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Abstract: This article reports on progress in the analysis of Time-Domain Optical Coherence 

Tomography (OCT) applied to the dimensional metrology of Through Silicon Vias (TSV, 

vertical interconnect accesses in silicon, enabling 3D integration in micro-electronics) and 

estimates the deviations from earlier, simpler models. The considered TSV structures are 1D 

trenches and circular holes etched into silicon with a large aspect ratio. As a prerequisite for a 

realistic modelling, we work with spectra obtained from reference interferograms measured at 

a planar substrate, which fully includes the dispersion of the OCT apparatus. Applying a 

rigorous modal approach, we estimate the differences to a pure ray tracing technique. 

Accelerating our computations, we focus on the relevant fundamental modes and apply a Fabry-

Perot model as an efficient approximation. Exploiting our results, we construct and present an 

iterative procedure based on the minimization of a merit function, which concludes TSV 

heights reliably, accurately and rapidly from measured interferograms.  

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

With sales of semiconductor equipment breaking new records, the development and production 

of more compact electronic chips requires progress in optical metrology. One promising way 

to increase the compactness is 3D integration based on Through Silicon Vias (TSVs, see fig. 1) 

since it offers superior integration density and reduces interconnect lengths [1,2]. Accurate 

measurements are needed to monitor the depth uniformity of etched TSVs [3]. When TSVs are 

filled with metal (copper), their geometrical variations can affect the coplanarity and can warp 

the wafer, resulting in a low stacking yield. The accurate non-destructive measurement of TSV 

depths is an increasingly challenging task since the TSV diameter has shrunk to only a few 

microns in many cases.    

Several optical techniques can be used for measuring TSV depths, including spectral 

reflectometry [4-11], backside infrared spectral reflectometry [12–14], ellipsometry (for rather 

shallow trenches) [15], confocal chromatic microscopy [16] and time domain OCT [16-19], 

and hybrid systems [19,20]. Time domain OCT, whose principle is sketched in fig. 2, has its 

strengths in the case of deep TSV of high aspect ratio. It allows scanning a very large range 

along the optical axis (z-axis), whereby the resolution in z-direction does not depend on the size 

of the scanned z-interval contrary to spectral reflectometry [4,5]. The interpretation of time-

domain OCT interferograms is unambiguous: The order of the detected signals agrees with the 

order of the reflecting objects along the optical axis. Additionally, OCT allows an economic 

exploitation of the light source power since the reference mirror has a reflectivity of almost 1; 

https://doi.org/10.1364/OA_License_v1
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by comparison, spectral reflectometry uses the silicon surface as a reference mirror, which has 

a reflectivity in the order of 0.3 (in the case of through glass vias this is reduced to a mere 0.04). 

OCT has got a sufficient lateral resolution so that it can be utilized not only for the 

measurement of groups of TSVs but also for the measurement of a large part of the single TSVs 

of nowadays size [16-19]. In this publication, we concentrate on single TSVs; the considered 

TSV structures are 1D trenches (rectangular grooves, which are translation invariant in one 

direction) and circular holes (cylindrical structures); the sidewalls will be vertical and the 

bottoms will be flat. The measurement technique in this paper is connected with a focus on the 

TSV top and an averaging of the measurement beam over the TSV since the most important 

fundamental mode also averages over the TSV when propagating between TSV top and bottom. 

For the future, a simultaneous measurement of a group of TSVs - while resolving the single 

TSVs - could be an option. This could be accomplished by full-field OCT (FFOCT), which 

allows also a high lateral resolution [21,22].        

 

Fig. 1. Schematic of an etched TSV (white color) before filling with copper. The TSV is characterized by its shape (1D 

trench or circular hole in this paper, its height 𝐻 and its width ∆𝑥 or diameter 𝐷); the figure shows the TSV cross 

section. Aspect ratios of 𝐻 𝐷 = 10⁄  are typical nowadays. At later process steps, the TSV walls are passivated, the 

TSV is filled with copper and the remaining silicon below the TSV is etched away.  

The spectrum of the light source of the time domain OCT device applied in this paper is in 

the range of 0.9 𝜆c ≤ 𝜆 ≤ 1.1 𝜆c with 𝜆c = 1.329 µm the center wavelength, which has the 

advantage that silicon is transparent there, allowing also measurements from the backside of 

the wafer when needed [18,19,23,24].  

The reliability and longitudinal accuracy of OCT devices depends strongly on the 

processing of the measured signal, which itself depends on the underlying physical models. 

Rather popular modelling approaches in the case of time-domain OCT applied to TSVs assume 

a Gaussian spectrum of the light source, the absence of interferometer dispersion and apply ray 

tracing at the diffractive structures [18,23,24]. Then, the signal processing is based on the 

calculation of the envelope positions of the signals (fringe patterns) associated respectively with 

the top and with the bottom of the TSV [23,24] and neglects the phase information. Such 

envelope calculation applied to the fringe pattern (fig. 2) utilizes the equations in [25]. While 

such approximations may be sufficient in the case of large structures, they reach their limits for 

objects of small widths or diameters, where diffraction occurs, as well as for shallow objects, 

where the signals reflected at top and bottom overlap and interfere (fig. 2, bottom), requiring 

phase considerations. The z-positions of the reflecting substrate and TSV bottom associated 

with the fringe patterns can only be concluded accurately by an appropriate, comprehensive 

data processing procedure including the correct modal propagation constants at the TSV. A 

difference of 1 or 2 µm in the concluded TSV depth between a simple and a good evaluation 

of an OCT signal is often realistic according to our experience.   
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Fig. 2. Top: Scheme of the studied time domain OCT device for TSV measurements [17,18]. The motion of the 
reference mirror allows longitudinal resolution and the objective determines the lateral resolution. The detector records 

the intensity versus the z-position of the reference mirror. The top and the bottom of the TSV have the coordinates 𝑧𝑡 
and 𝑧b (subscript “t” for “top”, “b” for “bottom”), its height is 𝐻 = 𝑧b − 𝑧t; the z-position of the top silicon interface 

in the neighborhood of the TSV, where a reference interferogram is recorded (see section 2), is 𝑧s ≈ 𝑧t (subscript “s” 

for “substrate”); the TSV will be embedded into a larger region 𝑝 along the 𝑧-direction later and periodized for a 

numeric treatment in Fourier space.  One group of adjacent fringes – symbolized by a red sinusoidal pattern in the 

picture – corresponds to one reflecting interface. The incident beam is Gaussian and various objectives are available 

so that the beam waist at the top interface covers the entire TSV plus its surrounding; the signals coming from top and 

bottom of the TSV should be of the same order of magnitude. The phase of the reference signal exp[2i𝑘𝑧 + i𝜑(𝑘)] 
takes into account interferometer dispersion [17,32]; 𝑘 is the modulus of the vacuum wave vector.   

Bottom: example of two real interferograms at TSVs. Left: constructive interference of two adjacent fringe patterns; 

right: destructive interference.  

Works on TSV height measurement by any optical technique incorporate up to our 

knowledge either non-electromagnetic models for light propagation inside TSV [4-7,26] or 

time-consuming rigorous computations with the Rigorous Coupled Wave Analysis (RCWA) 

[8-11]. This paper aims at an estimate and improvement of the accuracy of TSV depth 

measurements by application of electromagnetic but rapid calculations. Although our work is 

focused on time domain OCT, any optical measurement technique such as spectral 

reflectometry [4-14] could benefit from the results of our rigorous modal calculations at single 

TSVs based on Fourier-Bessel functions [27,28] and our simplified yet accurate, more efficient 

models derived from it.  

Firstly, we study and model a real, non-Gaussian spectrum and investigate the impact of 

dispersion in the interferometer arms [17] on the OCT interferograms. Then, we study the 

differences between ray tracing and a rigorous calculation on 1D trenches and circular holes. 

With rigorous computations being time consuming, and scalar techniques being fast but 

inaccurate, we give the limitations of their applicability and calculate the effective indices of 

trenches and holes on the basis of the propagation constants of the relevant fundamental modes 

in order to improve the accuracy of ray tracing-based procedures. The remaining limitations of 

the accuracy of ray tracing for small trench widths and hole diameters motivates the 

consideration of the coupling coefficients between the fundamental modes and the application 
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of the Fabry-Perot model [29] to TSV: This model, which is nowadays widely used at micro- 

and nanostructures [30,31], allows fast calculations for various trench and hole depths once the 

coupling coefficients at top and bottom are known from a rigorous computation. Having studied 

the accuracy and limitations of the Fabry-Perot model, we apply it for an estimate of the 

maximum measurable depth of trenches and holes. The results obtained in section 2 – 6 are 

checked and exploited experimentally in section 6, where we explain and compare our novel, 

electromagnetic interferogram evaluation procedure based on least squares applied to complex 

Fourier amplitudes with the common envelope-based one in the case of OCT applied to TSV 

[23-25].    

This publication is structured as follows: Section 2 is devoted to the modelling of the light 

source spectrum and interferometer dispersion. Section 3 models the light propagation in 

trenches and holes accurately. Section 4 presents the effective indices in trenches for the 

fundamental modes, applies the Fabry-Perot model to TSV and estimates the errors connected 

with this approximation. Section 5 estimates the maximum measurable depth. Section 6 

presents our electromagnetic interferogram evaluation procedure and exploits our results 

experimentally. Section 7 concludes the work.  

