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ABSTRACT  

Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent 

beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser 

properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we 

present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers 

are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input 

section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, 

using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The 

currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous 

studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per 

emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three 

devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate 

contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a 

nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic 

beam quality of the amplifiers. Further increased combined power is currently sought. 
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1. INTRODUCTION 

High power diode lasers provide the optical energy for many laser systems and benefit from a high electrical-to-optical 

efficiency. Even if the brightness of such systems has been dramatically increased within the last decade, it is still an 

important challenge to scale the power in a beam close to the diffraction limit. Power scaling of industrial diode laser 

systems is usually based on incoherent geometrical beam combining technologies and spectral beam combining1,2. 

Geometrical beam combining automatically deviates from the diffraction limit, while power scaling via spectral beam 

combining is limited by the number of achievable wavelength channels and minimum wavelength spacing. In contrast, 

coherent beam combining (CBC) consists of the superposition of individual laser beams by constructive interference into 

one high-power laser beam and maintains a single laser line and a diffraction-limited beam profile3. The power and the 

spatial brightness can be scaled far above from what could be achieved from a single device. While CBC in the kW-range 

has been successfully demonstrated with different approaches and different laser materials4,5, CBC of diode lasers is still 

limited to much lower power levels. Recent studies of arrays of laterally single mode devices enable around 1 W per 

channel, delivering up to 40 W in a single diffraction limited beam from 47 phase-locked elements6. On the one hand, 

arrays of amplifiers offer an elegant solution to scale the number of active devices, and the phase relation between these 

elements is usually more stable than for individually mounted emitters as they are exposed to approximately the same 

fluctuations of the temperature. On the other hand, the achievable power per amplifier of such systems is significantly 

lower compared to the performance of high power individual emitters.  



 

 
 

 

We are therefore currently working on Master Oscillator Power Amplifier (MOPA) architectures for CBC based on a small 

number of individual emitters allowing us to reach comparable power levels with a significantly reduced number of 

elements and a smaller footprint7. We investigate CBC of tapered laser amplifiers because their high power and excellent 

beam quality is a perfect starting point for power scaling8. 

 

2. AMPLIFIER CHARACTERIZATION 

2.1 Standard characterization 

The tapered amplifiers (TPA) were grown on GaAs substrates using MOVPE, fabricated into individual, 6 mm long 

devices using i-line lithography. In the studies presented here, we made use of TPAs identical to lasers previously described 

by Fiebig et al.9, but with the internal grating section being replaced by a long (2 mm) ridge waveguide (RW) section. The 

tapered section was 4 mm long (αT = 6° taper angle). Both facets were passivated and anti-reflection coated. The amplifiers 

are mounted p-side up on CuW heat spreaders and C-mounts, with separate electrical contacts used in order to control the 

injection current of ridge (Irw) and tapered section (Itp) independently. We use C-mounts in order to be able to easily access 

both facets of the amplifier. The C-mounts were fixed on to a Cu-block that served both as a heatsink and as an optical 

bench for the collimation optics. The heatsink temperature (T = 20 °C) was actively controlled by a Peltier device mounted 

on a water cooled radiator.  The master oscillator (MO) was a narrow bandwidth DFB laser (λ = 976 nm). We present in 

the following standard test and phase noise characterization of the used amplifiers under representative bias conditions. 

 

The output power characteristic Pout (Itp) is shown in Figure 1 for a constant ridge current Irw = 400 mA. Each of the 

amplifier elements reaches about 6.5 W at 10 A and a heat sink temperature of 20°C. The output power Pout (Itp) has a close 

to linear current dependence when operated in the range Itp =  2-9 A. We limit the maximum drive current in the tapered 

section to 10 A since it is challenging to efficiently cool the C-Mounts used. The power content in the central lobe 

(diffraction limited content8,9) decreases with the current in the tapered section from about 90% at 3 A to about 70% at 10 

A reaching about 4.5 W per device. The electrical to optical efficiency (total power) is higher than 34 % at 7 A neglecting 

the power consumed in the ridge section. The output power characteristic Pout (Irw) shown on the right side in Figure 1 for 

Itp = 7 A indicates that the power amplifier is mostly saturated in the range of 250-400 mA. We use the ridge current of the 

amplifiers to correct for the relative phase fluctuations in the multi-arm interferometer to achieve CBC in our experimental 

setup which is presented later in this proceeding. The relation between the phase piston and the ridge current is close to 

linear and a current variation of ΔIrw = 35 mA corresponds to a phase piston of ΔΦ ≈ π in the used TPA10. We can 

comfortably use variations of the ridge current in the range of 250 to 400 mA with limited impact on the output power per 

element as shown earlier in Figure 1. Furthermore, we observed a saturation of the output power for a seed power level of 

10 mW meaning that the amplifiers are quite insensitive to slight imbalances of the input power if P in > 10 mW.  

