. The fundamental mode is 

degenerate, meaning that there are two fields with the same eigenvalue due to the C4v symmetry of the configuration. 

Any linear combinations of these two modes are again eigenmodes, which renders the selected cases particularly 

interesting. Only one mode is shown in the Figure, the other mode being obtained by a 90° rotation around the 𝑧-axis. 

 

Table 4 summarizes the main results obtained for 𝜆̃ and 𝑉̃ by the five partners. The numbers correspond to the 

most accurate results obtained for “sampling grids” with the highest resolution. Concerning the resonance wavelength 

and setting aside the results obtained with FD-TU, an excellent agreement is obtained between the two other methods. 

Probably due to the rounded corners, the FD scheme suffers from inaccuracies compared to the two FEMs that provide 

nearly identical results. This explains the 15 nm shift-difference for Re(𝜆̃) between the second column and others. 

This shift is rather expected. Because of the tiny modal volume (𝑅𝑒(𝑉̃) ≈ 4 × 10−5𝜇𝑚3), it is inevitable that 

numerical inaccuracies such as those related to sampling result in large shifts of the resonance frequency (the 

nanocube is an excellent sensor in the real world, and thus a sensitive testcase for numerics). The five methods rely 

on the normalization of Eq. (6). They provide very similar mode volumes. Overall, we conclude that a good agreement 

is achieved; the peak deviations being < 2% for Re 𝜆̃,  Im 𝜆̃ and Re 𝑉̃, and 2.4% for Im 𝑉̃. 

We conclude that, even for a complicated 3D geometries made of two different metals, a very good accuracy (a 

few percent for 𝜆̃ ) which is often largely enough for analyzing experimental data can be reached with modest 

computational efforts (CPU time < 1 min), and this by all methods. We conclude that 3D QNM solvers are available on 

the shelves. 

 

Methods 𝜆̃ [𝜇𝑚] 𝑉̃ [𝜇𝑚3] × 104 Refinement type 

FD 0.6810+0.0159𝑖 0.392+0.030𝑖 1 nm mesh size 

FEM1 0.66585+0.015574𝑖 0.38449+0.02926𝑖 𝑝 = 4, 𝑀 = 40k 

FEM2 0.66559+0.015362𝑖 0.386+0.0283𝑖 𝑝 = 1, 𝑀 = 276k 

FEM3 0.66517+0.015468𝑖 0.384+0.0287𝑖 𝑝 = 2, 𝑀 = 220k 

FEM4 0.66501+0.015395𝑖 - 𝑝 = 2, 𝑀 = 51k 

Table 4. Nanocube with rounded corners. 

 

Three partners have additionally performed the same computations by considering a perfectly cubic nanocube 

with sharp corners and edges. The results computed for the highest numerical resolution or extrapolated are show in 

Table 5. The mean value is λ̃ = 0.6996+0.143𝑖 with a standard deviation 0.0034+0.0004𝑖. A slightly larger deviation 

is obtained for 𝑉̃. Again the agreement is quantitative between all the methods. 

 

Methods 𝜆̃ [𝜇𝑚] 𝑉̃ [𝜇𝑚3] × 10−4 Refinement type 

FMM1 0.6974+0.01412𝑖 0.40987+0.02515𝑖 𝑁 = 55 

FMM3 0.69791+0.01412𝑖 0.41+0.025𝑖 𝑁 = 60+extrapol. 



FD 0.7053+0.0148𝑖 0.4217+0.0260𝑖 1 nm mesh size 

Table 5. Nanocube with 90° corners. 

 

The benchmark geometry initially proposed was a 3D nanocube with rounded corners, see Fig. 7(a). For simplicity, 

we have also considered a nanocylinder geometry with exactly the same materials, the cube being just replaced by a 

silver cylinder with a 70-nm diameter and 65-nm height. For the mode volume, a 𝑧-polarized electric dipole placed at 

a distance 25√2 nm from the cylinder axis is considered. With the axisymmetry, the implementation is easier and 

more methods have been tested. In addition the computational results are more accurate than for the cube case, as 

shown by the data in Table 6. 

  

Methods 𝜆̃ [𝜇𝑚] 𝑉̃ [𝜇𝑚3] × 10−4  Refinement type 

FMM1 0.66369+0.01480𝑖 0. 645+0.0427𝑖 𝑁 = 50 

FMM3 0.663557+0.0146866𝑖 0.63898+0.04616𝑖 𝑁 = 385 + extrapol. 

FEM1 0.66356+0.014687𝑖 0.6420+0.045631𝑖 𝑝 = 4, 𝑀 = 1086 

FEM3 0.6644+0.01452𝑖 0.58+0.0400𝑖 𝑝 = 2, 𝑀 = 5k 

FD 0.6753+0.0150𝑖 0.523+0.040𝑖 1 nm mesh size 

Table 6. 2D axisymmetry cylinder nanoantenna. 

4. Method implementation and discussion 

This Section provides details that each participant judge important for the readership. It does not include a full 

presentation of the methods, which have been published elsewhere. However we include all specific modifications 

made in order to improve the performance. 