2. Accurate modelling of the spectrum of the light source and the 
interferometer dispersion     

A prerequisite for the accurate modelling of any OCT interferogram at a complex structure is 

the knowledge of an OCT interferogram at a planar substrate. Having recorded such an 

interferogram (fig. 3), we obtain the complex spectral amplitude 𝑠(𝑘) of the light source by a 

Fourier transform with 2𝑘 the frequency of the fringes of the intensity pattern versus z. An ideal 

interferogram would be axis-symmetric and its Fourier coefficients would only consist of 

cosine-terms. In practice, real interferograms include the effect of dispersion in the 

interferometer arms [17,32]. Thus, there are also sine-terms or rather complex Fourier 

coefficients.  The presence of dispersion leads to a larger full width at half maximum (FWHM) 

of the envelopes of the interferometric signals (fig. 3) – in agreement with [33]. The impact of 

dispersion is similar to a decrease of the source spectral width and an increase of the coherence 

length. Therefore, a dispersion compensation – e.g., in the reference arm of the interferometer 

- would clearly be beneficial. The spectra recorded for one source but various objectives have 

strictly speaking not Gaussian but complicated shapes with FWHMs of some percent of 2𝑘c 
and 2𝑘c = 2 ∙ 2𝜋/1.329 µm the center frequency.  

 

Fig. 3. Experimental interferogram 𝐼(𝑧) recorded at a planar substrate (black), intensity reconstructed taking into 

account non-matched dispersion in the interferometer arms (red) and intensity reconstructed ignoring such dispersion 

(blue). The red curve agrees well with the measurement (black) in contrast to the blue curve [32].       
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3. Rigorous calculation of the interferogram from a single etched TSV 

We present the rigorous calculation of the OCT signal from a single etched TSV (circular hole 

or 1D trench). A prerequisite is that the spectral amplitude s(𝑘) of the broadband source used 

for the OCT measurement is already known from the recording of a reference spectrum, as 

discussed in the previous section. The OCT interferogram results from the interference between 

the amplitude 𝑎TSV(𝑘) of the field reflected from the sample (see fig. 2) and the amplitude 

exp[2i𝑘𝑧 + i𝜑(𝑘)]  from the reference arm, with 𝑘 = 𝜔/𝑐  the vacuum wave vector, 𝜔  the 

angular frequency and 𝑐  the speed of light. Integrating over the source spectral width 
[𝑘min, 𝑘max], weighted by the complex spectral amplitude s(𝑘), considering the square, and 

time averaging yields the intensity pattern of the interferogram [17] 

𝐼(𝑧) = 〈 (∫ s(𝑘) ⋅ {𝑎TSV(𝑘) exp(−i𝜔𝑡) + exp[2i𝑘𝑧 + i𝜑(𝑘) − i𝜔𝑡]} 𝑑𝑘 2𝜋⁄ + cc
𝑘max
𝑘min

)
2

 〉𝑡  ,

 (1) 

where 𝑧 is the position of the reference mirror (see fig. 2), cc denotes the complex conjugated 

expression and 〈⋅ 〉𝑡  denotes the time average. The phase term 𝜑(𝑘)  represents the 

interferometric dispersion due to different dispersion of the objective or the fibre propagation 

constants between both arms of the interferometer. In practice, we evaluate the integral over 𝑘 

numerically, using few hundred integration points and midpoint sampling. 

The amplitude 𝑎TSV(𝑘) corresponds to the reflection in the far field from a single etched 

TSV (circular hole or 1D trench). We calculate it numerically with rigorous electromagnetic 

computations. The calculation is done in two steps. First, we illuminate a single via with a 

linearly-polarized Gaussian beam whose waist is located on the top interface and centered on 

the via axis and we calculate the near field, inside and close to the via. Then, from the near-

field calculation, we extract 𝑎TSV(𝑘)  by using a near-to-far field transformation and an 

integration over the solid angle corresponding to the numerical aperture of the collection 

objective.  

Due to the large aspect ratio of a single via (typically in the order of 10), we use modal 

methods that rely on an efficient analytical integration of Maxwell’s equations along the long 

dimension of the via, i.e., the vertical 𝑧 direction.  

For the calculation of rectangular 1D trenches, we use the aperiodic Fourier modal method 

(a-FMM) [34]. Unlike the usual FMM (also known as RCWA) that is dedicated to light 

diffraction by periodic objects, a-FMM allows the calculation of light scattering by single 

objects. It is based on an artificial periodization of the object in the transverse 𝑥-direction with 

the crucial addition of a complex coordinate transform between the periods. The latter acts as 

a Perfectly-Matched Layer (PML) and prevents aliasing effects [35]. TE- and TM-polarization 

are considered separately. Modal expansions in the different regions (air, via and silicon 

substrate) are connected by the S-matrix algorithm [36,37]. 

For the calculation of circular holes, we apply a modal method analogue to RCWA but 

adapted to body-of-revolution objects thanks to the use of Fourier-Bessel functions [27,28]. 

This means that electric and magnetic field components, as well as permittivities and 

permeabilities, are developed in terms of Bessel functions in the radial direction and in terms 

of Fourier harmonics in the azimuthal direction. The field is expressed as 𝐄(𝑟, 𝜃, 𝑧) =
∑ 𝐄𝑙(𝑟, 𝑧)exp(i𝑙𝜃)𝑙 , 𝐇(𝑟, 𝜃, 𝑧) = ∑ 𝐇𝑙(𝑟, 𝑧)exp(i𝑙𝜃)𝑙 , with 𝑙 the azimuthal number. In case of 

an incident Gaussian beam that is linearly or circularly polarized and centered on the axis, the 

field contains only the harmonics 𝑙 = ±1. In addition to the method in [27,28], we add a 

circular PML. We connect the different modal expansions by the S-matrix algorithm. 
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Fig. 4. Tangential electric field (left, TE-polarization) and tangential magnetic field (right, TM-polarization) for a 1D 

trench of air in silicon at λc = 1.329 µm for nSi =  3.5 (trench width: 4 µm, trench height: 35 µm). TE-polarization is 

well-guided inside the TSV whereas TM-polarization leaves the TSV by larger part, meaning higher losses. There are 

standing wave patterns in z-direction with the periodicity 𝜆c {2Re[𝑛eff,TE(𝑘c)]}⁄  and 𝜆c {2Re[𝑛eff,TM(𝑘c)]}⁄ , 

respectively.  

Figure 4 shows the calculated near field inside and around a 1D trench in TE- (𝐸𝑦 

component) and TM-polarization (𝐻𝑦  component). The amplitude 𝑎TSV(𝑘) is calculated with a 

standard near-to-far field transformation. We calculate the Fourier transform along 𝑥 of a cross-

section of the field in air at a constant 𝑧-position a few nanometers above the via. Two important 

conclusions can be drawn from fig. 4. First, in the case of a 1D trench, light propagation inside 

the via is polarization dependent. TE-polarization is well-guided inside the TSV whereas TM-

polarization leaves the TSV by larger part, meaning higher losses. Therefore, in the OCT 

interferogram, the signal coming from the bottom of the via will be much weaker with a TM-

polarized incident beam and TE-polarization is more suitable for the measurement of deep 1D 

trenches. Secondly, in both polarizations, the field inside the via exhibits a clear standing-wave 

pattern in the vertical 𝑧-direction. A similar standing-wave pattern can also be observed in the 

calculation of circular holes (not shown here). We conclude that light propagation inside a via 

etched into silicon mainly arises from the excitation of a single mode. In the next section, we 

calculate the fundamental mode responsible for the standing-wave pattern and show that the 

problem can be accurately described by an approximate Fabry-Perot model that amounts to 

keep a single mode in the rigorous modal expansion.  

4. Fabry-Perot model 

In case of sufficiently deep vias, only the fundamental mode contributes significantly to light 

propagation inside the structure since higher-order modes in the modal expansion are more 

strongly damped. This motivates the application of the Fabry-Perot (FP) model [29,30], which 

amounts to neglect the higher-order modes and keep a single mode in the modal expansion. 

This approximation is all the more accurate that the via is deep. Note that, in contrast to most 

uses of the FP model in micro- and nanophotonics [30,31], the fundamental mode that we 

consider here is a leaky mode whose amplitude is exponentially damped during propagation 

due to radiative leakage in the silicon cladding.  

We first calculate in section 4.1 the fundamental mode that contributes to light propagation 

in trenches and in circular holes. Then, section 4.2 presents the principle of the FP model. 

Section 4.3 explains the interpretation of OCT interferograms on the basis of the FP model. 

Finally, we study in section 4.4 the accuracy of the FP model as a function of the TSV height.  

4.1 Fundamental mode in trenches and holes 

A key parameter in the FP model is the effective index of the mode that mainly contributes to 

light propagation. The effective index is defined from the mode propagation constant as 𝑛eff ≔
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 𝑘z,0 𝑘⁄  with 𝑘z,0 the propagation constant of the least attenuated mode and 𝑘 the modulus of 

the vacuum wave vector. It is important to keep in mind that 𝑘z,0 and 𝑛eff are complex numbers 

because of the radiative leakage in silicon. In case of a 1D trench, two different effective indices 

𝑛eff,TE and 𝑛eff,TM have to be considered. In case of a circular hole, the least attenuated mode 

that is excited by a linearly or circularly polarized incident beam is characterized by an 

azimuthal number 𝑙 = ±1.  

 
Fig. 5. Real and imaginary parts of the effective index for TE- (purple) and TM- (green) polarization as a function of 

the trench width (see also supplementary data file 1). The wavelength is the center wavelength 𝜆c=1,329 µm of the 

OCT device and the refractive index is  𝑛Si = 3.5. Re(𝑛eff) refers to the phase and Im(𝑛eff) to the attenuation due to 

radiative leakage. The values at slightly different wavelengths can be deduced from the fact that 𝑛eff  depends 

approximately merely on ∆𝑥/𝜆.  

