Z. Apalla, Epidemiological trends in skin cancer, Dermatol. Pract. Concept, vol.7, pp.1-6, 2017.
DOI : 10.5826/dpc.0702a01

URL : https://www.derm101.com/wp-content/uploads/dp0702a01.pdf

M. M. Carthy, US melanoma prevalence has doubled over past 30 years, Br. Med. J, vol.350, p.3074, 2015.

A. M. Glazer, Clinical diagnosis of skin cancer: enhancing inspection and early recognition, Dermatol. Clin, vol.35, pp.409-416, 2017.

N. Woltsche, Dermoscopy in the era of dermato-oncology: from bed to bench side and retour, Expert Rev. Anticancer Ther, vol.16, pp.531-541, 2016.

S. R. Fuller, Digital dermoscopic monitoring of atypical nevi in patients at risk for melanoma, Dermatol. Surg, vol.33, pp.1198-1206, 2007.

H. Kittler, Diagnostic accuracy of dermoscopy, Lancet Oncol, vol.3, pp.159-165, 2002.

N. Kollias and G. N. Stamatas, Optical non-invasive approaches to diagnosis of skin diseases, J. Investig. Dermatol. Symp. Proc, vol.7, pp.64-75, 2002.

C. Fink and H. A. Haenssle, Non-invasive tools for the diagnosis of cutaneous melanoma, Skin Res. Technol, vol.23, pp.261-271, 2017.

K. Konig and I. Riemann, High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution, J. Biomed. Opt, vol.8, pp.432-439, 2003.

G. Pellacani, The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions, J. Invest. Dermatol, vol.127, pp.2759-2765, 2007.

P. Guitera, The impact of in vivo reflectance confocal microscopy on the diagnostic accuracy of lentigo maligna and equivocal pigmented and nonpigmented macules of the face, J. Invest. Dermatol, vol.130, pp.2080-2091, 2010.

I. Alarcon, Impact of in vivo reflectance confocal microscopy on the number needed to treat melanoma in doubtful lesions, Br. J. Dermatol, vol.170, pp.802-808, 2014.

J. Champin, In vivo reflectance confocal microscopy to optimize the spaghetti technique for defining surgical margins of lentigo maligna, Dermatol. Surg, vol.40, pp.247-256, 2014.

D. Huang, Optical coherence tomography, Science, vol.254, pp.1178-1181, 1991.
URL : https://hal.archives-ouvertes.fr/tel-01957283

J. Welzel, Optical coherence tomography of the human skin, J. Am. Acad. Dermatol, vol.37, pp.958-963, 1997.

J. Welzel, Optical coherence tomography in dermatology: a review, Skin Res. Technol, vol.7, pp.1-9, 2001.

M. A. Boone, Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. A pilot study, Br. J. Dermatol, vol.167, pp.856-864, 2012.

A. J. Coleman, Histological correlates of optical coherence tomography in non-melanoma skin cancer, Skin Res. Technol, vol.19, pp.10-19, 2013.

M. Ulrich, The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of nonpigmented basal cell carcinoma: an observational study, Br. J. Dermatol, vol.173, pp.428-435, 2015.

A. Levine, K. Wang, and O. Markowitz, Optical coherence tomography in the diagnosis of skin cancer, Dermatol. Clinics, vol.35, pp.465-488, 2017.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nat. Biotechnol, vol.21, pp.1369-1377, 2003.

A. G. Podoleanu, Optical coherence tomography, J. Microsc, vol.247, pp.209-219, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00557342

M. A. Choma, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Opt. Express, vol.11, pp.2183-2189, 2003.

Z. Ding, High-resolution optical coherence tomography over a large depth range with an axicon lens, Opt. Lett, vol.27, pp.243-245, 2002.

R. A. Leitgeb, Extended focus depth for Fourier domain optical coherence microscopy, Opt. Lett, vol.31, pp.2450-2452, 2006.