The FMM (also known as the RCWA) [Moh95,Lal96,Li98] relies on an analytical integration into one (longitudinal) 

direction of the space and on Fourier series expansions in the two (transversal) others. In the direction of integration, 

the system is sliced into several layers that have translational symmetry. Maxwell’s equations are transformed in each 

layer into an equivalent algebraic eigenvalue problem, whose eigenmodes propagate or decay within the layers. By 

using these eigenmodes as a basis for the expansion of an arbitrary field, no discretization is needed in the direction 

of translational symmetry, making the FMM rather efficient for a restricted numbers of layers. Due to the use of Fourier 

expansions in the transversal directions, the FMM is restricted to periodic geometries. By incorporating absorbing 

boundaries or PMLs in the transverse directions, the FMM can be also used for non-periodic structures as well [Sil01]. 

It is known as the aFMM (“a” for “aperiodic”). The accuracy of the FMM or the aFMM increases with the truncation rank 

𝑁  of the Fourier series, corresponding to a total number of retained Fourier harmonics of (2𝑁 + 1 ) in 2D or 

(2𝑁 + 1 )2 in 3D. 

The FEM and FD methods are also well established methods that are used in many fields. The interested reader 

may refer to the textbook [Jin02] for a review in electromagnetism. Both methods rely on a full discretization of space 

and the accuracy increases with the number of unknowns that is proportional to the number 𝑀 of mesh elements and 

increases with the order 𝑝 of the FE scheme used.   

4.1 LP2N, Bordeaux 

Two freeware are used at LP2N to compute the QNMs of the three benchmarked geometries on a desktop PC with 32 



GB RAM and an Intel(R) Xeon(TM) CPU X5660 @ 2.80GHz processor. 

The first freeware, QNMEig, has been launched in 2018. It includes a QNM-solver [Yan18] to compute and 

normalize QNMs and PML-modes and, in a second step, to reconstruct the field scattered by the micro and 

nanoresonators in the QNM basis. In general, accurate reconstructions are obtained with tens or hundreds of QNMs 

retained in the expansion, depending of the geometry, see details in [Yan18]. 

QNMEig relies on the eigenfrequency solver of the electromagnetic radio frequency (RF)/optics module of 

COMSOL Multiphysics [Comsol]. The COMSOL solver computes a large number (set by the user) of QNMs only for 

non-dispersive media and does not normalize the field. For dispersive media, it approximately transforms nonlinear 

eigenvalue problems to linear ones by performing second-order Taylor expansion of complex material parameters with 

respect to some frequency set by user, the so-called linearization point. Thus, such approximate approach cannot 

accurately find modes away from the linearization point. 

QNMEig is in fact an extension of the COMSOL solver that accurately handles dispersive media by coupling the 

build-in (RF)/optics module and the weak-form module, so that it can be very easily operated by COMSOL users. It 

relies on the auxiliary-field formulation, see Section 2.4 and [Yan18]. QNMEig normalize the modes by computing the 

volume integral of Eq. (6). It has been used for the three benchmarks. The CPU-time for solving 3D problems such as 

the present nanocube antenna of Example 3 or a photonic crystal cavity [Cog18], is typically  2 min with a standard 

desktop computer, see more details in [Yan18]. Two minutes are in general enough to get accurate results for the QNM 

field and eigenvalue, to challenge experimental data. QNMEig and the companion MATLAB Tooboxes are available at 

the group webpage [http]. The package includes the four COMSOL model sheets of the benchmarked geometries, the 

plasmonic crystal, the grating and the nanocube and nanocylinder antennas, and also one tutorial example, a metal 

sphere in air, for which a document, presenting step by step details on how starting a QNMEig simulation, is offered 

from the perspective of new users. 

The second freeware, QNMPole, is based on the pole-search algorithm described in [Bai13]. It calculates and 

normalizes the modes of plasmonic or photonic micro/nanoresonators by successive iterations, starting from an initial 

guess value. The pole-search approach is completely general and can be used with arbitrary geometries and materials, 

and with a large variety of frequency-domain Maxwell’s equations solvers. It has been tested for instance with FMM1, 

FMM3, FMM2 and FEM3, and could have been used with the other methods as well. For researchers that use COMSOL 

Multiphysics as a standard Maxwell equation solver operating at real frequencies (electromagnetic RF and optics 

modules), QNMPole includes a few MATLAB programs that operate under MATLAB-COMSOL livelink and allow the 

user to compute and normalize QNMs, and customize their specific demands with MATLAB programming. The use of 

QNMPole is recommended if one just needs to compute a few modes, or if the permittivity of some constitutive materials 

cannot be cast into a N-pole Lorentz-Drude model (required for QNMEig), or if the material is not reciprocal. 

When QNMPole and QNMEig are both used with the same mesh, they provide exactly the same eigenfrequencies 

and normalized fields. The coincidence has been checked for each benchmark, and for many other examples. This is 

why only one set of data is shown for the LP2N results. In addition to the QNM-solver, QNMPole and QNMEig also 

include pedagogical MATLAB toolboxes to reconstruct the scattered field in the QNM bases, to calculate the 

absorption/extinction cross-sections or the Purcell factor. Finally note the QNMs computed for the grating case are 

eigenvectors with a complex 𝜔̃ for a fixed in-plane real wavevector 𝑘𝑥, implying that the QNMs are the pole that 

would be revealed in experiments by varying the frequency of the incident beam, while maintaining for each frequency 

the product 𝜔 sin𝜃  constant. This implies that the angle of incidence 𝜃  be tuned between every spectrum 

measurement. In reality, however, 𝜃 is usually fixed during the acquisition of the spectrum data. Thus, considering the 



exact experimental protocol, further investigations into QNM computation and normalization for fixed 𝜃  shall be 

investigated [Gra18].  