     Figure 5 shows the real (Re) and the imaginary (Im) part of the effective index in a 1D 

trench for TE- and TM-polarization as a function of the trench width ∆𝑥  at the center 

wavelength 𝜆c= 1.329 µm. There is a strong dependence of Re(𝑛eff,TE) and Im(𝑛eff,TE) on ∆𝑥 

for small ∆𝑥, where the deviation of 𝑛eff,TE from 1 is the largest. For ∆𝑥 → ∞, this deviation 

tends asymptotically to zero. The spectral dependence of silicon is weak so that 𝑛eff,TE depends 

only on ∆𝑥/𝜆  with ∆𝑥  the trench width. Therefore, one can deduce 𝑛eff,TE(∆𝑥, 𝜆)  at a 

wavelength different from the OCT center wavelength 𝜆c = 1.329µm from 𝑛eff,TE(∆𝑥 ∙
𝜆c 𝜆⁄ , 𝜆c) , as long as |𝜆 − 𝜆c|/𝜆c  is sufficiently small and under the assumption that the 

refractive index of silicon is rather independent on 𝜆 in this narrow spectral range around 𝜆c = 

1.329 µm. Qualitatively, 𝑛eff,TM(∆𝑥, 𝜆)  behaves similarly to 𝑛eff,TE(∆𝑥, 𝜆) . However, 

Im(𝑛eff,TM) is larger, meaning larger leakage through the sidewalls. Illustratively, there is a 

smaller reflection for TM-polarization at planar surfaces and a larger transmission into the 

substrate – like in case of Fresnel reflection and transmission.  

Concluding, to an accuracy of 1% or better, TSVs in form of 1D trenches of widths larger 

than 5 µm may be calculated by scalar ray tracing, setting 𝑛eff(𝜆) = 1, but the modelling 

should be rigorous for smaller 1D trench widths. In particular, the attenuation (imaginary part 

of the effective index) should not be neglected in the OCT data interpretation. For deep 1D 

trenches of small diameters, there are large losses of light at the sidewalls so that the signal 

from the bottom is weak and difficult to identify in the presence of noise. In that case, TE-

polarization is clearly preferable to TM-polarization due to the smaller attenuation.  

Figure 6 shows the  |𝐸𝑥|
2 distribution of the fundamental mode of a circular hole for x-

polarization. It is a linear combination of the both degenerate modes with 𝑙 = ±1. Figure 7 

shows Re(𝑛eff) and Im(𝑛eff) as a function of the diameter 𝐷 at the center wavelength 𝜆c  = 

1.329 µm. Again, there is a strong dependence of Re(𝑛eff) and Im(𝑛eff) on 𝐷  for small 𝐷 , 

where the deviation of 𝑛eff from 1 is the largest. For 𝐷 → ∞, 𝑛eff tends to unity. The effective 

index only weakly depends on 𝜆 so that 𝑛eff depends again only on 𝐷/𝜆. Note that Im(𝑛eff) is 
larger than for 1D trenches.  
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Fig. 6. Intensity distribution |𝐸𝑥(𝑟, 𝜃)|
2 for a circular TSV at 𝜆 = 1.329 µm. The refractive index of silicon is 𝑛Si =

3.5. For 𝐷 = 2 µm, the electric field significantly touches the sidewall – requiring electromagnetic modelling; for 𝐷 =
10 µm, the field is well-confined in the hole – indicating that a scalar method is accurate enough. In 𝑧-direction (along 

the optical axis), the field is damped exponentially; the damping increases with decreasing diameter D.   

 

Fig. 7. Real part (left) and imaginary part (right) of 𝑛eff(𝐷) for a circular air hole in silicon at 𝜆c = 1.329 µm for 

𝑛Si = 3.5 (see also supplementary data file 2) [32]. The values at slightly different wavelengths can be deduced; 

approximately, 𝑛eff merely depends on 𝐷/𝜆.  

Concluding, TSV in form of circular holes of widths larger than 5 µm may be calculated by 

a scalar method at the utilized center wavelength 𝜆c, using the approximation 𝑛eff = 1, but the 

modelling should be electromagnetic for smaller diameters.  

4.2 Principle of the Fabry-Perot model and expression of the interferogram 

The FP model amounts to neglect all higher-order modes inside the via region and to keep a 

single mode in the modal expansion. Since an air hole in silicon does not support guided modes, 

all modes are leaky and the fundamental mode that we consider is the least attenuated. Once 

this mode has been calculated, we solve two different problems, as sketched in fig. 8. First, we 

consider a single interface between air and a semi-infinite air hole in silicon. We calculate the 

amplitude 𝑎↑,refl(𝐻+) reflected at the top of an infinitely deep TSV, the amplitude 𝑎↓,trans(𝐻−) 

transmitted into an infinitely deep TSV, the reflection 𝑟t  of the mode into itself, and the 

transmission 𝑡t from the mode to plane waves in air (the subscript “t” refers to the top of the 

TSV). In a second step, we solve a second problem, a single interface between a semi-infinite 

air hole in silicon and a silicon substrate. We calculate the reflection 𝑟b of the mode into itself 

(the subscript “b” refers to the bottom of the TSV).   
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Fig. 8. On the left: Illustration of the propagation scheme within the Fabry-Perot model; black arrows: light path; 
horizontal dashed black lines: reflecting facets of the FP cavity. Only the fundamental (leaky) mode is considered 

inside the TSV. Light is incident from the top; it is partially reflected in air as well as partially transmitted into the 

mode. The latter propagates downwards, is partially reflected at the bottom with the reflection coefficient 𝑟b, propagates 

back upwards, is partially reflected and partially transmitted at the top with the reflection and transmission coefficients 

𝑟t, 𝑡t, etc. The calculation results at the top and bottom interfaces, obtained separately, allow together with the effective 

index of the mode the calculation of the reflected amplitude for any height 𝐻, see (2). We can then compute the 

interferogram by (1) and (2) efficiently for any TSV height 𝐻. The colored picture shows a cross section of the field 

distribution in and around the TSV on the basis of 𝐸𝑥(𝑥, 0, 𝑧).   Upper picture on the right: example of an interferogram 

𝐼(𝑧) - 𝐼0 in case of dispersion for a height 𝐻 at which the signals from TSV top and bottom interfere destructively; 

lower picture on the right: same for a height at which they interfere constructively. The interferograms in dependence 

on 𝐻 with as well as without interferometer dispersion are provided in terms of supplementary movies (visualization 1 

and 2). 

Once these few coupling coefficients are computed rigorously, the light scattered at a TSV 

can be computed analytically for any TSV height 𝐻 from the expression  

 𝑎↑(𝐻) = 𝑎↑,refl(𝐻+) + 𝑎↓,trans(𝐻−) 
exp(2i𝑘𝑛eff𝐻)∙𝑟b

1−𝑟b∙𝑟t∙exp(2i𝑘𝑛eff𝐻)
 𝑡t.      (2) 

Here, 𝑎↑(𝐻) is the total amplitude reflected at the TSV and 𝑛eff is the effective index of the 

fundamental mode. The numerator 𝑟b 𝑡texp(2i𝑘𝑛eff𝐻)  models downward propagation, 

reflection at the bottom, upward propagation, and transmission into air at the top of the TSV. 

The denominator 1 − 𝑟b 𝑟t exp(2i𝑘𝑛eff𝐻) models multiple reflections between top and bottom.  

The amplitude 𝑎TSV(𝑘) is then deduced from 𝑎↑(𝐻) given by (2) by a near-to-far field 

transformation. Multiple reflections are weak for sufficiently deep TSV, meaning 1 −
𝑟b 𝑟t exp(2i𝑘𝑛eff𝐻) ≈ 1 (see also section 4.4), and we neglect them to further simplify the 

expression of 𝑎TSV(𝑘). With this approximation, the amplitude 𝑎TSV(𝑘) takes the simple form 

aTSV(𝑘) ≈ 𝑎t(𝑘) exp(−2i𝑘𝑧t) +  𝑎b(k) exp{2i𝑘[−𝑧t − 𝑛eff(𝑘)𝐻]} = 

 𝑎t(𝑘) exp(−2i𝑘𝑧s − 2i𝑘∆𝑧t) + 𝑎b(𝑘) exp[−2i𝑘𝑧s − 2i𝑘∆𝑧t − 2i𝑘𝑛eff(𝑘)𝐻] (3) 

with ∆𝑧t = 𝑧t − 𝑧s and 𝑧s the z-coordinate of the top plane interface during the recording of a 

reference interferogram close to a TSV. The complex amplitude 𝑎t(𝑘) represents the reflection 

at the top of the TSV, and the complex amplitude 𝑎b(𝑘) the reflection from the bottom. The 

factor exp(−2i𝑘∆𝑧t) propagates light in air from 𝑧s to 𝑧t. Both 𝑧-positions are very close to 
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each other but not strictly identical since the wafer is sometimes not exactly perpendicular to 

the optical axis and since two separate OCT measurements can have slightly different 𝑧-offsets. 

The factor exp[−2i𝑘𝑛eff(𝑘)𝐻] propagates light inside the via from top to bottom and back.  

