D. N. Louis, A. Perry, G. Reifenberger, A. Deimling, D. Figarella-branger et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathol, vol.131, issue.6, pp.803-820, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

K. Petrecca, M. Guiot, V. Panet-raymond, and L. Souhami, Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma, J. Neurooncol, vol.111, issue.1, pp.19-23, 2013.

E. R. Laws, I. F. Parney, W. Huang, F. Anderson, A. M. Morris et al., Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project, Glioma Outcomes Investigators, vol.99, pp.467-473, 2003.

Y. M. Li, D. Suki, K. Hess, and R. Sawaya, The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection?, J. Neurosurg, vol.124, issue.4, pp.977-988, 2016.

M. Lacroix and S. A. Toms, Maximum Safe Resection of Glioblastoma Multiforme, J. Clin. Oncol, vol.32, issue.8, pp.727-728, 2014.

G. N. Wu, J. M. Ford, and J. R. Alger, MRI measurement of the uptake and retention of motexafin gadolinium in glioblastoma multiforme and uninvolved normal human brain, J. Neurooncol, vol.77, issue.1, pp.95-103, 2006.

N. Sanai, M. Polley, M. W. Mcdermott, A. T. Parsa, and M. S. Berger, An extent of resection threshold for newly diagnosed glioblastomas, J. Neurosurg, vol.115, issue.1, pp.3-8, 2011.

C. Senft, A. Bink, K. Franz, H. Vatter, T. Gasser et al., Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial, Lancet Oncol, vol.12, issue.11, pp.997-1003, 2011.

P. L. Kubben, K. J. Ter-meulen, O. E. Schijns, M. P. Ter-laak-poort, J. J. Van-overbeeke et al., Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review, Lancet Oncol, vol.12, issue.11, pp.1062-1070, 2011.

A. Nabavi, P. M. Black, D. T. Gering, C. Westin, V. Mehta et al., Serial intraoperative magnetic resonance imaging of brain shift, Neurosurgery, vol.48, issue.4, pp.797-798, 2001.

Y. Li, R. Rey-dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-gadol, Intraoperative Fluorescence-Guided Resection of High-Grade Gliomas: A Comparison of the Present Techniques and Evolution of Future Strategies, World Neurosurg, vol.82, issue.1-2, pp.175-185, 2014.

J. T. Liu, D. Meza, and N. Sanai, Trends in Fluorescence Image-Guided Surgery for Gliomas, Neurosurgery, vol.75, issue.1, pp.61-71, 2014.

P. A. Valdés, D. W. Roberts, F. Lu, and A. Golby, Optical technologies for intraoperative neurosurgical guidance, Neurosurg. Focus, vol.40, issue.3, p.8, 2016.

R. Maugeri, A. Villa, M. Pino, A. Imperato, G. R. Giammalva et al., With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas, Brain Sci, vol.8, issue.2, p.31, 2018.

E. D. Bander, R. Magge, and R. Ramakrishna, Advances in Glioblastoma Operative Techniques, World Neurosurg, vol.116, pp.529-538, 2018.

W. Stummer, H. Stepp, G. Möller, A. Ehrhardt, M. Leonhard et al., Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue, Acta Neurochir. (Wien), issue.10, pp.995-1000, 1998.

A. Johansson, G. Palte, O. Schnell, J. Tonn, J. Herms et al., 5-Aminolevulinic Acid-induced Protoporphyrin IX Levels in Tissue of Human Malignant Brain Tumors, Photochem. Photobiol, vol.86, issue.6, pp.1373-1378, 2010.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella et al., Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, Lancet Oncol, vol.7, issue.5, pp.392-401, 2006.

N. Haj-hosseini, J. C. Richter, P. Milos, M. Hallbeck, and K. Wårdell, 5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy, Biomed. Opt. Express, vol.9, issue.5, pp.2284-2296, 2018.