4.2 TU-Delft 

The reduced-order modal solver FD used to determine QNMs in arbitrarily-shaped dispersive 3D structures on open 

domains is based on a Lanczos-type reduction method that exploits a particular symmetry property of Maxwell's 

equations. The approach consists in casting the Maxwell equations and the second-order dispersive relations into first-

order form using auxiliary field variables and discretize the resulting system in space. Outgoing wave propagation is 

taken into account via a particular realization of the perfectly matched layer technique in which complex spatial step 

sizes match the layer PML to the computational domain on a subset of the complex-frequency plane [Dru16,Dru13]. 

The order of the resulting discretized first-order system is typically very large (millions of unknowns in 3D) so that a 

direct computation of the QNMs is usually not feasible. Fortunately, the system is symmetric with respect to the discrete 

counterpart of the bilinear form of Eq. (6) [Lal18] and allows us to efficiently compute the QNMs via a three-term 

Lanczos-type recursion relation. Only three vectors defined on the total computational domain need to fit into the 

computational memory due to this three-term relation. Finally, the scattered field of the resonator can be efficiently 

reconstructed as well without any significant additional computational costs [Zi16a,Zi16b]. 

The FD solver uses finite-differences to come to a symmetrizable dynamic system which depends nonlinearly on 

the frequency because of either the dispersive PML used or the dispersion of the material. We stress that FD solver 

can be used for other types of discretizations that are symmetrizable. In practice, we use a linearized PML that is 

matched to the frequencies of QNMs of interest, to get rid of the nonlinearity introduced by the PML. Using auxiliary 

fields, we then obtain a linear shifted system that is symmetric in the bilinear form. The QNMs can then efficiently be 

computed as the Lanzos-Ritz pairs of this system using short term recurrence relations [Zi16a,Zi16b]. The current 

implementation of the FD solver relies on a MATLAB prototype implementation with a simple gridding routine for the 

geometries. 

For the 3D nanoantenna geometry, we use second-order finite-differences and consider seven different 

discretization meshes to study the convergence performance of the FD solver for the geometry with sharp corners and 

edges with a MATLAB 2016 implementation run on 4 of the 14 cores of a single Intel Xeon E5-2695 v3 CPU at 2.30GHz. 

The accuracy of the computational results increases quadratically as the discretization step decreases. The 

computation time behaves linear with the number of degrees of freedom, which themselves increase cubically with the 

discretization step. Thus, the error expressed in computation time approximately scales as O(time-2/3). 

Currently the FD method relies on a simple gridding algorithm with straightforward medium averaging to obtain the 

finite-difference system. Compared to the FEMs, meshing of complex geometries with round corners and edges with 

finite-difference methods is challenging. We experienced some difficulties while gridding the rounded corners of the 

nanocube benchmark and therefore only computed the QNMs for the two finest meshes, and our values deviate by 

approximately 2% from the FEM results in Table 6. Although the error made remains reasonably low for a 

nanoresonator that is ultrasensitive to fabrication or numerical imperfections, this motivates us to further develop the 

solver by using more advanced homogenization and averaging schemes to better capture the geometry in the future.  

Due to the Lanczos algorithm, 99% of the wall time of the FD-TU method is spent on sparse matrix-vector and 

vector-vector products. This shows the potential of the method for GPU implementations to obtain faster runtimes. 

Concerning memory requirements, our algorithm needs to store three double precision complex vectors of the size of 

the number of degrees of freedom. For a 2-nm discretization, this means that 579 MB of storage is required. In the 



current implementation the runtime of our algorithm is roughly 1/6000 s/#core/#degree-of-freedom as the runtime 

scales close to linear with the number of degrees of freedom.  

4.3 Zuse Institute Berlin 

FEM1 relies on the FEM software package JCMsuite, which is developed by JCMwave at ZIB and which is also 

commercially available. JCMsuite includes solvers for time-harmonic Maxwell eigenvalue [Zsc06] and scattering 

[Pom07] problems, as well as for further problem classes. The implementation includes higher-order finite elements, 

with ℎ- and 𝑝-adaptivity, mesh generators for tetrahedral, prismatoidal and mixed meshes, and adaptive PMLs, which 

allows to handle also resonance problems with structured exterior domains [Ma13].  

For benchmarks 1 and 2, we have used the resonance mode solver included in JCMsuite which solves the nonlinear 

eigenvalue problem using an auxiliary field approach. For computing QNMs with increasing resolution, we use a 

MATLAB script which defines the physical and numerical project parameters, invokes the solver for QNM computation 

and for post-processing. In a loop, numerical accuracy is increased stepwise by increasing the polynomial order 𝑝 of 

the used finite elements, 𝑝 = 1 …6, and by simultaneously increasing the mesh resolution at the metal corners. The 

initial guesses for the eigenfrequency is chosen as 
𝜔𝑎

2𝜋𝑐
= 0.231 (Benchmark 1) and 

𝜔𝑎

2𝜋𝑐
= (0.74−0.013𝑖) (Benchmark 

2). In each step of the loop, the guess is updated with the prior result. Computation of the normalized field values is 

performed by computing solutions with Bloch vectors 𝑘𝑥 and 𝑘−𝑥 and applying Eq. (7). Figure 8(a)-(b) shows the 

relative error of the real and imaginary parts of 𝜔̃ and 𝑉̃. Here, the relative error δA of quantity A is defined as 

deviation from a quasi-exact solution AQE , i.e., δA = |𝐴 − AQE|/|AQE| . As quasi-exact solution for the 

eigenfrequency and normalized field, we use results obtained with the highest numerical accuracy setting, 𝑝 = 6.The 

relative errors are displayed as function of number of unknowns of the discrete problem which increases with increased 

finite element degree 𝑝 and with increased mesh resolution. 