      Equation (3) combines the FP model (single-mode propagation) and the single-reflection 

approximation. It evidences the importance of the effective index 𝑛eff(𝑘) of the fundamental 

mode. Insertion of (3) into (1), calculation of the quadratic expression and averaging over the 

time results in  

𝐼(𝑧) ≈ 𝐼0 

+ ∫ |𝑠(𝑘)|2 exp[i𝜑(𝑘)] exp (−2i𝑘𝑧s)⏟                    
=:𝑓(𝑘)

 𝑎t(𝑘) exp[2i𝑘(𝑧 − ∆𝑧t)] 𝑑𝑘 2𝜋⁄ + cc
𝑘max

𝑘min

 

+  ∫ |𝑠(𝑘)|2 exp[i𝜑(𝑘)] exp (−2i𝑘𝑧s)⏟                    
=:𝑓(𝑘)

𝑎b(𝑘)exp[−2𝑘 Im(𝑛eff)𝐻]
𝑘max

𝑘min

 

 × exp{2i𝑘[𝑧 − ∆𝑧t − Re(𝑛eff)𝐻]} 𝑑𝑘 2𝜋⁄  +  cc , (4) 

where 𝐼0 is an offset, which has been removed in the presented examples. The parameters 𝑎t,
𝑎b, and 𝑛eff are calculated with the FP model. The expression 𝑓(𝑘) is obtained from a reference 

measurement at a planar substrate with the same machine settings (same light source power, 

same objectives, same focal 𝑧 -position) – preferably taken shortly before or after the 

measurement at the TSV in the region around the TSV (see section 2). The intensity pattern of 

the reference interferogram is given by  

𝐼s(𝑧) ≈ 𝐼s,0 + ∫ |𝑠(𝑘)|2 exp[i𝜑(𝑘)] 𝑟(𝑘) exp[2i𝑘(𝑧 − 𝑧s)] 𝑑𝑘 2𝜋⁄ + cc
𝑘max

𝑘min

= 

 = 𝐼s,0 + ∫ |𝑠(𝑘)|2 exp[i𝜑(𝑘)] exp(−2i𝑘𝑧s) 𝑟(𝑘)⏟                        
=𝑓(𝑘) 𝑟(𝑘)

 exp(2i𝑘𝑧) 𝑑𝑘 2𝜋⁄ + cc
𝑘max
𝑘min

 , (5) 

where 𝑟(𝑘) is the Fresnel reflection coefficient at a plane air/silicon interface and the subscript 

“S” means “planar substrate”. A Fourier transform of the reference interferogram then yields 

 𝑓(𝑘) 𝑟(𝑘) =
1

𝑝
∫ 𝐼s(𝑧) exp(−2i𝑘𝑧) 𝑑𝑧
𝑧0+𝑝

𝑧0
≈

1

𝑝
 ∑ 𝐼s(𝑧𝑗) ∙ ∫ exp(−2i𝑘𝑧)

𝑧𝑗+
1

2
∆𝑧𝑗

𝑧𝑗−
1

2
∆𝑧𝑗

𝑑𝑧𝑀
𝑗=1  . (6) 

As discussed in section 6 later and in fig. 2 on the right and fig. 14, 𝑝 is the size of the periodized 

region, which contains the TSV length plus several coherence lengths 𝑙c on top and bottom. 𝑀 

is the number of sampling points. The intensity data 𝐼s(𝑧𝑗) are given on a non-equidistant mesh 

and the integral in (6) is approximated. Equation (6) finally yields 𝑓(𝑘) needed for simulations 

and the solution of inverse problems at TSV.  

As an example, we have simulated the intensity pattern 𝐼(𝑧) − 𝐼0  in dependence on the 

height 𝐻  for a circular TSV with a diameter 𝐷 = 5  µm and a beam waist 𝑤 = 2.7  µm 

(supplementary visualization 1 and 2 as well as fig. 8); each slide of the supplementary movies 

shows the intensity 𝐼(𝑧) − 𝐼0 for a given TSV height 𝐻. For large heights 𝐻, there are separated 

signals from top and bottom. For small heights, the signals (fringe patterns) from top and 

bottom overlap and interfere; constructive and destructive interference of the fringes take turns 

as 𝐻 is varied with a periodicity ∆𝐻 = 𝜆c/{2Re[𝑛eff(𝜆c)]}.   

4.3 Using the effective index for the interpretation of an OCT interferogram 

For large TSV depths, the signals from top and bottom are well-separated in the interferogram, 

see fig. 9. The FP model provides a physically intuitive yet quantitative interpretation. 

According to (4), the distance between the two peaks of the envelope depends on the TSV 
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height 𝐻 and the group velocity 𝑣g = 𝑐/𝑛g with 𝑐 the speed of light and 𝑛g the group index. 

The latter can be calculated from the effective index by [29] 

 𝑛g(𝑘, 𝐷) = Re[𝑛eff(𝑘, 𝐷)] + 𝑘 
d

d𝑘
Re[𝑛eff(𝑘, 𝐷)]. (7) 

Moreover, the intensity of the second peak, which results from the reflection of the mode at the 

bottom of the via, is driven by (i) the imaginary part of 𝑛eff(𝑘) and (ii) the coupling coefficients 

of the FP model, 𝑡t and 𝑟b in (2). If the mode attenuation is too strong (as is the case for small 

diameters and widths), the intensity of the second peak will be extremely weak. We touch here 

an intrinsic limit of the OCT for the metrology of etched TSVs: it is not possible to measure 

too small and deep structures with illumination from the top of the TSV. We quantify in section 

5 the maximum measurable depth as a function of the diameter. 

 

Fig. 9. Example of a simulated interferogram for a circular TSV of large depth (TSV height H = 70.8 µm, TSV diameter 

D = 5 µm, beam waist w = 2.7 µm) [32]. 

 

Fig. 10. Group refractive indices ng,1D,TE(D, λc) (1D trench, TE-polarization, black curve), ng,1D,TM(D, λc) (1D trench, 

TM-polarization, red) and ng,circ(D, λc) (circular holes, green) as a function of the hole diameter at λc = 1.329 µm 

[32]. 

Up to now, when interpreting an OCT interferogram from a TSV, the most commonly used 

technique consists in applying scalar ray tracing, which amounts to consider 𝑛eff(𝑘)  ≈ 

𝑛air(𝑘) = 1 and 𝑛g = 1 [4-7,16,18,19]. For vias with lateral dimensions smaller than 5 µm, we 

recommend the use of 𝑛eff(𝑘) instead, which we have calculated and presented in section 4.1 
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and tabulated in the supplementary data files 1 and 2. The values of 𝑛g(𝑘) are shown in fig. 10. 

By using the correct values for 𝑛eff(𝑘, 𝐷) and integrating over 𝑘 as in (4), we take correctly 

into account the deviations from 𝑛eff = 1 and 𝑛g = 1. Moreover, (4) also accounts for possible 

distortions of the signal.  

4.4 Validity of the Fabry-Perot model 

In this section, we discuss the accuracy of the FP model, which means the neglect of higher-

order modes. Large TSV heights are connected with large losses of higher-order modes, 

meaning their neglect by the FP model introduces only small errors; the accuracy of the FP 

model increases therefore with the TSV height (fig. 11). Similarly, small diameters lead to large 

losses of higher-order modes as well and the FP model benefits from this. Concluding, the FP 

model is the better the larger the depth and the smaller the diameters – meaning the larger the 

aspect ratio. For most of the TSV aspect ratios in practice, it works sufficiently well.  

      Figure 12 shows the error in the reflected amplitude when considering merely single-fold 

instead of multiple-fold reflection, meaning the approximation 1 [1 − 𝑟b ∙ 𝑟t ∙ exp(2i𝑘𝑛eff𝐻)]⁄  

≈ 1 in (2); the resulting error is quite small and decreases with increasing TSV height 𝐻.  

 

Fig. 11. Example of the relative error √|𝑎𝑚𝑝𝑙TSV,FP(𝜆) − 𝑎𝑚𝑝𝑙TSV(𝜆)|
2
  |𝑎𝑚𝑝𝑙TSV(𝜆)|

2⁄  in the reflected amplitude 

when applying the Fabry-Perot model to a circular TSV of 3.0 µm diameter and integrating over a half aperture angle 

of 15° (purple) and a half aperture angle of 60° (green); the beam is centered at the top of the TSV and has a waist of 

𝑤 = 2.7 µm. The relative error decreases quickly with the TSV height 𝐻.  

 
Fig. 12. Modulus of the term 𝑟b𝑟hexp(2i𝑘𝑛eff𝐻) in (2), modelling the multiple reflections between TSV top and 

bottom. The term is small and vanishes when increasing the height 𝐻. Thus, considering a single reflection at the TSV 

bottom allows reaching a good accuracy in most cases.  
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5. Maximum measurable depth 

The FP model is an accurate electromagnetic model. Therefore, using the results and experience 

gathered in the previous sections, we can give an estimate on the maximum measurable depth 

when measuring from the top of the wafer. Our estimate is based on the attenuation experienced 

by the signal during its propagation to the bottom of the sample and back to top:  
 

- At the top, merely a small fraction of the light is not coupled into the TSV but is 

reflected here in the best case (very small beam waist). We consider that 99% may be 

transmitted into the TSV.   

- We assume that 99% of the light coupled into the hole may be lost at the sidewalls 

during the propagation down- and upwards.  

- We neglect the multiple reflections between top and bottom since the attenuation due 

to a single pass is already large.  
 

Under these assumptions, the signal from the bottom has only 0.99 × 0.01 = 0.0099 of the 

amplitude of the reflection at a planar substrate.  

Indeed, weaker signals might be detected, but this would require the use of advanced 

techniques such as a band pass filter for noise reduction [17], the conduction of several 

measurements and application of averaging techniques as well as the numeric analysis of 

signals. Alternatively, different physical approaches such as measurements or additional 

measurements from below – analogously to [12-14] – could be chosen.  