B. Kiesel, M. Millesi, A. Woehrer, J. Furtner, A. Bavand et al., 5-ALA-induced fluorescence as a marker for diagnostic tissue in stereotactic biopsies of intracranial lymphomas: experience in 41 patients, Neurosurg. Focus, vol.44, issue.6, p.7, 2018.

J. J. Bravo, J. D. Olson, S. C. Davis, D. W. Roberts, K. D. Paulsen et al., Hyperspectral data processing improves PpIX contrast during fluorescence guided surgery of human brain tumors, Sci. Rep, vol.7, issue.1, p.9455, 2017.

C. G. Hadjipanayis, G. Widhalm, and W. Stummer, What is the Surgical Benefit of Utilizing 5-Aminolevulinic Acid for Fluorescence-Guided Surgery of Malignant Gliomas?, Neurosurgery, vol.77, issue.5, pp.663-673, 2015.

M. Jaber, C. Ewelt, J. Wölfer, B. Brokinkel, C. Thomas et al., Is Visible Aminolevulinic Acid-Induced Fluorescence an Independent Biomarker for Prognosis in Histologically Confirmed (World Health Organization 2016) Low-Grade Gliomas?, Neurosurgery, 2018.

B. Kiesel, M. Mischkulnig, A. Woehrer, M. Martinez-moreno, M. Millesi et al., Systematic histopathological analysis of different, vol.10, p.2490, 2019.

, 5-aminolevulinic acid-induced fluorescence levels in newly diagnosed glioblastomas, J. Neurosurg, vol.129, issue.2, pp.341-353, 2018.

E. Belykh, E. J. Miller, A. A. Patel, B. Bozkurt, K. Ya?murlu et al., Optical Characterization of Neurosurgical Operating Microscopes: Quantitative Fluorescence and Assessment of PpIX Photobleaching, Sci. Rep, vol.8, issue.1, p.12543, 2018.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements, J. Biomed. Opt, vol.15, issue.6, p.67006, 2010.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson et al., Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker, J. Neurosurg, vol.115, issue.1, pp.11-17, 2011.

P. A. Valdés, V. L. Jacobs, F. Leblond, B. C. Wilson, K. D. Paulsen et al., Quantitative spectrally resolved intraoperative fluorescence imaging for neurosurgical guidance in brain tumor surgery: pre-clinical and clinical results, vol.8928, pp.892809-892809, 2014.

P. A. Valdés, V. Jacobs, B. T. Harris, B. C. Wilson, F. Leblond et al., Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in lowgrade glioma surgery, J. Neurosurg, vol.123, issue.3, pp.771-780, 2015.

N. Haj-hosseini, J. Richter, S. Andersson-engels, and K. Wårdell, Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid, Lasers Surg. Med, vol.42, issue.1, pp.9-14, 2010.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki et al., Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification, Brain Tumor Pathol, vol.28, issue.1, pp.43-51, 2011.

B. Montcel, L. Mahieu-williame, X. Armoiry, D. Meyronet, and J. Guyotat, Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas, Biomed. Opt. Express, vol.4, issue.4, pp.548-558, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00828529

T. Yoneda, N. Nonoguchi, N. Ikeda, R. Yagi, S. Kawabata et al., Spectral Radiance of Protoporphyrin IX Fluorescence and Its Histopathological Implications in 5-Aminolevulinic Acid-Guided Surgery for Glioblastoma, Photomed. Laser Surg, vol.36, issue.5, pp.266-272, 2018.

S. Kröger, A. Niehoff, A. Jeibmann, M. Sperling, W. Paulus et al., Complementary Molecular and Elemental Mass-Spectrometric Imaging of Human Brain Tumors Resected by FluorescenceGuided Surgery, Anal. Chem, vol.90, issue.20, pp.12253-12260, 2018.

T. B. Melø and G. Reisaeter, The physicochemical state of protoporphyrin IX in aqueous solution investigated by fluorescence and light scattering, Biophys. Chem, vol.25, issue.1, pp.99-104, 1986.