For benchmark 3, we have used a recently developed contour integral method based on Riesz projections [Zsc18]. 

We solve scattering problems along a complex contour around the eigenfrequency of interest instead of solving the 

nonlinear eigenproblem directly. The resulting Riesz projection is normalized within a post-process. 

We increase the numerical resolution by increasing the finite element degree up to p=5. Figures 8(c)-(d) show the 

relative error (see above) of 𝜔̃ and 𝑉̃ for the nanocube and nanocylinder. The relative errors are plotted over the 

number of unknowns for the scattering solver. We choose three integration points for the contour integration, i.e., three 

scattering problems are solved for a given finite element degree 𝑝. The quasi-exact solution is the numerical result 

obtained with 𝑝 = 5. The unstructured mesh for the nanocube is shown in Fig. 7(a), it contains 40522 tetrahedrons 

with a minimal edge length of about 0.06 nm and a maximal edge length of about 36 nm. The fine meshing around the 

rounded corners and edges of the nanocube ensures that the geometry model error is sufficiently small. We have 

checked that further refinement of the corners changes the numerical results at 𝑝 = 4 (most accurate results in the 

plots in Fig. 8) only by amounts smaller than the obtained accuracy. E.g., the impact of further refining the mesh on 

Re (𝜔̃) is below 10−5. At a numerical resolution with 𝑝 = 4 we obtain a resonance wavelength of 𝜆̃ = 665.8529+

15.57386𝑖 nm± 0.0184 + 0.00092𝑖 nm. At a numerical resolution with 𝑝 = 5  we obtain a resonance 

wavelength of 𝜆̃ = 665.8510+ 15.57396𝑖 nm.  

For the nanocylinder, we consider a two-dimensional cross section of a rotationally symmetric geometry. The 

unstructured mesh consists of 1086 triangles. At a numerical resolution with 𝑝 = 4 we obtain a resonance wavelength 

of 𝜆̃ = 663.5622+ 14.68720𝑖 nm± 0.0207+ 0.00197𝑖 nm. At a numerical resolution with 𝑝 = 5 we obtain 



a resonance wavelength of 𝜆̃ = 663.5601+ 14.68740𝑖 nm. 

 

Fig. 8. Convergence of FEM1 results: (a-d) Relative error of the real and imaginary parts of the eigenfrequency 

𝜔̃, and of the field values, 𝐻̃𝑧 and 𝑉̃, as a function of the number of unknowns for benchmark case 1 (a), case 2 

(b), case 3 / nanocube (c), case 3 / nanocylinder (d). 

4.4 LCF, Palaiseau 

Two different in-house software implemented with MATLAB have been used to solve the three benchmarks. The first 

one uses the FMM [Moh95] and its aperiodic extension [Sil01,Hug05], and the second one the FEM [Jin14]. 

4.4.1. Fourier Modal Method FMM3 - LCF 

The FMM3 used for benchmarks 1 and 2 is a FMM used in transverse magnetic polarization [Moh95,Lal96]. Our 

implementation includes the S-matrix algorithm [Li96], an accurate computation of the field with Fourier-series 

expansions [Lal98], and adaptative spatial resolution around air/metal interfaces [Gra99,Val02]. Since the nanocube 

resonator of benchmark 3 is not a periodic structure, we use for the computation the aperiodic FMM (a-FMM) [Sil01] 

implemented with complex coordinate transforms [Hug05]. For the cylindrical version of benchmark 3, we use a 

particular implementation of the a-FMM for body-of-revolution objects [Big14].  

In all cases, we compute the QNM eigenfrequencies with the pole-search approach. For the convergence 

calculation, the guess value for the iterative pole with 𝑁 Fourier harmonics is the prior result of the calculation with 

𝑁 − 1 Fourier harmonics. The initial guess value (first calculation with the smallest value of 𝑁) is chosen as the real 

part of the complex eigenfrequency, rounded to the nearest number with two significant digits, e.g. 𝜔𝑎/(2𝜋𝑐) =

0.23 for benchmark 1. After each iteration, the QNM field is computed as the field scattered by a dipole source exciting 

the resonator at the complex frequency of the pole [Bai13]. 

The following describes some technical issues that are specific to each benchmark. We finally show full 

convergence curves for the calculations of benchmarks 2 and 3. We also describe the method used to determine the 



most accurate results and the corresponding relative error. 

For the plasmonic crystral, we have slightly reformulated the FMM in order to apply periodic boundary conditions 

in the 𝑦 direction instead of the usual outgoing waves conditions, the analytical integration with the S-matrix method 

being performed along the 𝑦-axis with a fixed wavevector along 𝑥, 𝑘𝑥 = 0.5𝜋/𝑎. We calculate the QNM field by 

inserting a magnetic dipole source in the center of the metallic square. Then we deduce from the symmetries of the 

system the field of the counter-propagating QNM with −𝑘𝑥. Finally, the field is normalized by calculating the surface 

integral in Eq. (7) over the surface of one unit cell. 

