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Abstract

Adaptive Optics (AO) systems compensate the nefari-
ous effects of atmospheric turbulence affecting image for-
mation on ground-based telescopes. Deformable Mirrors
(DMs) are inserted in the telescope optical path to cor-
rect for the deformations induced by turbulence, in real-
time, using Wave Front Sensor (WFS) measurements. The
upcoming AO systems for ELTs (Extremely Large Tele-
scopes) will feature a huge number of WFS measurements
and DM actuators, and the design of high performance
controllers adapted to these dimensions is a real challenge.
In this article we compare the performance of several con-
trollers: standard integral action, LQG (Linear Quadratic
Gaussian) based on Kalman filter, and a highly paralleliz-
able LQG based on Distributed Kalman Filter (DKF),
which is built on Fourier domain models. Performance
evaluation for a Single Conjugated AO (SCAO) configu-
ration of a VLT-like telescope (8m) allows to discuss the
extension to ELT-size high performance controllers.

1 INTRODUCTION

The atmospheric turbulence introduces optical aberra-
tions which degrade the images of astronomical objects
acquired on ground-based telescopes. Adaptive Optics
(AO) systems compensate these wavefront distortions us-
ing Deformable Mirrors (DMs) inserted in the telescope
optical path [1]. Wavefront sensors (WFSs) provide mea-
surements used by a real-time controller to calculate the
DM commands in a control loop (Figure 1). A current
generation Single Conjugated AO (SCAO, with only one
DM and one WFS) system such as the Nasmyth Adaptive
Optic System (NAOS) installed on the Very Large Tele-
scope (VLT, 8m diameter) (Figure 2) has 187 controlled
actuators on a 15 x 15 cartesian grid. The next gener-
ation of Extremely Large Telescopes (ELTs), currently
under design and construction [2–7], features DMs with
Large Degree Of Freedom (LDOF) to be controlled in real
time, which is a challenge. For instance, the European-
Extremely Large Telescope [5–7] features a DM with 5316
actuators.

Standard integral action regulators are used on most
operational systems and thus provide a baseline for ELT
AO performance. As AO systems feature control loops
with delays, a high performance controller should explic-

Figure 1: Principle of adaptive optics for ground-based
telescopes

Figure 2: Next and previous generation telescope AO size

itly compensate for these delays. Designing high perfor-
mance controllers to fulfill the demanding requirements for
ELT AO systems is even more challenging. In recent years,
controllers based on turbulence models and optimal pre-
diction (a.k.a. Linear Quadratic Gaussian (LQG) control
and Kalman filter) have been proposed [8, 9]. However,
a direct scaling up to ELT-sized systems is not possible
with current technology. Highly parallelizable controllers
have thus been proposed [10–12], but at the price of a
performance degradation. Note that LQG control, and
particularly the choice of dynamic models and of the type
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and size of the basis for the phase description, are still
active subjects of research.
In this article we analyse the performance of LQG con-
trollers with different Auto Regressive (AR) dynamic
models and different phase estimation bases. We also
study an LQG controller based on a Distributed Kalman
Filter (DKF) [10] which is massively parallelisable, in or-
der to derive development directions in the framework of
ELTs.
The paper is organized as follows. In section 2 we present
optimal AO controllers, with AO control loop description
in section 2.1, and LQG regulation in section 2.2, using
Kalman filter and Distributed Kalman filter. In section 3,
we analyse VLT NAOS-liked simulation results, through
LQG controllers using different Auto-Regressive dynami-
cal models in section 3.1, with different spatial resolution
in section 3.2, and a Distributed Kalman filter-based con-
trol in section 3.3. Then we conclude this study by propos-
ing development directions towards high performance con-
trol for ELT-scaled AO systems.

2 Optimal controllers

2.1 AO control loop

An AO system can be represented by a discrete-time block
diagram (Figure 4) where all blocks are linear operators.
The incoming perturbation is the turbulent phase φtur,
φcor is the correction phase generated by the DM and φres

is the residual phase. The WFS delivers noisy wavefront
measurements y where w represents the noise measure-
ment. The DM commands u are computed by the con-
troller from the wavefront measurements. In this control
loop we have delays introduced by the control and mea-
surement computations, and by the integration and read-
out time of the WFS camera. We approximate the total
loop delay by two frames. The standard controller used

Figure 3: AO control loop block diagram

on most operational systems in SCAO mode is an integral
action regulator in the form:

uk = uk−1 +GMcomyk, (1)

where Mcom is the command matrix, i.e. the generalized
inverse of the DM to WFS interaction matrix DN (see
below), and G is a scalar gain. In order to have a stable
closed-loop system in this two-frame delay case, the gain
G should satisfy 0 ≤ G < 1. Predictive control can be
used to counteract the effect of delays. In the case of AO
the optimal solution to the minimisation of the residual
phase variance is obtained with LQG control [13], as soon
as a linear stochastic dynamical model of the turbulent
phase can be established, and if all noises are Gaussian.

LQG control is based on a Kalman filter that predicts the
turbulent phase.