 

Figure 1: Output power characteristic Pout(Itp) for three TPAs at constant ridge current (left), output power characteristics 

Pout(Irw)  of one TPA at constant current in tapered section for different injection powers (right).   
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2.2 Phase noise characterization 

Efficient MOPA-CBC requires a precise control of the relative phases. A mismatch of the phase pistons leads to a decreased 

combining efficiency and a phase mismatch of π/30 leads to loss of about 1 % for CBC of two beams on a beam splitter11. 

It is therefore important to investigate the phase noise in the used TPAs in order to be able to determine the requirements 

for an active phase control 

We measured the phase noise of one TPA under representative bias conditions using a Mach-Zehnder interferometer shown 

in Figure 2. The seed laser beam was optically isolated by Faraday isolators with a total isolation of >50 dB. The input 

beam was divided in two parts using a 50:50 beam splitter. The amplified beam was superimposed at a small angle to the 

reference beam using a beam sampler with about 4% reflection. This way one can achieve similar intensity levels for the 

amplified and reference beam leading to highly contrasted interference fringes. The image captured with a NIR-CCD 

camera shows a high visibility (V ≈ 97 %) of the fringes indicating a high degree of coherence. The position of the fringes, 

given by  
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 1 2 1 2
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2
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is directly related to the relative phase ΔΦ between the two arms of the interferometer. Assuming that the phase in the 

passive reference arm is stable one can use these interference fringes to measure the induced phase fluctuations in the TPA. 

To do so, the camera was then replaced by two photodiodes placed in quadrature configuration, meaning with a relative 

shift of π/2, in the interference fringes. The signal of the photodiode was recorded at representative bias conditions (P in = 

10 mW, Irw = 400 mA, Itp = 7A). The measured phase fluctuations are shown in Figure 3. We note that the phase-drift over 

an observation time of 200 s is of the order of 8 rad. However, the fluctuations of the phase are slow with a standard 

deviation of σ(Φ) = 0.1 rad ≈ π/30 over one second.  

 

The corresponding phase noise spectral density Sφ(f) is shown in Figure 4 (left) and confirms the domination of low 

frequencies (f < 10 Hz) indicating that the observed phase noise is probably linked to thermal fluctuations in the TPA. The 

recorded phase noise was far above the corresponding background noise level of the measurement setup which was below 

1 kHz. The low frequency character of the phase noise in semiconductor laser amplifiers is one advantage with respect to 

the phase noise of fiber amplifiers, where high frequency phase control is required in CBC-setups3. The integrated phase 

noise Sint(F) 

 

Figure 3: Measured drift of the relative phase in one TPA at Itp = 7 A, Irw = 400 mA, Pin = 10 mW and T = 20°C 

Figure 2: Experimental setup for phase noise measurement and interference fringe pattern 
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is shown in Figure 4 (right) and increases strongly with the current in the tapered section. The level of π/30 is reached at 

about 1 Hz for at a drive current of 7 A.  

As presented earlier in section 2.1, one can use active adjustment of the ridge current in the range of 250 to 400 mA to 

control the phase pistons of the amplifier with limited impact on the output power. Regarding the requirements for the 

active phase control we can conclude that a simple control of the phase pistons by adjusting the ridge currents is sufficient 

to ensure stable CBC with less than π/30 phase mismatch in the amplifiers.  

 

3. EXPERIMENTAL SETUP 

We recently reported on MOPA-CBC using a mini-array of comparable devices12. While experimental setups using arrays 

of amplifiers are an elegant solution to reduce phase fluctuations between the individual elements on the array, the 

experimental setup requires large diameter optics and non-standard diffractive optical elements (DOE) for splitting and 

recombining the beams. Lenses with a relatively long focal length (f ≈ 100 mm) are usually required while working with 

DOE in such experimental setups. The potential of an integration in small-footprint modules is much higher for individually 

mounted elements and separation and combination of the beam with standard beam splitters. 