For the grating example, the analytical integration of the FMM is performed along the 𝑦-axis with a fixed wavevector 

along 𝑥, 𝑘𝑥 = 0.2𝜋/𝑎 [Cao02,Lec07]. The rest of the computation is the same as for Benchmark 1. In principle, the 

use of PMLs in the 𝑦 direction is not necessary since outgoing boundary conditions are automatically satisfied with 

the FMM. However, we are using PMLs for normalization purposes, according to Eq. (7). 

For the third example, the QNMs are computed by inserting a magnetic dipole source (linearly polarized along the 

𝑥 -direction) below the metallic patch in the center of the dielectric layer. After computing the pole, we obtain the QNM 

field by computing the field scattered by the dipole source at a complex wavelength slightly shifted from the pole value. 

Unlike benchmarks 1 and 2, the QNMs are then normalized with the QNMPole method [Bai13]. 

 

 

Fig. 9. Estimation of the relative error for Benchmarks 2 (a)-(b) and 3 (c)-(d). (a) Convergence of the normalized 

field modulus as a function of 1/𝑁, 2𝑁 + 1 being the total number of Fourier harmonics used in the FMM. (b) 

Relative error on the field modulus as a function of 𝑁. The horizontal dashed line marks an error of 2x10−7. (c) 

Convergence of the modulus of the mode volume for Benchmark 3 as a function of 1/𝑁, (2𝑁 + 1)2 being the 

total number of Fourier harmonics used in the aFMM. (d) Relative error on the volume modulus as a function of 

𝑁. The horizontal dashed line marks an error of 10−2. In (a) and (c), the red dashed lines represent the extrapolated 

values for 1/𝑁 → 0  used to compute the relative errors in (b) and (d). The insets display a zoom of the 

convergence curve inside the rectangular box. The vertical scales in the insets in (a) and (b) span over 700 and 

1.610−24, respectively. 



To estimate the relative error of our numerical results, we follow a strict procedure, illustrated in Fig. 9 for two 

examples: the normalized QNM field for Benchmark 2, Figs. 9(a)-(b), and the mode volume for Benchmark 3 (nanocube 

with 90° corners), see Figs. 9(c)-(d). Figure 9 shows the convergence of a calculated physical quantity (𝜔̃, 𝑉̃…) as a 

function of the number of Fourier harmonics 𝑁 used with the FMM or the aFMM. Then, we extrapolate the value of 

this physical quantity for 1/𝑁 → 0. The extrapolation is done by finding a polynomial of degree 0 that best fits the 

convergence curve in a least-squares sense, see the red dashed lines in Figs. 9(a) and (c). The fit is performed with 

the numerical data comprised between the smallest 1/𝑁 value and a larger value (1/𝑁 = 0.02 in (a) and 0.03 in (c)) 

for which convergence is assumed to be reached. As shown in the insets of Figs. 11(a) and (c), convergence is reached 

with a numerical noise. The dashed lines in Fig. 9(b) and (d) highlights that, for 𝑁 ≥ 50, a relative error as small as 

2x10-7 is reached for the 2D structure of Benchmark 2 and a relative error of 10−2 is reached for the 3D structure of 

Benchmark 3. 

4.4.2. Finite Element Method FEM2 - LCF 

FEM2 is based on edge Whitney elements of order 2 with triangular and tretrahedral adaptative meshes. The QNMs 

of all three benchmarks have been calculated with a combination of the auxiliary-field and polynomial formulations 

presented in Section 2.4. 

To unveil the implementation, let us consider a single-pole Lorentz model. First, by introducing the current density 

𝐉 = 𝑖𝜔𝜀0𝜀∞
𝜔𝑝

2

𝜔2−𝜔0
2+𝑖𝜔𝛾

𝐄 as an auxiliary field, the propagation equation 𝛻 × 𝜇−1𝛻 × 𝐄 = 𝜔2𝜀(𝜔)𝐄  can be 

recast into a quadratic eigenproblem, 

𝜔2 [
𝜀0ε∞ 0

0 1
] [

𝐄
𝐉
] + ω [

0 𝑖
−𝑖ε0ε∞𝜔𝑝

2 𝑖𝛾] [
𝐄
𝐉
] + [

−𝛻 × 𝜇−1𝛻 × 0

0 −𝜔0
2] [

𝐄
𝐉
] = 0.  (11) 

The latter is solved by introducing two extra fields, 𝐄1 = ω𝐄 and 𝐉1 = ω𝐉, see Section 2.4. Note that the fields 

𝐄 and 𝐄1 are defined over the whole computational domain, whereas the field 𝐉 and 𝐉1 are only defined over the 

subdomains that contains the Lorentz material. The coupled system of Eq. (11) is then converted into its corresponding 

continuous Galerkin weak-form formulation with second order edge elements. Note that this formulation can also be 

used for 2D geometries in TM polarization (benchmarks 1 and 2), with 𝐄 = (𝐸𝑥 , 𝐸𝑦, 0). The associated matrix 

equation takes the following form 

 

[
 
 
 
 
0 0 𝐈 0
0 0 0 𝐈

𝐊 0 0 −[𝐌(𝑖)]𝐸
𝐽

0 [𝐌(𝜔0
2)]𝐽

𝐽
[𝐌(𝑖ε0ε∞𝜔𝑝

2)]
𝐽

𝐸
−[𝐌(𝑖𝛾)]𝐽

𝐽

]
 