2.2 LQG regulation

2.2.1 Quadratic performance criterion

The LQG regulator is optimal in the sense of the residual
phase variance σ2

φres
defined as

σ2
φres = lim

n→∞

1

n

n−1∑
k=0

‖φresk ‖2 = lim
n→∞

1

n

n−1∑
k=0

‖φturk − φcork ‖2.

(2)
If the DM has no temporal dynamics and a linear response,
with influence matrix N , the correction phase at time k is
given by:

φcork = Nuk−1 (3)

and the optimal control that minimizes σ2
φres

, under the

unrealistic assumption that future values φturk+1 of the tur-
bulence are known (the so-called “complete information”
hypothesis), is

uk = (N tN)−1N tφturk+1. (4)

When the turbulent phase φturk+1 is unknown (in so-called
“incomplete information”), the stochastic separation the-
orem applies and the optimal control is simply obtained
by replacing φturk+1 in (4) by its optimal estimate, in the

sense of minimum estimation error variance, φ̂turk+1|k =

E(φk+1|Ik), to finally get

uk = (N tN)−1N tφ̂turk+1|k. (5)

The set Ik represents all the information until time k.
The predicted phase φ̂turk+1|k is obtained as the output of a

Kalman filter (see [14] for more information on minimum
variance control in AO).

2.2.2 Kalman filter

The Kalman filter is based on a stochastic model of the
turbulent phase temporal evolution. For instance, in the
case of an Auto-Regressive model of order 2 (AR2), we
have

φk+1 = A1φk +A2φk−1 + vk, (6)

where A1 and A2 are matrix coefficients, and v is a Gaus-
sian white noise with known covariance matrix Σv. The
state equation

xk+1 = Axk + Vk, (7)

is equivalent to (6), with A =

(
A1 A2

I 0

)
, Vk =

(
vk
0

)
,

and with the state vector xk defined as

xk =

(
φturk

φturk−1

)
. (8)

Taking C =
(
0 D

)
, the measurement equation yk =

Dφk−1 + wk −DNuk−2 becomes

yk = Cxk + wk −DNuk−2, (9)

where D is the WFS matrix model, and w is a Gaussian
white noise with known covariance matrix Σw. This state
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space representation leads to the asymptotic Kalman filter
in prediction form

x̂k+1|k = Ax̂k|k−1 + L∞(yk − ŷk|k−1), (10)

that is computed in real-time. The prediction Kalman
gain L∞, defined as

L∞ = AΣ∞C
t(CΣ∞C

t + Σw)−1, (11)

is to be computed off-line. The asymptotic estimation
error covariance matrix Σ∞ is obtained as the solution of
a Discrete Algebric Riccati Equation (DARE):

Σ∞ = AΣ∞A
t + ΣV −AΣ∞C

t(CΣ∞C
t + Σw)−1CΣ∞A

t.
(12)

At last, ŷk|k−1 = E(yk|Ik−1) is the predicted measurement
and is obtained as

ŷk|k−1 = Cx̂k|k−1 −DNuk−2. (13)

The predicted turbulent phase is finally obtained from the
predicted state vector

φ̂k+1|k = Cφx̂k+1|k, (14)

where Cφ =
(
I 0

)
. The predicted phase φ̂k+1|k can be

expressed in different bases e.g., a modal basis like the
Zernike basis, or a zonal basis (spatial sampling of the
phase in the telescope pupil plane), or a Fourier basis with
spatial frequencies. The control performance is impacted
by the accuracy of the pĥase description: for instance, the
number of modes in a modal basis [9] or the sampling for a
zonal basis [11]. However an improvement of the phase de-
scription accuracy increases the computation time of the
DARE (12), the Kalman gain L∞ in (11), and of the pre-
dictive equation (13). The basis dimension is thus a real
question for ELT-scaled AO systems.
The standard version of the Kalman filter proves to be im-
practical in terms of implementation for LDOF AO sys-
tems, like ELTs, because of excessive cost to solve the
DARE and to perform the operations in (10). Several
approaches have been proposed to overcome this compu-
tationnal bottleneck [15–18]. One of them is the Dis-
tributed Kalman Filter (DKF) which was proposed for
a large scale wide-field AO system [10, 11], with applica-
tion to the Thirty Meter Telescope [11]. The DKF is a
suboptimal approach that is highly parallelizable.

2.2.3 Distributed Kalman Filter

This filter proposed in [10] is based on phases described
in a zonal basis, and is built on an infinite pupil hypothe-
sis, which means that the spatial support of the measure-
ments and estimated phases is supposed to be infinite. It
follows from these asumptions that the state equation (7),
the measurement equation (9) and the prediction equation
(10) become spatially invariant and can be expressed as
convolution products:

xk+1 = A ∗ xk + Vk, (15)

yk = C ∗ xk + wk − (DN) ∗ uk−2, (16)

x̂k+1|k = A ∗ x̂k|k−1 + LDKF∞ ∗ (yk − ŷk|k−1). (17)