We present MOPA-CBC of three individual amplifiers in a simple experimental setup shown in figure 5, based on a multi-

arm Mach-Zehnder interferometer. The MO is a narrowband distributed feedback (DFB) diode laser (λ = 976 nm) that is 

optically isolated by Faraday isolators with a total isolation of > 50 dB. The beam is split and recombined by standard 

50:50 beam splitters in three arms. The setup is insensitive to the resulting imbalances of the input power if the input power 

in each arm is above 10 mW (Figure 1). The beam was coupled in the RW by aspheric lenses with a focal length of 8 mm. 

The width of the RW was 4.5 μm for amplifier A1 in the upper arm and 5 μm for the two other amplifiers A2 and A3, 

limited by the availability of the devices. Each amplifier was mounted identically as described in section 2.1. The highly 

astigmatic amplified beam was collimated in fast axis (FA) with an aspheric lens with a focal length of 2.75 mm and in 

slow axis (SA) with an acylindrical lens with a focal length of 18 mm leading to slightly elliptical beams at the output. The 

SA-collimation was corrected manually when the current Itp in the amplifiers was changed in order to ensure a good overlap 

of the beams on the combining elements at each current. The beams A1 and A2 were combined on a first standard 50:50 

beam splitter and the combined beam was then overlapped with the third arm A3 on a second 50:50 beam splitter. Regarding 

the asymmetry of the setup, we note that the 50:50 coating of the second beam splitter is not optimal for this setup but the 

Figure 4: Phase noise spectrum of one TPA at Itp = 7 A, Irw = 400 mA, Pin = 10 mW and T = 20°C and dark noise level (left) and 

corresponding integrated phase noise compared to a reference measurement at lower drive current (Itp = 3 A) (right) 



 

 
 

 

expected impact on the achievable combining efficiency is below 3%. The optical power was measured simultaneously at 

the output (combined beam, Pout) and the two unusable ports (combining losses, L1 and L2) and the combining efficiency 

was defined as η =  𝑃𝑜𝑢𝑡 (𝑃𝑜𝑢𝑡 + 𝐿1 + 𝐿2)⁄ .  The heatsink temperature was controlled individually for each amplifier. The 

accumulated phases φ1-3 (t) in each arm of the amplifier therefore do not have a constant relation. We used the first arm A1 

of the amplifier in free-running configuration and used a closed loop for phase stabilization in the other arms by changing 

the currents Irw of A2 and A3. A small part (<1%) of the output beam was sent to a fast photodiode and the control loop was 

implemented in a microcontroller and using a sequential hill-climbing algorithm with adaptive steps described in the 

following section.  

 

 

4. EXPERIMENTAL RESULTS & ANALYSIS 

4.1 Phase control and stability 

The expected phase fluctuations in the amplifiers are at very low frequencies (1-100 Hz) as shown in Figure 4. It is therefore 

sufficient in our case to use a sequential hill-climbing algorithm, where the relative phases Δφ2 (t) = φ1(t) - φ2(t) and Δφ3 

(t) = φ1(t) – φ3(t) are minimized sequentially. In order to do so, each optimization step in one arm of the amplifier has to 

be fast enough so that the phase in the other arm of the amplifier can be considered as constant. The algorithm is 

implemented on a fast microcontroller and uses a small perturbation of the current in both directions (dither) to calculate 

the local slope. The next hill climbing step is then calculated as a function of the observed slope similar to the step size in 

the more complex stochastic parallel gradient descent algorithms used for CBC of large arrays of devices3. If the observed 

slope is lower than a defined value (linked to the noise level of the measurement setup), this is taken to mean that the local 

maximum is reached. The same procedure then continues with the next amplifier. The dither amplitude is variable and is 

reduced when the system has converged in order to reduce the residual intensity fluctuations in the combined beam. 

Furthermore, after a certain time constant the dither amplitude is increased for a convergence test in order to avoid the 

system being trapped in a local minimum. The bandwidth of the feedback-control loop used in our experiments is limited 

by the bandwidth of the laser diode driver to about 1 kHz, which is more than sufficient to correct for the residual phase 

fluctuation in our experimental setup, for all drive currents used.   