G. I. Lozovaya, Z. Masinovsky, and A. A. Sivash, Protoporphyrin IX as a possible ancient photosensitizer: spectral and photochemical studies, Orig. Life Evol. Biosph, vol.20, issue.3-4, pp.321-330, 1990.

L. Alston, D. Rousseau, M. Hebert, L. Mahieu-williame, and B. Montcel, Nonlinear relation between concentration and fluorescence emission of protoporphyrin IX in calibrated phantoms, J. Biomed. Opt, vol.23, issue.9, pp.1-7, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890753

C. Fuchs, R. Riesenberg, J. Siegert, and R. Baumgartner, H-dependent formation of 5-aminolaevulinic acidinduced protoporphyrin IX in fibrosarcoma cells, J. Photochem. Photobiol. B, vol.40, issue.1, pp.49-54, 1997.

M. Zanello, F. Poulon, J. Pallud, P. Varlet, H. Hamzeh et al., Multimodal optical analysis discriminates freshly extracted human sample of gliomas, metastases and meningiomas from their appropriate controls, Sci. Rep, vol.7, issue.1, p.41724, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01744018

W. Dietel, C. Fritsch, R. H. Pottier, and R. Wendenburg, 5-Aminolaevulinic-acid-induced formation of different porphyrins and their photomodifications, Lasers Med. Sci, vol.12, issue.3, pp.226-236, 1997.

G. A. Barron, R. Valentine, H. Moseley, L. Brancaleon, C. Hill et al., Porphyrin profile in four human cell lines after supplementation with 5-aminolaevulinic acid and its methyl ester, Photodiagn. Photodyn. Ther, vol.10, issue.4, pp.654-663, 2013.

C. K. Hope and S. M. Higham, Evaluating the effect of local pH on fluorescence emissions from oral bacteria of the genus Prevotella, J. Biomed. Opt, vol.21, issue.8, p.84003, 2016.

W. Dietel, R. Pottier, W. Pfister, P. Schleier, and K. Zinner, 5-Aminolaevulinic acid (ALA) induced formation of different fluorescent porphyrins: A study of the biosynthesis of porphyrins by bacteria of the human digestive tract, J. Photochem. Photobiol. B, vol.86, issue.1, pp.77-86, 2007.

M. Marois, J. Bravo, S. C. Davis, and S. C. Kanick, Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms, J. Biomed. Opt, vol.21, issue.3, p.303003, 2016.

D. A. Haidar, B. Leh, M. Zanello, and R. Siebert, Spectral and lifetime domain measurements of rat brain tumors, Biomed. Opt. Express, vol.6, issue.4, pp.1219-1233, 2015.

A. C. Croce and G. Bottiroli, Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis, Eur. J. Histochem, vol.58, issue.4, p.2461, 2014.

K. Omoto, R. Matsuda, I. Nakagawa, Y. Motoyama, and H. Nakase, False-positive inflammatory change mimicking glioblastoma multiforme under 5-aminolevulinic acid-guided surgery: A case report, Surg. Neurol. Int, vol.9, issue.1, p.49, 2018.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim et al., Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma, Sci. Rep, vol.7, issue.1, p.12221, 2017.

E. Yoshioka, V. S. Chelakkot, M. Licursi, S. G. Rutihinda, J. Som et al., Enhancement of Cancer-Specific Protoporphyrin IX Fluorescence by Targeting Oncogenic Ras/MEK Pathway, Theranostics, vol.8, issue.8, pp.2134-2146, 2018.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses et al., ?-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy, Neuro-oncol, vol.13, issue.8, pp.846-856, 2011.

H. H. Thaw, Optimal conditions for the measurement of lipid peroxidation products (lipofuscin) in individual cultivated human glial and glioma cells, Mech. Ageing Dev, vol.38, issue.1, pp.79-87, 1987.