Subsequently, we consider the value of 99% of the light coupled into the hole as a 

meaningful estimate for measurements from the top of the wafer. So, the maximum measurable 

depth 𝐻max is given by the approach  

 exp [ i ∙
2𝜋

𝜆c
∙ i ∙ Im(𝑛eff) 2𝐻max] =  10

−2. (8) 

 𝐻max =
ln (102)

4𝜋 Im(𝑛eff)
 𝜆c (9) 

with the center wavelength 𝜆c = 1.329 µm here. Figure 13 displays the value of 𝐻max for 1D 

trenches (TE- and TM-polarization) as well as circular holes. The losses at the sidewalls are 

largest in the case of circular holes and they are larger for TM- than for TE-polarization at 1D 

trenches – see also section 4.1 and supplementary data files 1 and 2. A larger attenuation 

directly results in a smaller 𝐻max.  
 

 
Fig. 13. Maximum measurable depth 𝐻max in dependence on the trench width ∆𝑥/µm or TSV diameter 𝐷 in the case 

of 1D trenches, using TE-polarization (purple) or TM-polarization (green) as well as circular TSV, using linear 
polarization (blue).  
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6. Electromagnetic TSV analysis procedure and experimental verification 

6.1  Experimental setup  

We use our electromagnetic modelling for retrieving the TSV depth from OCT measurements. 

A silicon wafer containing high aspect ratio 1D trenches as well as circular holes with an 

intended etching depth of 20 μm has been fabricated by deep reactive ion etching in an 

Inductively Coupled Plasma (ICP) reactor with a Bosch-like process with SF6 and C4F8 gases 

[2]. The intended TSV height 𝐻 is around 20 μm in the case of large trench widths Δ𝑥 and 

diameters 𝐷 but, due to the aspect ratio dependent etching (ARDE) effect [2], the etching depth 

𝐻 decreases when Δ𝑥 and D are reduced. The measurements have been performed with a 

TMAP, a metrology tool commercialized by the company UnitySC [38], equipped with a LISE 

(a TD-OCT sensor commercialized by the company FOGALE Nanotech [39]). The spectrum 

of the light source after passing through all optical components has a complex shape and ranges 

from 𝜆 = 1.20 µm  to 𝜆 = 1.43 µm , see section 2. The center wavelength is 𝜆c = 1.31 µm 

here.       

We measure each structure with the focus of the collection objective at the center of the 

TSV top. There are 4 selectable objectives with respective magnifications and NA (5x; 0.14), 

(10x; 0.26), (20x; 0.40), (50x; 0.42). If possible, we always use the objective with which signals 

from top and bottom of the TSV are obtained with a similar amplitude. Unfortunately, such a 

procedure is not possible in the case of small ∆𝑥 or 𝐷, where the fraction of light coupled into 

the TSV is limited by the NA of the 50x objective or the beam diameter at the entrance pupil 

of the objective; the beam waist at the focus is then 𝑤 = 2.7 µm. Here, the signal from the 

bottom is much smaller than the one from the top and close to the noise floor; moreover, it 

overlaps with the signal from the top due to small TSV heights compared to the source 

coherence length.    

After a TSV measurement, we shift the objective some µm in 𝑥- or 𝑦-direction without 

changing its z-position or other machine settings in order to record the interferogram at the 

planar substrate yielding 𝑓(𝑘)  needed in (4); 𝑓(𝑘)  is then obtained from (6). Since the 

interferograms at the planar substrate depend on the objective due to dispersion, they have to 

be recorded for each objective separately (see figs. 16 – 17). Also due to the impact of the 

dispersion at the objective, its NA and the focal z-position on the fringe pattern [40,41] as well 

as possible fluctuations of the light source, we record the reference spectrum at a planar 

substrate in the vicinity of the structure after each TSV measurement without changing the 

objective nor its z-position.  

6.2 Processing of the OCT data 

The main goal is to obtain a reliable, accurate and fast retrieval of the TSV height 𝐻 from the 

OCT data. As well, we would like to construct a procedure, which could be easily generalized 

to the retrieval of additional TSV parameters such as the diameter 𝐷 . That is an inverse 

problem; for a measured known spectral amplitude or rather 𝑓(𝑘) in (4), which we obtain from 

(6) from an interferogram 𝐼s(𝑧) measured at points 𝑧𝑗 at a planar substrate, we have to find 𝐻 

so that the signal 𝐼sim,TSV(∆𝑧𝑡 , 𝐻, 𝑧)  simulated with (4) best matches the measured signal 

𝐼TSV(𝑧). The parameters 𝑎t, 𝑎b , 𝐻 and ∆𝑧t  in (4) are now fit parameters used to match the 

measured signals. 

A problem class related to the solution of the inverse problem at TSVs and trenches is the 

solution of the respective problem at thin films. Popular data evaluation techniques here operate 

in the frequency space – also for efficiency reasons (limited bandwidth of the utilized light 

sources) - and include the Fourier amplitude method [41-44] and the spectral nonlinear phase 

method [41-43,45,46]. These techniques are based on least square approaches, which match the 

measured amplitude or phase information respectively with computed results obtained on the 

basis of a separately recorded reference spectrum. A combination of both methods in order to 

exploit both amplitude and phase information seems reasonable [47,48]. This is a reason why 
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we match complex Fourier coefficients here, incorporating all the available information by least 

squares as a recognized, quantitative measurement data evaluation procedure; the resulting sum 

of squares (merit function) here is then minimized by the Marquardt-Levenberg algorithm 

(MLA) [49,50] as one possible choice and a standard.   

Before solving the inverse problem, we apply filters to 𝐼s(𝑧) and 𝐼TSV(𝑧) in order to reduce 

the noise – one in direct space and one bandpass filter in Fourier space.     

Our procedure requires a Fourier transform (6) of the measured interferograms 𝐼s(𝑧) as well 

as 𝐼TSV(𝑧). Our Fourier transform here is discrete in view of a numeric treatment, yielding few 

hundred coefficients typically. For this, we define a periodized computational domain (fig. 14) 

of period 𝑝. This domain surrounds the position of the substrate at 𝑧s. The origin is at 𝑧o left of 

𝑧s and the end of the period at 𝑧p right of 𝑧s. The filter applied in a first step is a window 

function 𝑔TSV(𝑧) in direct space (fig. 14). It suppresses noise in regions where the signals 

cannot be meaningful and ensures that 𝐼s(𝑧p) = 𝐼s(𝑧o), 𝐼TSV(𝑧p) = 𝐼TSV(𝑧o). So, we weight 

𝐼TSV(𝑧𝑗) at all recorded points 𝑧𝑗 with the function    

𝑔TSV(𝑧) =  

{
 
 

 
   

1

2
 −  

1

2
cos [

𝜋

𝑧min − 𝑧o
(𝑧 − 𝑧o)]    for   𝑧o ≤ 𝑧 <  𝑧min ,

1   for   𝑧min  ≤ 𝑧 ≤  𝑧max ,

  
1

2
 −  

1

2
cos [

𝜋

𝑧p − 𝑧max
(𝑧p − 𝑧)]    for   𝑧max < 𝑧 ≤ 𝑧p .

    (10) 

 

 
Fig. 14. Top: Computational domain of size 𝑝 = 𝑧p − 𝑧o  and weight function 𝑔TSV(𝑧)  applied in direct space to 

𝐼TSV(𝑧). Bottom: Computational domain of size 𝑝 = 𝑧p − 𝑧o  and weight function 𝑔S(𝑧) applied in direct space to 

𝐼s(𝑧). The choice of the parameters here is applied uniformly to all subsequent examples. Having applied 𝑔TSV(𝑧) and 

𝑔s(𝑧) respectively, both signals 𝑔TSV(𝑧) ∙ 𝐼TSV(z) and 𝑔s(z) ∙ 𝐼s(𝑧) are then Fourier transformed, since the algorithm 

operates in Fourier space. The computational domain of size 𝑝 is periodized along the 𝑧-direction, allowing discrete 

Fourier transforms. The results of the Fourier transforms are then weighted with the function 𝑔̃(𝑘), acting as a bandpass 

filter (fig. 15).  

In case of 𝐼s(𝑧), we apply 𝑔s(𝑧) with a much smaller region of transmission (fig. 14, bottom). 

This choice suppresses noise of 𝐼s(𝑧)  in regions far away from 𝑧s , where 𝐼s(𝑧)  is not 
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meaningful. So, the reference signal becomes noise-free in large regions of the period so that 

𝐼sim,TSV(∆𝑧t, 𝐻, 𝑧) obtained later from (4) with 𝑓(𝑘) computed from 𝐼s(𝑧) has less noise.    

   Subsequently, 𝑔s(𝑧) ∙ 𝐼s(𝑧)  and 𝑔TSV(𝑧) ∙ 𝐼TSV(𝑧)  are Fourier transformed by (6) and a 

bandpass filter ℎ̃(𝑘) is applied to the Fourier coefficients of both signals (fig. 15):  

ℎ̃(𝑘) =  

{
 
 
 

 
 
 

 

ℎ̃(−𝑘)  for   𝑘 < 0
   0   for   0 ≤ 𝑘 < 𝑘0

1

2
 −  

1

2
cos [

𝜋

𝑘min − 𝑘0
(𝑘 − 𝑘0)]    for   𝑘0 ≤ 𝑘 <  𝑘min ,

1   for   𝑘min  ≤ 𝑘 ≤  𝑘max ,

  
1

2
 −  

1

2
cos [

𝜋

𝑘stop − 𝑘max
(𝑘 − 𝑘stop)]    for   𝑘max < 𝑘 ≤ 𝑘stop ,

0    for   𝑘 > 𝑘stop .         

 (11) 

The effect of the bandpass filter is illustrated in figs. 16 - 17.  

