Line-field confocal optical coherence tomography

Jonas Ogien¹, Olivier Levecq¹, Hicham Azimani¹, Arthur Davis^{1,2}, Weikai Xue², David Siret¹, Jean-Luc Perrot³, Arnaud Dubois²

DAMAE Medical, 28 rue de Turbigo, 75003 Paris, France Laboratoire Charles Fabry, Institut d'Optique Graduate School, Université Paris-Sud, 91127 Palaiseau Cedex, France Service dermatologie, CHU St-Etienne, 42055 Saint-Etienne, France arnaud.dubois@institutoptique.fr

100-word abstract

A time-domain optical coherence tomography technique is presented for ultrahigh-resolution B-scan imaging in real-time. The technique is based on a two-beam interference microscope with line illumination and line detection, using a supercontinuum laser and a line-scan camera. Multiple (2048) A-scans are acquired in parallel by scanning the sample depth while adjusting the focus. A quasi isotropic spatial resolution of $1.3 \,\mu\text{m} \times 1.1 \,\mu\text{m}$ (lateral × axial) is achieved. *In vivo* cellular level resolution imaging of normal and cancerous human skin is demonstrated at 10 frame/s with a penetration depth of ~ 500 μm .