 
 
 

[

𝐄
𝐉
𝐄1

𝐉1

] = 𝜔

[
 
 
 
𝐈 0 0 0
0 𝐈 0 0
0 0 [𝐌(ε0𝜀∞)]𝐸

𝐸 0

0 0 0 [𝐌(1)]𝐽
𝐽
]
 
 
 

[

𝐄
𝐉
𝐄1

𝐉1

], (12) 

where the elements of the matrices 𝐌(α)  and 𝐊  are given by 𝑀𝑖𝑗(𝛼) = ∫ 𝑤𝑖(𝐫)Ω
𝛼 𝑤𝑗(𝐫)d

3𝐫 and 𝐾𝑖𝑗 =

∫ 𝛻 × 𝑤𝑖(𝐫)Ω
𝜇−1𝛻 × 𝑤𝑗(𝐫)d

3𝐫. The test functions 𝑤𝑖(𝐫) are the edge basis functions. The notation [𝐌(𝛼)]𝐵
𝐴 

specifies the size of the matrix and the subdomain over which it is defined. [𝐌(𝛼)]𝐸
𝐸 is a square matrix defined over 

the whole computational domain while [𝐌(𝛼)]𝐽
𝐽

 is defined over the Lorentz-material subdomains. The matrices 



[𝐌(𝛼)]𝐸
𝐽

 and [𝐌(𝛼)]𝐽
𝐸   are rectangular matrices that relates one field defined over the whole computational domain 

to another field defined over the subdomains. Note that the matrix in the right-hand side of Eq. (12) is block-diagonal. 

It is thus well conditioned and the CPU time for its diagonalization can be reduced compared to other possible 

configurations of the final linear algebraic system. 

4.5 Nankai Univ. 

The FMM1 is implemented with an in-house Matlab software [Liu10] and run on a workstation computer with 32GB 

RAM and two Intel(R) Xeon(R) X5450 CPUs of 3.00GHz and 2.99GHz. It incorporates correct Fourier factorization 

rules to improve the convergence [Lal96,Gra96,Li96a,Li97,Li03], real-to-Fourier space transform to avoid the Gibbs 

oscillation of discontinuous field components [Lal98], adaptive spatial resolution [Gra99] to improve the convergence, 

mirror symmetries to save computational memory [Bai05], and the scattering-matrix algorithm [Pop14] to ensure the 

numerical stability. For the nanocylinder example, the technique of matched coordinates [Wei09] is adopted and further 

extended to aperiodic problems to model the curved boundaries of the nanocylinder along with PMLs. 

For benchmarks 1 and 2, the QNMs are solved as waveguide Bloch modes by treating the structures as periodic 

waveguides along the 𝑥-direction [Lec07]. The computation consists in computing the propagation constant 𝑘𝑥,𝑚(𝜔) 

for a fixed frequency 𝜔 of the 𝑚th waveguide Bloch mode, and then to iteratively solve a transcendental equation, 

𝑓(𝜔) = 𝑘𝑥,𝑚(𝜔) − 𝑘𝑥 = 0, whose solution is the eigenfrequency 𝜔 = 𝜔̃𝑚 of the QNM. Note that this equation is 

essentially related to the eigenvalue formulation of Eq. (9) or (10). But differently, for the latter 𝜔̃𝑚 is solved directly 

for a given 𝑘𝑥 , while for the former 𝑘𝑥,𝑚(𝜔)  is returned with the FBMM solver for a given 𝜔 . To solve the 

transcendental equation, we adopt a simple algorithm based on an iteration process with a linear interpolation of 𝑓(𝜔) 

[Ort00,Li14], which converges in less than 4 (resp. 6) iterations for benchmark 1 (resp. 2). The two initial guessed 

values to start the iteration are 
𝜔𝑎

2𝜋𝑐
 = 0.23 and 0.23−10−6𝑖 for benchmark 1, and 𝜆 = 0.65 μm and 0.65+10−6𝑖 μm 

for benchmark 2. 

For the benchmark 3, the QNMs are computed with the pole-search approach (see Section 2.4). The driving source 

is set to be a 𝑧-polarized electric planar source at the central 𝑥-𝑦 plane of the gap (composed of 4 symmetrically-

shifted Gaussian sources with a 12nm standard deviation). The poled function is 𝑓(𝜆) = 𝐻𝑥
−1(𝜆) at the gap center. 

The two initial guessed values for the pole are 𝜆 = 0.65 μm and 0.65+10−6𝑖 μm and convergence is obtained in 

typically six iterations. 

The convergence performance of FMM1 is shown in Fig. 10. Like in Section 4.3, the relative error 𝛿 is defined 

as 𝛿(𝑁) = |𝐴(𝑁) − 𝐴QE|/|𝐴QE| , where 𝐴QE  is the numerical value obtained for the highest truncated rank 

𝑁𝑚𝑎𝑥. The relative error 𝛿QE of 𝐴QE can be approximately estimated as 𝛿(𝑁𝑚𝑎𝑥 − 5). 𝛿QE is seen to be close 

to or below 1%. For quantities with much smaller imaginary parts than their real parts, such as 𝜔̃ and 𝑉̃, 𝛿QE of the 

imaginary parts is always larger than that of the real parts. 