Figure 6 shows an example for the stabilization of the CBC power using the described algorithm for three amplifiers at a 

current of Itp = 7 A. The setup was in free-running configuration at the beginning of the measurement leading to high 

fluctuations of the medium output power range. The control loop was then closed after about 3 minutes and one can see 

that the combined power very quickly reaches its maximum power level of about 9 W (rise time < 1 s). This power level 

is maintained with good stability for about one hour. The standard deviation in the stabilized level was below 0.6 %. The 

controlled RW currents were recorded and show that the phase of the whole setup is quite stable with Δφ < π over 30 min. 

The average value of the applied currents evolves very slowly, however the amplitude of the recorded signal shows that 

continuous phase control is required to correct for small fluctuations. We occasionally observed some spontaneous large 

scale variation in the ridge currents corresponding approximately to a π-phase shift as clearly visible for the ridge current 

of A2  at t = 20 min, which are not fully understood. However, overall the active phase control is capable of controlling the 

output power with more than sufficient stability.    
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Figure 5: Experimental setup of MOPA-CBC in a multi-arm interferometer 



 

 
 

 

 

 

4.2 Beam quality and combining efficiency 

We investigated the beam quality at important positions (injection in amplifier, individual amplified beam, combined 

beams and rejected beams) in the experimental setup shown earlier in Figure 5. We determined the M2-parameter by fitting 

to measurements of development of the 4σ beam width through the beam waist (caustic measurement). The measured 

shapes of the beams at the waist are summarized in Figure 7. Note that each image was normalized separately and that the 

exposure times were adapted depending on the reached intensity levels. In other words, the false-color scale is not 

comparable from one beam shape to the others. The beam shape shown of the seed laser was measured after the aspheric 

focalization lens used to couple the beam into the RW of the TPA. The beam quality of the amplified beams was 

significantly degraded in the slow axis SA (M2 < 3.5) compared to the diffraction-limited beam quality of the seed laser. 

Furthermore, the beam quality is quite sensitive to the coupling of the seed laser, which explains the slight differences in 

Figure 6: Combined power at Itp = 7 A, T =20°C and actively regulated ridge currents of A2 and A3. 

Figure 7: Beam shapes of injection beam (Seed), amplified beams (A1-3), combined beam after first combination (A(1+2)), combined 

beam at output (A(1+2+3)) and rejected beams (L1,2) at waist measured for Itp = 7 A. The FA is oriented in horizontal and the SA in 

vertical direction. Intensity is normalized in each image and shown as a linearly-scaled false color plot. 



 

 
 

 

the observed spatial profiles of the individual beams and the slightly decreased beam quality in FA. However, the individual 

beams still contain >70 % of the power in the central lobe at the highest operating currents. Coherent combining 

automatically leads to a clean-up of the spatial profile since the beam mismatch between slightly multimode and slightly 

different beams is low in the central lobe but high in the rest of the beam. The combined beam A(1+2) after the first element 

of combination has a higher power content in the central lobe and the rejected beam L1 mainly contains the incoherent 

background with low power-content in the central lobe. After combination with beam A3 on the second beam splitter one 

can see that the spatial profile of the output beam A(1+2+3) is even more cleaned up with >80 % of the power in the central 

lobe. The measured SA beam quality parameter was M2 < 2.5 with a very low background of higher order spatial 

frequencies. The rejected beam of the second combination shows again mostly the incoherent background and high spatial 

frequencies with low power content in the central lobe. 

 

Figure 8 shows the cross sections of the normalized intensity profile along the SA through the beam centroid of the 

combined beam for the combination at BS1 (left) and the following combination at BS2 (right). The profiles of the incident 

beams (unfilled curves for A1 and A2) profiles are slightly different but have sufficiently similar shapes for the first 

combination. We attribute the mismatch in the shape of the central lobes to the slightly different widths of the ridge 

waveguides. Nevertheless, most of the power contained in the central lobe is transferred to the combined beam (red-filled 

curve) while the power content in the higher order modes (power outside the central lobe) is reduced. In contrast, the 

incident beam profiles for the second combination are quite different. While the spatial beam profile of the beam resulting 

from the first combination (red-filled curve) is already cleaned-up with low power content in the higher order modes, the 

beam of the third amplifier has a significant power content in the side lobes. In other words, the beam mismatch seems to 

be significantly higher for the second combination. Almost all of the power contained in the side lobes of the third beam 

leads to combining losses. Additionally, the measured beam profiles indicate that not all of the power contained in the 

central lobe of the beam A(1+2) is transferred to the final combined beam (green-filled curve in Figure 8(right)). Put 

differently, some of the power that was coherently combined on BS1 is lost during the second combining step. Furthermore, 

one has to take into account that the local intensities of the beam A3 and A(1+2) are significantly different at BS2 leading to 

some additional combining losses in the range of 3%11.  