 
Fig. 15. Weight function ℎ̃(𝑘) applied to the Fourier transform FT[𝑔s(𝑧) ∙ 𝐼s(𝑧) ] and FT[𝑔TSV(𝑧) ∙ 𝐼TSV(𝑧)]. The 

choice of the parameters here is applied uniformly to all subsequent examples. FT[𝑔TSV(𝑧) ∙ 𝐼TSV(𝑧)] ∙ 𝑔̃(𝑘) yields the 

Fourier coefficients 𝑐TSV,𝑗 and FT[𝑔s(𝑧) ∙ 𝐼s(𝑧)] ∙ 𝑔̃(𝑘) provides 𝑓(𝑘𝑗) by means of (6) - needed subsequently for the 

simulation of the TSV, which yields 𝑐sim,TSV,𝑗 in (12).  

Fig. 16. Interferogram at the planar substrate recorded with the 5x objective (left) and smoothened interferogram after 

application of the filter in direct space as well as the filter in Fourier space (bandpass filter). The signal is non-axis-

symmetric due to dispersion in the interferometer arms. 



17 
 

 

Fig. 17. Same as fig. 16 but for the 50x objective. The interferogram is slightly different and thus objective-dependent. 

Having filtered the signals at TSV and substrate, we solve the inverse problem by the MLA 

in Fourier space - where we already have the Fourier coefficients 𝑐TSV,𝑗 as well as 𝑓(k𝑗) on the 

basis of measurements and can propagate the harmonics by exponential factors in each iteration 

when computing the Fourier coefficients 𝑐sim,TSV,𝑗(∆𝑧t, 𝐻) of the simulated TSV as model-

based counterpart. Applying the precomputed effective indices here, which are stored in a table 

and interpolated, the computational cost is very low. The solution of the inverse problem 

requires the minimization of the 2𝑁 differences in the Fourier coefficients 𝑐sim,TSV,𝑗(∆𝑧t, 𝐻) 

and 𝑐TSV,𝑗. This leads to the merit function 

𝑚(∆𝑧t, 𝐻): = ∑ [𝑐sim,TSV,𝑗(∆𝑧t, 𝐻) − 𝑐TSV,𝑗]
2
+  cc𝑁

𝑗=1  , 

with 𝑐sim,TSV,𝑗(∆𝑧t, 𝐻): = 𝑓(𝑘𝑗)  𝑎t(𝑘𝑗)  exp(−2i𝑘𝑗∆𝑧t) + 

+𝑓(𝑘𝑗) 𝑎b(𝑘𝑗) exp(−2i𝑘𝑗∆𝑧t) ∙ exp{−2i𝑘𝑗Re[𝑛eff(𝑘𝑗)]𝐻} ∙ exp{−2𝑘𝑗Im[𝑛eff(𝑘𝑗)]𝐻},  (12) 

“cc” meaning “complex conjugated” so that the merit function is real.   
With the spectrum being quite narrow, we may approximate 𝑎t(𝑘𝑗) by at(𝑘c) and ab(𝑘𝑗) 

by ab(𝑘c) in the given case with 𝑘c the center frequency (the subscript “c” means “center”). 

An example of 𝑚(∆𝑧t, 𝐻) in dependence on 𝐻 is shown in fig. 18 (upper part); the shape of 

𝑚(∆𝑧t, 𝐻) around its global minimum is given by an envelope and an oscillation with the 

frequency 2𝑘cRe[𝑛eff(𝑘c)]. When the fringe patterns of the simulated and measured signal 

from the bottom coincide, 𝑚(∆𝑧t, 𝐻) has a local minimum regarding H; when there is a phase 

shift of π between them, it has a local maximum regarding H; the same holds for the fringe 

patterns associated with the top with respect to ∆𝑧t . With the MLA being merely locally 

convergent, it would be stuck in a local minimum with respect to ∆𝑧t as well as 𝐻. A rather 

similar problem has been reported in the case of white light interferometry [45] and spectral 

reflectometry [43] at thin films. In order to make the MLA globally convergent, we introduce 

the complex coefficients 𝑎sim,t  for 𝑎t(𝑘c)  and 𝑎sim,b  for 𝑎b(𝑘c)  as optimization parameters 

enabling phase optimization (fringe pattern optimization) and additionally, we aim at a mere 

propagation of the envelope of the signals from top and bottom - not of the associated optimized 

fringe positions having a frequency of 2𝑘cRe[𝑛eff(𝑘c)]. The resulting merit function reads  

𝑚̃(𝑎sim,t, ∆𝑧t, 𝑎sim,b, 𝐻): = ∑ [𝑐sim,TSV,𝑗(𝑎sim,t, ∆𝑧t, 𝑎sim,b, 𝐻) − 𝑐TSV,𝑗]
2𝑁

𝑗=1 + cc, 

with 𝑐sim,TSV,𝑗(𝑎sim,t, ∆𝑧t, 𝑎sim,b, 𝐻)  ∶= 𝑎sim,t 𝑓(𝑘𝑗)  exp[−2i(𝑘𝑗 − 𝑘c)∆𝑧t] + 

+  𝑎sim,b 𝑓(𝑘𝑗) exp[−2i(𝑘𝑗 − 𝑘c)∆𝑧t] ∙ exp{−2i𝑘𝑗Re[𝑛eff(𝑘𝑗)]𝐻 + 2i𝑘cRe[𝑛eff(𝑘c)]𝐻} ∙ 

∙ exp{−2𝑘𝑗  Im[𝑛eff(𝑘𝑗)]𝐻} ;    (13) 

a wavelength dependence of reflection and transmission at TSV top and bottom in the case of 

a broader spectrum could be incorporated into (13) by wavelength-dependent coupling 

coefficients as additional factors, which could be read and interpolated from precalculated 

tables.  
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Concluding, the simulated fringes are hardly moved when changing ∆𝑧t or 𝐻 from iteration 

to iteration and the phase of the simulated fringe patterns belonging to top and bottom is 

optimized in each iteration by the optimization of 𝑎sim,t and 𝑎sim,b. So, the oscillations are 

removed here in case of 𝑚̃(𝑎sim,t, ∆𝑧t, 𝑎sim,b, 𝐻), which is slowly varying and connects the 

local minima of the oscillating merit function 𝑚(∆𝑧t, 𝐻). Fig. 18 (lower part) shows an example 

of the resulting merit function 𝑚̃(𝑎sim,t, ∆𝑧t, 𝑎sim,b, 𝐻) in dependence on 𝐻 around its global 

minimum. The merit function is smooth so that even numeric differentiation of it with respect 

to ∆𝑧t and 𝐻 is possible.  

Since 𝑚̃(𝑎sim,t, ∆𝑧t, 𝑎sim,b, 𝐻) depends linearly on 𝑎sim,t and 𝑎sim,b, the convergence of the 

MLA is rapid with respect to them (about 2 - 3 iterations). The convergence of the MLA with 

respect to ∆𝑧t and 𝐻 depends on the estimate of 𝑘c: an error of several per cent here deteriorates 

the convergence notably, but an error in the order of ±1% doesn´t. Knowing the spectral 

amplitude at the sample, our errors in 𝑘c  are in the order of ±1%. The convergence also 

depends on the initial values. According to our experience, the convergence is best when 

starting the MLA with 𝑎sim,t = 𝑎sim,b = 0 . In this way, a mismatch of the phases of the 

simulated and the measured fringes cannot occur in the first iteration (and in later steps, it does 

not occur anyway). The most reasonable choice for the z-position of the TSV top is ∆𝑧t = 0; 

for 𝐻 , the expected value or several values within the expected range can be taken (e.g. 

equidistant sampling of an interval [𝐻min;  𝐻max]), usually leading to the same result. In the 

case of various results, the one minimizing the merit function (13) has to be selected.  

At this point, we do not yet exploit the information on the position of the fringes of the 

signal. Such information is still contained in the phase of at(𝑘c) and ab(𝑘c) and the value of 

𝑘c. However, with the fringes having a distance in the order of λc {2Re[𝑛eff(𝑘c)]}⁄ ≈ 0.66 nm, 

and our noisy OCT signals leading rather to a standard deviation of σ(H) in the order of several 

hundred nanometers in the presented examples (shallow, mostly small TSV, yielding weak, 

noisy signals from the TSV bottoms and overlapping signals from TSV top and bottom as in 

figs. 19 – 20), the decision whether 𝐻 is a fraction of λc {2Re[𝑛eff(𝑘c)]}⁄  larger or smaller so 

that it matches the measured fringe positions of 𝐼TSV(𝑧j) is subject to future work – together 

with further noise reductions.   

Our progress here is the electromagnetic modelling: We apply the correct values for 

𝑛eff(𝑘, 𝐷) , model the spectral amplitude and dispersion accurately, and in particular, we 

consider the interference of the fringe patterns from TSV top (1st term in (13)) and bottom (2nd 

term in (13)) contrary to [16,18,19,23,24]. These two intensity patterns can e.g. interfere 

constructively (coinciding fringes, leading to a large contrast 𝐶(𝑧) and envelope in the region 

of overlap as in fig. 19) or destructively (phase shift of 𝜋 between the fringes of both signals, 

leading to a low contrast and small envelope in the region of overlap as in fig. 20). In extreme 

cases, the contrast of the fringes of 𝐼TSV(𝑧𝑗) has more than 2 local maxima, so that it is at the 

first glance not clear which of these maxima to associate with the TSV top or bottom and which 

to associate with a region of constructive interference or a sidelobe (fig. 19). Our novel 

procedure gives a clear answer here at a low computational cost without the need of a very 

good initial guess.  
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Fig. 18. Example of merit functions (sum of squares) in dependence on the TSV height 𝐻.   Top: Merit function (12) 

oscillating in dependence on 𝐻; at local minima, the fringe patterns of modelled and measured signal from the TSV 

bottom coincide; at local maxima, they are phase-shifted by 𝜋 ; distance between two local minima: 

λc {2Re[𝑛eff(𝑘c)]}⁄ ≈ 0.66 µm.   Bottom: Merit function (13) in dependence on 𝐻 around its global minimum when 

working with optimized fringe positions and moving only the envelope of the signal from the TSV bottom. The 

computed values (purple crosses) coincide with the parabolic fit (green), meaning that the merit function is noise-free. 