 

Fig. 10. Convergence performance of FMM1 for the plasmonic crystal (a), the grating (b), the nanocube (c) and 

nanocylinder (d). Blue circles: Re(𝜔̃) ; blue triangles : Im(𝜔̃); red circles: Re(𝐻𝑧) in (a-b) and Re(𝑉̃) in (c-d); red 

triangles: Im(𝐻𝑧) in (a-b) and Im(𝑉̃) in (c-d). 

4.6 Stuttgart Univ. 

FMM2 has been used for benchmarks 1 and 2. FMM2 is an in-house implementation of the FMM [Moh95,Lal96], with 

the final result of the numerical calculations being the scattering matrix that relates incoming with outgoing fields 

[Whi99,Tik02,Li03]. FMM2 includes the so-called factorization rules [Lal96,Li96a,Li03] and adaptive spatial resolution 

[Gra99]. Details can be found in [Wei09,Wei11].  

The optical resonances are derived from the scattering matrix in an iterative manner. While it is possible to retrieve 

them as roots of the inverse scattering matrix (i.e., solutions in the absence of any incident field) [Wei11], a general 

pole ansatz turns out to be more stable [Byk13]. In both cases, a matrix eigenvalue problem is constructed, with the 

smallest eigenvalues providing guess values for the eigenfrequencies for further iterations. If an eigenvalue is close to 

zero, the corresponding frequency can be considered as the eigenfrequency of an optical resonance. It has to be 

emphasized that solving the matrix eigenvalue equation turned out to be much more efficient than using an equivalent 

root-search algorithm for the corresponding determinant, since all resonances are reduced in the determinant approach 

to the same single number, so that good guess values are required in order to converge to a certain optical resonance 

in few iterations. More details can be found in the supplemental material of [Wei16]. 

A great advantage of the scattering matrix approach for Benchmark 2 is that it does not require PMLs for periodic 

systems. Furthermore, the outgoing fields in the scattering matrix are given in terms of s- and p-polarized plane waves 

in the homogeneous top and bottom half spaces, which allows for using analytical normalization schemes 

[Wei16,Wei17,Wei18]. Here, we have implemented the formulation described in [Wei18]. 

The following specifications are common to the results in benchmark 1 and 2: The numerical code is implemented 

in MATLAB, with the Fourier expansion being carried out by fast Fourier transform using a spatial grid with 1024 points. 



These points are not equally distributed over one unit cell, but exhibit an increased resolution at the metal-dielectric 

interfaces. The exact form of the coordinate transformation is taken from [Val02], with the crucial parameter for the 

resolution increase being G=0. The filling fraction of the metal in the transformed coordinates is 50% of the unit cell. 

Although the considered benchmarks are effectively one-dimensional periodic with s and p polarization being 

decoupled, the numerical code calculates solutions for both polarizations at the same time, i.e., it is not optimized for 

these examples. The normalization of the resonant field distributions is carried out in Fourier space. The method for 

constructing the spatial fields is described in [Lal98]. In both benchmarks, the truncation rank 𝑁 has been increased 

stepwise from 10 to 50 with step size 1. The calculations have been carried out on a desktop PC with 16 GB RAM and 

an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz processor. 

The plasmonic crystal has no open boundaries. The optical resonances are computed from a modified nonlinear 

matrix eigenvalue equation that can be derived from the scattering matrix [Cao02]. The eigensolutions have been 

obtained by the iterative method for finding the roots of a nonlinear matrix eigenvalue equation described in [Wei11]. 

The initial guess value for the eigenfrequency was 𝜔𝑎 (2𝜋𝑐)⁄ = 0.2310737. The iterations are stopped when the 

magnitude of the ratio of the eigenvalue and the frequency drops below 210-6. The eigenfrequency calculated for the 

highest accuracy of 101 plane waves is 0.2310737 - 0.000144 𝑖. 

For the second benchmark, we use the pole method described in the supplemental material of [Wei16].The guess 

value for the eigenfrequencies was 𝜔𝑎 (2𝜋𝑐)⁄ = 0.7430725 − 0.012661 𝑖. The iteration was stopped when the 

magnitude of the ratio of the eigenvalue and the frequency had dropped below 10-7 for one eigenvalue. The 

eigenfrequency calculated for the highest accuracy of 101 plane waves is 0.7430756 − 0.0126606 𝑖. 

4.7 Fresnel Institute, Marseille 

For FEM4 – IF, the geometries and meshes are obtained using the GNU software Gmsh [Geu09] and the finite element 

discretization is handled using GetDP [Dul98]. This open source freeware, developed at the Université de Liège and 

Université Catholique de Louvain in Belgium, allows to handle the various required basis functions handily. As detailed 

in [Dem18], several nonlinear eigensolvers from the SLEPc library [Her05] (developed in Universitat Politècnica de 

València) have recently been added to GetDP in order to tackle problems involving frequency-dispersive materials. 

Depending on the choice of formulation of the non-linear eigenproblem, GetDP calls linear, general polynomial, or 

rational eigenvalue SLEPc solvers. These solvers rely on modern Krylov subspace methods. An open source template 

GetDP 1D grating model is available [http2]. 