However, in spite of these challenges, the profile of the final output beam has >80 % power content in the central lobe. 

The overall combining efficiency was 70 % at this operating point (Itp = 7 A) and decreased to 65 % at higher currents due 

to the beam quality degradation in the individual elements. For reference, the combining efficiency of the first combination, 

(obtained comparing the power in beam A(12) and the losses at L1) was >80% (at 7 A) and is comparable to the combining 

efficiency which we previously demonstrated in the CBC of two individual tapered lasers in an extended-cavity 

configuration12. The combination on the following beam splitter BS2 leads to additional losses as explained earlier which 

explains the slightly reduced overall combining efficiency. We are currently seeking to improve the combining efficiency 

of MOPA-CBC architectures by changing the asymmetric cascade-configuration for the combination of three amplifiers 

described in this paper to a purely symmetric setup of an even number of individual amplifiers. In this case we expect a 

higher combining efficiency, since the beam mismatch in amplitude and phase will be smaller in a symmetric setup. 
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Figure 8: SA beam profiles at waist for CBC of A1 and A2 (left) and the following combination with A3 (right). Measurement at 

Itp = 7 A, Irw = 250 – 400 mA (controlled by feedback loop). 



 

 
 

 

Additionally, we intend to improve the achievable combining efficiency in our experimental setup by improved 

semiconductor design13.  

 

4.3 Scaling of power and brightness 

The combined power and the combining efficiency were measured for several operating points. The astigmatism of the 

individual amplifiers was manually corrected by moving the acylindrical lens for SA collimation with a linear translation 

stage. The results are summarized in Figure 9. With 12.9 W coherently combined power into a nearly diffraction-limited 

(M2 < 1.1 x 2.5) beam at the maximum current, we are able to reach higher power levels than we previously demonstrated 

using CBC in MOPA-configuration for an array of five tapered lasers14. The combined power per element demonstrated 

here was 4.3 W at the highest operating current, which is more than previously demonstrated with similar individually 

mounted tapered lasers in a rear-side resonator architecture12 indicating the MO-based phase locking scheme used is more 

robust and allows us to operate the individual components at higher currents. The optical power was measured 

simultaneously at the output (combined beam, Pout) and the two unusable paths (combining losses, L1 and L2). The 

combining efficiency was 75% for low power levels and decreased to 65% at the maximum output power. The total power 

in the combined beam is increased by a factor of 2 compared to the achievable power with one individual amplifier. But, 

one has to consider that the beam quality of the coherently combined beam is increased compared to the beam quality of 

the individual devices leading to an increased brightness. The brightness B = P / (λ² × M²) highlights the ability of 

extracting high optical power P while maintaining a good beam quality. In our case the achieved brightness was scaled by 

a factor of 2.8 compared to the brightness of one individual device. So even if the power scaling suffered from combining 

losses one can see that the brightness was scaled efficiently by the increased beam quality at the output.  

 

5. CONCLUSION 

We demonstrate the CBC of three high-power tapered laser amplifiers seeded by a DFB laser at λ = 976 nm, and 

demonstrate a combined power of 12.9 W in a close to diffraction-limited beam at a combining efficiency of > 65%. We 

used individual devices on C-mounts in a multi-arm interferometer. Increased power per element was achieved by making 

use of a simplified, efficiently cooled single emitter-based optical system. The combining efficiency was mostly limited 

by the intrinsic beam quality of the amplifiers and the asymmetric optical setup. We are currently working to improve the 

combining efficiency by exploiting improved semiconductor designs, better thermal management and a modified 

experimental setup.  

Figure 9: Combined power at output and total combining efficiency at different operating currents in the tapered section. 

The ridge currents were actively controlled in the range of 250 to 400 mA. 



 

 
 

 

The presented results demonstrate that CBC of a low number of individual high power amplifiers is a successful and simple 

approach to scale the power above the limit of single emitters.  
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