With respect to ∆𝑧t , the merit functions look similar as with respect to 𝐻 . The optimized parameters are here 

(𝑎sim,t;  ∆𝑧t; 𝑎sim,b;  𝐻) = (-0.061 -0.29i; -0.53 µm; -0.036 -0.17i; 19.70 µm).  

6.3 Experimental verification 

We study the impact of our electromagnetic modelling on the basis of 1D trenches and circular 

holes of intended etching depth 20 µm. We consider TSVs of various diameters - smaller 

diameters leading to smaller depths due to the etching physics.  

We apply the MLA to (13). From a short look at few interferograms of 1D trenches of large 

width ∆𝑥, it is clear that there cannot be any etching depth larger than 24 µm. Thus, we restrict 

the modelled TSV height 𝐻 to the interval [4.01 µm; 24.00 µm] and start the MLA with the 

initial values 𝐻 = 5 µm, 𝐻 = 7 µm, ..., 𝐻 = 23 µm. In addition, we restrict ∆𝑧t to [-4.0 µm; +4.0 

µm], which is clearly sufficient (∆𝑧t is in the order of few hundred nm). With a convergence 

radius for 𝐻 in the order of 10 µm, this sampling is more than sufficient. In most cases, the 

values found for ∆𝑧t  and 𝐻  agree with an accuracy in the order of 1 nm; more than one 

minimum of 𝑚̃(𝑎sim,t, ∆𝑧t, 𝑎sim,b, 𝐻) is found in few cases and the smallest one is taken. The 

iteration number in the considered examples is usually in the order of 5 – 25; on average, it is 

in the order of 10. The number of considered complex Fourier coefficients is 175 here. Having 

implemented our procedure in C++ and running it on a laptop with a 2.6 GHz processor, one 

MLA iteration takes 0.9 ms. So, our iterative procedure is rapid.  

We compare the presented electromagnetic analysis of 𝐼TSV(𝑧) with the widely applied 

envelope-based one: here, equation (20) from [25],   
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 𝐶3 = √
(𝐼2−𝐼4)

2 − (𝐼1−𝐼3)(𝐼3−𝐼5)

4 sin4(𝜓)
 ,  (14) 

is applied in order to remove the fringes from 𝐼TSV and to extract the envelope – meaning the 

local fringe contrast 𝐶; 𝜓 is the phase step between adjacent sampling points, and 𝐼1, … , 𝐼5 are 

the adjacent intensity samples; all quantities here are z-dependent and discretized. The distance 

of the fringes is assumed to be 𝜆c 2⁄ . A reference spectrum or an interference between TSV top 

and bottom is not incorporated here.  

In the case of large 𝐻  or destructive interference, the signals from top and bottom are 

separated clearly so that 𝐶(𝑧) has 2 distinct maxima (fig. 20, top right) – one associated with 

the signal from the top and one with the signal from the bottom. We fit 𝐶(𝑧) with a sum of two 

Gaussian functions, optimizing their positions 𝑧t , 𝑧b, amplitudes 𝑎t , 𝑎b and widths FWHMt, 
FWHMb and conclude 𝐻 =  𝑧b − 𝑧t (figs. 19–20, top right). No information on the spectrum, 

dispersion or interferogram at a planar substrate is exploited here apart from the knowledge of 

𝜆c. In the case of shallow TSV, there may be only one maximum of 𝐶(𝑧) or more than two due 

to the coherent addition of the interference pattern from the top and the interference pattern 

from the bottom. Here, pre-knowledge on the intended etching depth and physics is required in 

order to start the Gaussian fits with initial values that are already very good. In contrast to this, 

our novel technique does not need such help.   

 
Fig. 19. Top left: measured interferogram before bandpass filtering. Bottom left, green: interferogram simulated with 

best matching parameter set for TE-polarization at a 1D trench of width ∆𝑥 = 2.5 µm; purple color in the background: 

measured signal after the smoothening bandpass filtering. Top right: Contrast 𝐶(𝑧) of the presented interferogram 

(purple); green: Gaussian fit with 𝐶fit(𝑧):= 𝑎t exp[−𝑏t(𝑧 − 𝑧t)
2] + 𝑎b exp[−𝑏b(𝑧 − 𝑧b)

2] + 𝑐𝑜𝑛𝑠𝑡 . The selected 

interferogram is an example of constructive interference between the signals reflected at TSV top and bottom. The 

common envelope-based technique leads to underestimating the distance 𝐻 = 𝑧b − 𝑧t  due to this constructive 

interference (see tab. 1). 
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Fig. 20. Top left: measured interferogram before bandpass filtering. Bottom left, green: interferogram simulated with 

best matching parameter set for linear polarization at a circular hole of diameter 𝐷 = 5 µm; purple: color in the 

background: measured signal after bandpass filtering. Top right: Contrast 𝐶(𝑧) of the presented interferogram (purple). 

Green: Gaussian fit as in fig. 19. The selected interferogram is an example of destructive interference between the 

signals reflected at TSV top and bottom. The common envelope-based technique concludes a too large distance 𝐻 =
𝑧b − 𝑧t here due to this destructive interference (see tab. 3).    

Table 1 lists the results obtained by the common as well as the novel technique for TE-

polarization at 1D trenches, table 2 for TM-polarization at 1D trenches and table 3 for linear 

polarization at circular holes. For each OCT measurement, there are two interferograms 

𝐼TSV(𝑧), one from the motion of the reference mirror in +𝑧 – direction and one from −𝑧 - 

direction. We treat and list them as separate measurements here and calculate weighted 

averages   

𝐻 = (∑
1

𝑒𝑟𝑟std,𝑛
2

𝜁
𝑛=1 )

−1

∙ ∑
1

𝑒𝑟𝑟std,𝑛
2  𝐻𝑛

𝜁
𝑛=1        (15) 

from them with 𝜁 = 2 the number of measurements in this paper. The “±” signs in the tables 

indicate asymptotic standard errors “𝑒𝑟𝑟std ” [50,51] calculated from the MLA; they are 

computed from the MLA residual and derivatives by  

  𝑒𝑟𝑟std = sqrt (  
𝑚̃(𝑎sim,t,   ∆𝑧𝑡,  𝑎sim,b,   𝐻)

𝑁−𝑄
 {diag[( 𝐽+ ∙ 𝐽 )−1]}4,4 )    (16) 

with 𝑚(𝑎sim,t,   ∆𝑧t,  𝑎sim,b,   𝐻)  the residual for the final set of parameters, 𝑁  the no. of 

coefficients (175 in this paper), 𝑄 = 4 the no. of degrees of freedom and 𝐽 the Jacobian matrix, 

𝐽𝑗,𝑞 = 𝜕𝑐sim,TSV,𝑗 𝜕parameter𝑞⁄ , where 𝑞 denotes the parameter number and parameter1 =

𝑎sim,t , parameter2 = ∆𝑧t , parameter3 = 𝑎sim,b ,  parameter4 = 𝐻 . The diagonal matrix 

element (4, 4) is taken since the desired quantity 𝐻 is the 4th optimization parameter here. 

Equation (16) is only an estimate for the standard deviation and moreover, it does not include 

all sources of errors. For example, it neglects the repeatability. The Gaussian fits have been 

done by “Gnuplot” [51]; the asymptotic standard errors here neglect additional errors 
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introduced by the underlying physical models - e.g. the fit of a non-Gaussian peak of 𝐶(𝑧𝑗) by 

a Gaussian function or missing interference effects between signals from top and bottom for 

the common envelope-based procedure. According to our experience, 𝑒𝑟𝑟std is too optimistic 

especially for the common envelope-based procedure and a small value of 𝑒𝑟𝑟std here does not 

at all mean that it delivers more accurate final results than our electromagnetic analysis. Instead, 

𝑒𝑟𝑟std is merely suited for comparisons within a certain analysis procedure – meaning within a 

single column in table 1 – 3, allowing the calculation of a weighted average (15). Moreover, 

𝑒𝑟𝑟std,n  allows a classification of the quality of the nth measurement. For example, 

measurements with 𝑒𝑟𝑟std,𝑛 ≥ 0.4 in the presented test cases, indicating a strong influence of 

noise or weak signals here, could be discarded automatically by a computer.  

Table 1. Results for H obtained from TE-polarization at 1D trenches 

Trench 

width 

∆𝑥/
µ𝑚 

𝐻/µ𝑚  from 

envelope 

detection plus 

Gaussian fits 

𝐻̅: weighted 

averaged 

𝐻/µ𝑚  (15) 

from Gaussian 
fits 

𝐻/µ𝑚  from 

novel 

technique 

with correct 

𝑛eff 

𝐻̅: 

weighted 
averaged 

𝐻/µ𝑚  (15) 

from novel 

technique 

|
𝑎b
𝑎t
∙ exp(−2𝑘c𝑛eff𝐻)| 

(values from electromag. 
analysis) 

3.0 18.9 ± 0.1 18.9  17.1 ± 0.1 17.2  0.69 

3.0 18.9 ± 0.1 17.2 ± 0.1 0.71 

2.5 14.6 ± 0.1 15.2  16.8 ± 0.2 16.4  1.52 

2.5 15.7 ± 0.1 16.0 ± 0.2 1.47 

2.0 16.6 ± 0.1 16.9  15.8 ± 0.2 15.8  0.97 

2.0 17.1 ± 0.1 15.9 ± 0.2 0.91 

Comparison of results for the TSV height 𝐻 obtained from TE-polarization at 1D trenches. The weighted averaged 

𝐻̅/µ𝑚 obtained by the novel technique is more accurate than 𝐻̅/µ𝑚 obtained by Gaussian fits of the envelope of 

signals. The first sub-line refers to +𝑧 – direction of the reference mirror, the second one to −𝑧 – direction each.   