To deal with the unbounded domains, PMLs are used for the domain truncation and to unveil the resonances by 

rotating the continuous spectrum in the complex plane. In order to take into account the dispersive materials, a suitable 

representation of the permittivities as functions of the frequency is provided by rational functions. As for the 

"normalization" of the QNM, we have introduced an exact dispersive quasinormal mode (DQNM) expansion using the 

Keldysh theorem on eigenfunctions of operators depending on a complex parameter. This expansion relies on the 

concept of eigentriplets associating eigenvalues to both a right eigenvector (ket) and a left eigenvectors (bra) that may 

not be in same function spaces. No natural norm can be a priori associated to the functions spaces and, moreover, no 

general biorthogonality relations can be given for the bra-ket pairs. Indeed, the expansion may even not be unique. In 

the presents numerical benchmarks, we use the conventional expressions of the other teams for comparison purposes. 

For benchmarks 1 and 2, the spectra have been computed using four different formulations: (i) using physical 

auxiliary fields of Eq. (9) coupled with the vector wave equation for the electric field, (ii) using a polynomial eigenvalue 

formulation of Eq. (11) of the vector wave equation for the electric fiedl, (iii) using a polynomial eigenvalue formulation 



of Eq. (11) of the scalar wave equation for the z-component of the magnetic field, and (iv) using a rational eigenvalue 

formulation of the wave equation for the electric field. In the latter case, the linearization is performed internally by the 

SLEPc solver and the user can only specify the rational function describing the permittivity. The vector electric field 

formulations are discretized using edge elements (and their higher order generalizations [Web93], order 2 here). The 

scalar magnetic field formulations are discretized using Lagrange elements of the second order. All electric field 

formulations lead to the same eigenvalues, up to the machine precision. The scalar magnetic field formulation lead to 

slightly different results (~10−6 in relative precision with respect to the electric field based ones), due to the different 

basis functions. The benchmark results shown in the paper are those obtained with the scalar magnetic field unknown. 

In benchmark 1, the initial target value was set to 𝜔̃𝑎/2𝜋𝑐 = 0.23 − 0.00014𝑖. In benchmark 2, the initial target 

value was set to 𝜔̃𝑎/2𝜋𝑐 = 0.75 − 0.01𝑖. 

For benchmarks 3, the results were computed using the rational eigenvalue formulation of the wave equation for 

the electric field, providing the two dispersive permittivities as rational functions. The two planar symmetries of the 

structure were taken into account and one fourth of the structure was meshed. In this benchmark, the initial target value 

was set to 𝜆 ̃ = 670 + 15𝑖. 

5. Comparison and summary 

Benchmarks have a long tradition in computational electromagnetism. They are issued for different purposes, for 

comparison of modeling approaches and verification of computer codes [Bie06,Las18b], elucidation of controversial 

interpretations of experimental results [Lal07], or prediction of important figures of merit of optical devices [Cty02].   

Since optical resonances play an important role in nanophotonics and impact many areas of modern photonics, the 

computation of resonator eigenmodes is becoming a major issue. For non-dispersive materials, QNMs can be 

computed very efficiently with several numerical approaches [Las18b] including commercial software [COMSOL]. 

Taking into account dispersive materials is more challenging since the eigenproblem becomes nonlinear. This is the 

issue we have considered here for three different resonator geometries made of highly-dispersive materials, i.e., metals 

at optical frequencies. The third geometry, composed of two different metals described by permittivity models with a 

total number of six poles, is exemplary on this point. 

For every geometry, we have benchmarked two important physical quantities, the eigenfrequency 𝜔̃ and the mode 

volume 𝑉̃. The latter is directly related to the QNM normalization, which is a crucial issue for reconstruction problems 

[Lal18]. We have benchmarked several computational approaches, the classical pole-search approach and other more 

novel ones relying on auxiliary-field or polynomial formulations, and several numerical methods, finite differences, finite 

elements and Fourier expansions (see Table 1). All three approaches require a description of the material permittivity 

with an analytical function. The pole-search approach is very general and can be applied with any function describing 

the dispersion, while the two other approaches require that the permittivity be cast into the specific form of an algebraic 

fraction between two polynomials of the frequency.  

The results of the three benchmarks are summarized in Tables 2-4,6 and in Figs. 3 and 6, which illustrate the 

convergence performance and wall-clock time as the numerical resolution is increased. Concerning the accuracy of 

the computed 𝜔̃ and 𝑉̃, the conclusion is clear: the different approaches have virtually identical performance, the 

numerical deviations and wall time differences in the Tables and Figures solely depend on the numerical methods 

themselves. Some achievements in terms of accuracy are impressive, some others suffer from known issues related 

to the suitability of the method to the geometry. It is for instance well known that FD schemes have difficulties to handle 



geometries with curved surfaces, especially for metals. When examining the different data, one should also compare 

the results with care, since the numerical methods have been benchmarked with different software and computers, the 

wall-clock time depends on the initial guess value for pole-search approaches, and on subtle numerical details. For 

instance, the convergence performance of FEMs or (a)FMMs strongly depends on the efforts taken for optimizing the 

mesh or the adaptive spatial coordinate transform. 

Additionally, when analyzing the agreement between all the results, one should put them into perspective, 

considering that nanoresonators are extremely sensitive structures. For instance, the 𝜔̃  and 𝑉̃  are extremely 

sensitive to the tiny gap width and length for the nanocube resonators [Aks14], and even the largest numerical 

deviations observed for the nanocube are well below experimental uncertainties. Aside from the achieved accuracy, by 

evidencing that several methods can efficiently predict the 𝜔̃ and 𝑉̃ of electromagnetic resonators, we expect to 

establish reliable standards for QNM computation and normalization. We expect that this standardization will help 

further developments of modal approaches for analyzing electromagnetic resonances. 
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