K. S. Lee and J. P. Rolland, Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range, Opt. Lett, vol.33, pp.1696-1698, 2008.

, Journal of Biomedical Optics, vol.23, issue.10, 2018.

. Dubois, Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors
URL : https://hal.archives-ouvertes.fr/hal-01913796

J. Mo, M. De-groot, and J. F. De-boer, Focus-extension by depthencoded synthetic aperture in optical coherence tomography, Opt. Express, vol.21, pp.10048-10061, 2013.

T. S. Ralston, Interferometric synthetic aperture microscopy, Nat. Phys, vol.3, pp.129-134, 2007.

L. Yu, Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method, Opt. Express, vol.15, pp.7634-7641, 2007.

G. Liu, Z. Zhi, and R. K. Wang, Digital focusing of OCT images based on scalar diffraction theory and information entropy, Biomed. Opt. Express, vol.3, pp.2774-2783, 2012.

A. Grebenyuk, Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination, Appl. Opt, vol.53, pp.1697-1708, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956673

J. P. Rolland, Gabor-based fusion technique for optical coherence microscopy, Opt. Express, vol.18, pp.3632-3642, 2010.

J. Holmes and S. Hattersley, Image blending and speckle noise reduction in multi-beam OCT, Proc. SPIE, vol.7168, p.71681, 2009.

J. M. Schmitt, S. L. Lee, and K. M. Yung, An optical coherence microscope with enhanced resolving power in thick tissue, Opt. Commun, vol.142, pp.203-207, 1997.

B. Qi, Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror, Opt. Commun, vol.234, pp.443-448, 2004.

W. Drexler, In vivo ultrahigh-resolution optical coherence tomography, Opt. Lett, vol.24, pp.1221-1223, 1999.

V. X. Yang, Micromachined array tip for multifocus fiber-based optical coherence tomography, Opt. Lett, vol.29, pp.1754-1756, 2004.

J. A. Izatt, Optical coherence microscopy in scattering media, Opt. Lett, vol.19, pp.590-592, 1994.

H. C. Lee, Ultrahigh speed spectral-domain optical coherence microscopy, Biomed. Opt. Express, vol.4, pp.1236-1254, 2013.

V. J. Srinivasan, Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast, Opt. Express, vol.20, pp.2220-2239, 2012.

Y. Chen, Improved detection sensitivity of line-scanning optical coherence microscopy, IEEE J Sel. Top. Quantum Electron, vol.18, pp.1094-1099, 2012.

A. D. Aguirre, High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging, Opt. Lett, vol.28, pp.2064-2066, 2003.

Y. Chen, High-resolution line-scanning optical coherence microscopy, Opt. Lett, vol.32, pp.1971-1973, 2007.

E. Beaurepaire, Full-field optical coherence microscopy, Opt. Lett, vol.23, pp.244-246, 1998.

A. Dubois, Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt, vol.43, pp.2874-2882, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00533151

S. Schuh, Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer, Skin Res. Technol, vol.22, pp.395-405, 2016.

E. Dalimier and D. Salomon, Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging, Dermatology, vol.224, pp.84-92, 2012.

J. Ogien and A. Dubois, A compact high-speed full-field optical coherence microscope for high resolution in vivo imaging, J. Biophotonics, 2018.

A. Dubois, Focus defect and dispersion mismatch in full-field optical coherence microscopy, Appl. Opt, vol.56, pp.142-150, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01521643

K. G. Larkin, Efficient nonlinear algorithm for envelope detection in white light interferometry, J. Opt. Soc. Am. A, vol.13, pp.832-843, 1996.

S. H. Yun, Motion artifacts in optical coherence tomography with frequency-domain ranging, Opt. Express, vol.12, pp.2977-2998, 2004.

, Arnaud Dubois received his PhD in physics from Paris-Sud University in 1997. Since 2006, he is a professor of optics at Institut d'Optique Graduate School

. Dubois, Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors
URL : https://hal.archives-ouvertes.fr/hal-01913796