Table 2. Results for 𝑯 obtained from TM-polarization at 1D trenches   

Trench 
width 

∆𝑥/µ𝑚 

𝐻/µ𝑚  from 

envelope 

detection plus 
Gaussian fits 

𝐻̅: weighted 

averaged  

𝐻/µ𝑚 (15) 

from 

Gaussian fits 

𝐻/µ𝑚  from 

novel    

technique 
with correct 

𝑛eff 

𝐻̅: weighted 

averaged  

𝐻/µ𝑚 (15) 

from novel 

technique 

|
𝑎b
𝑎t
∙ exp(−2𝑘c𝑛eff𝐻)| 

(values from electromag. 
analysis) 

3.0 19.9 ± 0.1 20.0 16.3 ± 0.2 17.4 0.48 

3.0 20.1 ± 0.1 17.7 ± 0.1 0.45 

2.5 19.2 ± 0.1 19.1 18.2 ± 0.3 17.8 1.26 

2.5 18.9 ± 0.1 17.6 ± 0.2 1.34 

2.0 19.6 ± 0.1 19.7 17.6 ± 0.2 18.1 0.50 

2.0 19.8 ± 0.1 18.7 ± 0.2 0.50 

Same as tab. 1 for TM-polarization for the sake of completeness. The signals from the bottom are much weaker here, 
leading to a larger influence of noise and errors in case of any technique. We recommend the use of TE-polarization 

at 1D trenches instead.    

Table 3. Results for 𝑯 obtained from linear polarization at circular holes  

Diameter 

𝐷/µ𝑚 

𝐻/µ𝑚  from 

envelope 
detection plus 

Gaussian fits 

𝐻̅: weighted 

averaged  

𝐻/µ𝑚 (15) from 

Gaussian fits 

𝐻/µ𝑚  from 

novel      
technique with 

correct 𝑛eff 

𝐻̅: weighted 

averaged  

𝐻/µ𝑚 (15) from 

novel technique 

12.0 20.7 ± 0.1 20.9  19.7 ± 0.1 19.7 

12.0 21.0 ± 0.1 19.9 ± 0.2 

7.0 16.4 ± 0.1 16.4  17.0 ± 0.3 17.4 

7.0 16.4 ± 0.1 17.6 ± 0.2 

5.0 19.7 ± 0.2 19.7 15.9 ± 0.1 15.9 
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5.0 19.7 ± 0.3 15.9 ± 0.1 

3.0 6.5 ± 0.2 7.1 13.8 ± 0.3 13.6 

3.0 9.3 ± 0.4 13.5 ± 0.2 

2.5 1.4 ± 0.5 2.0 10.7 ± 0.5 12.5 

2.5 2.4 ± 0.4 15.2 ± 0.6 

2.5 16.7 ± 0.1 16.7 14.2 ± 0.3 13.3 

2.5 16.8 ± 0.1 12.3 ± 0.3 

2.5 17.1 ± 0.2 17.0 12.9 ± 0.3 13.0 

2.5 17.0 ± 0.2 13.5 ± 0.6 

Same as tab. 1 for linear polarization at circular holes. The signals from the bottom are weak here for small diameters 

𝐷 ≤ 3.0 µm. The weighted averaged 𝐻̅/µ𝑚 obtained by the novel technique is more reliable and accurate than 𝐻̅/µ𝑚 

obtained by the conventional technique (envelope detection and subsequent fit of the envelope by a sum of two 
Gaussian functions). The conventional technique does not resolve the two signals from TSV top and bottom properly 

in two cases (𝐷 = 2.5 µm and 𝐷 = 3.0 µm) in contrast to the novel technique. One reason for this is the incorporation 

of less information into the analysis by the conventional technique (merely the fringe contrast) compared to the novel 

technique (fringe contrast, fringe positions, interference of fringe patterns, reference spectrum, etc.). So, the novel 

technique performs better in the case of weak signals close to the noise level as well as interfering signals from TSV 

top and bottom.    

The comparisons of the columns 3 and 5 of table 1 - 3 indicate that our novel 

electromagnetic analysis yields more reliable and accurate results for 𝐻: our novel analysis 

agrees better with the etching physics (smaller depths in case of smaller diameters or trench 

widths). In addition, the reproducibility is clearly better in case of our novel technique. In 

contrast to this, the common technique yields strongly varying heights 𝐻 particularly when 

measuring small circular TSV of the same size (𝐷 = 2.5 µm) or similar size (𝐷 = 2.5 µm and 

𝐷 = 3.0 µm). The tables for the 1D trenches contain an additional column on the right, dividing 

the amplitude of the signal from the bottom by the one from the top. This confirms our findings 

that the signal from the bottom is weaker (and thus more difficult to detect) for TM-polarization. 

Concluding, TE-polarization is preferable for the analysis of narrow 1D trenches.  

In the case of the circular hole of diameter 𝐷 = 2.5 µm, there are 𝜁 = 6 measurements in 

total, so that the calculation of a standard deviation 𝜎(𝐻) is reasonable:   

𝜎(𝐻) = √
1

𝜁−1
∙ (∑

1

𝑒𝑟𝑟std,𝑛
2

𝜁
𝑛=1 )

−1

∙  ∑
1

𝑒𝑟𝑟std,𝑛
2  

𝜁
𝑛=1

(𝐻𝑛 − 𝐻)
2  .   (17) 

Evaluating these 6 measurements on the basis of (15) and (17), we get 𝐻 = 16.2 µm, 𝜎(𝐻) = 

0.5 µm for the common technique and 𝐻 = 13.1 µm, 𝜎(𝐻) = 0.4 µm for the novel technique. 

The result obtained by the novel technique is in better agreement with the etching physics and 

has a smaller standard deviation than the one obtained by the common technique.  

The minimum width ∆𝑥 or diameter 𝐷 for which we can measure 𝐻 reliably is 2.0 µm for 

the 1D trenches and 2.5 µm for the circular holes, which coincides rather well with our findings 

for the maximum measurable depth (section 5). However, further progress is possible here in 

our opinion by reducing the influence of noise and sampling 𝐼(𝑧) more densely. In the case of 

a small ∆𝑥 or 𝐷, it would be beneficial to use an objective of larger NA and magnification (e.g. 

NA = 0.7 and 100x magnification, presuming a complete filling of the entrance pupil of the 

objective).  

Summarizing, the precision of H and the axial resolution depend on the physical modelling, 

the data evaluation, but also on the dispersion and the coherence length 𝑙c of the light source 

(we have chosen the settings of the OCT device available to us so that 𝑙c has been as small as 

possible). The present paper has been focussed on the modelling and data evaluation; a section 

of a future publication will be devoted to the utilized light source and its spectrum.   

7. Conclusion 

In this paper, we have rigorously simulated a Time-Domain OCT device for improving the 

accuracy of Through Silicon Via (TSV) height measurements – also in the case of overlapping 
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fringe patterns, and compared the results to those of previous publications on the subject. We 

have considered circular holes and 1D trenches as the most common shapes of TSVs. The 

simulations have been conducted using realistic, recorded spectra of the light source, and 

considering interferometer dispersion.    

The most accurate but also computationally heaviest technique applied here is the rigorous 

modal calculation based on a Fourier-Bessel basis for circular TSVs and on the aperiodic 

Fourier modal method (a-FMM) for 1D trenches. This technique allows us to calculate the 

modal propagation constants and effective indices for the TSVs, which can be used for an 

accuracy enhancement of usual methods that are based on ray tracing. These effective indices 

have a real part impacting the optical path length as well as an imaginary part characterizing 

the signal attenuation due to radiative leakage at the sidewalls. For TSV diameters below 5 µm, 

the effective indices differ considerably from the ones in air so that we recommend to take them 

into account. Aiming at a combination of an accuracy similar to a modal calculation with the 

physical intuition of ray-tracing techniques, we have introduced the Fabry-Perot model. This 

model is a very good approximation in the case of TSVs with a sufficient aspect ratio (in the 

order of 10) when only the fundamental mode determines the interaction between top and 

bottom significantly, which is mostly the case in practice. The reflection and transmission 

coefficients can be taken from the rigorously calculated S-matrix entries (coupling coefficients) 

and the propagation between top and bottom takes place by application of effective indices. On 

the basis of this model, we have estimated the maximum measurable depth of TSVs for 

illumination and detection from the top, which depends on TSV width or diameter, TSV shape 

and the wavelength range. In the case of small diameters or very deep TSV, the use of smaller 

wavelengths or the inclusion of additional measurements from below is advisable.  

Based on our electromagnetic analysis, we have developed our insight at a novel analysis 

procedure for time-domain OCT at TSV. This analysis comprises data preprocessing by 

smoothening filters, the accurate knowledge of the spectrum, dispersion, effective indices, 

amplitude as well as phase information and the interference of the fringe patterns associated 

with TSV top and bottom. The novel procedure is based on an iterative least squares approach, 

but globally convergent in a given parameter interval due to the presented enhancements and 

can be readily automated. It is more reliable and accurate than the popular envelope-based 

technique, but nevertheless rapid. We think that it is a good basis for future progress, such as 

further accuracy enhancements, analysis of smaller TSVs and the conclusion of additional TSV 

parameters such as diameter profiles.  
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