Convolution products are highly parallelizable and this
allows to reduce the computational time of the Kalman
filter prediction equation. Moreover using a convolution
kernel as Kalman gain makes it possible to reduce the ker-
nel size without affecting significantly the control perfor-
mance [10]. Indeed, as illustrated in Figure 4, the Kalman
gain kernel is well localized. The spatial invariance prop-

Figure 4: Example of Kalman gain kernel for DKF

erty allows an efficient evaluation of the Kalman gain ker-
nel LDKF∞ in Fourier basis where each gain value associ-
ated with a 2D spatial frequency is independent from the
others (decoupled spatial frequencies). In the case of a
monolayer AR1 phase model, the phase estimation error
covariance matrix in Fourier space Σ̃∞ can be computed
for each spatial frequency pair (νx, νy) with a 2nd degree
polynomial scalar equation

Σ̃∞νx,νy
= |Ãνx,νy |2Σ̃∞νx,νy

+ Σ̃Vνx,νy − |Ãνx,νy |
2

(Σ̃∞νx,νy
)2C̃Hνx,νy (C̃νx,νy C̃

H
νx,νy Σ̃∞νx,νy

+σ2
wI)−1C̃νx,νy ,

(18)
where Ã, C̃ are the Fourier representation of A,C respec-
tively in the state model (15, 16), σ2

w is the measurement
noise variance and Σ̃V is the Fourier space covariance ma-
trix of the noise V in (15) (for more details see [12]). The
Kalman gain in Fourier space is computed from Σ̃∞ for
each 2D spatial frequency with

L̃DKF∞νx,νy
= Ãνx,νy Σ̃∞νx,νy

C̃Hνx,νy (C̃νx,νy C̃
H
νx,νy Σ̃∞νx,νy

+σ2
wI)−1C̃νx,νy ,

(19)
before coming back in zonal base with a 2D inverse Fourier
transform.

3 Simulation results

We simulate a VLT NAOS-like case with a three layer at-
mosphere with respectively a windspeed of 7.5, 12.5, and
15 m/s, and a direction of 0,120 and 240°. The overall
Fried diameter [1] is 10 cm at 0.55 µm, with a relative
energy repartition per layer of 0.5, 0.17 and 0.33. The
WFS is a Shack -Hartmann, and the DM is in Fried ge-
ometry, where the actuators are located at the corners
of the Shack-Hartmann subapertures, if we represent the
actuator grid in the WFS plane. We consider here a 15
x 15 actuator grid (187 actuators are controlled), and a
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14 x 14 subaperture grid with 152 valid subapertures. In
our simulations the WFS camera wavelength is 0.55 µm,
the WFS measurement noise is 0.2 rad2 and the scientific
image camera wavelength is 1.65 µm (H band of the atmo-
sphere). All simulations presented in this paper have been
performed with the tool Object Oriented Matlab Adaptive
Optics (OOMAO).
The AR1 dynamic model used for LQG design, is a simple
diagonal model where

A = αI, (20)

and
φk+1 = Aφk + vk. (21)

The AR2 dynamic model (6) is here defined in a Zernike
basis, as described and tested on sky on CANARY in [19].

3.1 Dynamic Model in LQG

We first analyse the performance of LQG and integral ac-
tion regulators. We evaluate LQG controllers with a phase
estimated in a modal Zernike basis of 495 modes, with the
two different AR models mentioned above. Performance is
given in terms of Strehl Ratio (SR), at 1.65 µm, which is
an image quality metric (100 % corresponds to the diffrac-
tion limited case). In our simulation we use the approxi-
mation SR = exp(−σ2

φres
) [20] where σ2

φres is the residual
phase variance at the imaging wavelength.

Control Model Strehl Ratio
Standard Integral control / 51.2 %

LQG AR1 51.0 %
LQG AR2 54.2 %

Table 1: Control Performance with LQG and integral ac-
tion regulators

The LQG regulator with an AR2 model clearly outper-
forms the standard integral controller (Table 1) in SCAO
mode. Note that the simpler AR1 model is however not
sufficient to gain in performance.

3.2 Spatial resolution

The estimator φ̂turk+1|k can be expressed in many bases, and
the control performance is strongly impacted by the size
of the bases. In this part we study the evolution of perfor-
mance when we increase the number of modes of a Zernike
basis, and the number of points of a zonal basis.

3.2.1 Zernike basis: influence of the number of
modes

For instance, for Zernike modal basis we show improve-
ment (Table 2) when using more modes, for both AR1

Number of modes Model Strehl Ratio
189 modes AR1 42.2 %
495 modes AR1 51.0 %
189 modes AR2 44.8 %
495 modes AR2 54.1 %

Table 2: Performance of LQG regulators using Zernike
basis in a VLT NAOS-like simulation case

and AR2 dynamic models.

3.2.2 Zonal basis: influence of the spatial sam-
pling

To give an idea of the impact of the 2D sampling, we
have used different sampling periods to spatially repre-
sent the phase. Different sampling periods are obtained
by modifying the number of sampling points in a WFS
subaperture area. For the phase illustrated in Figure 5,
we have computed in Figure 6 its predicted value, as ob-
tained by the Kalman filter, with various sampling peri-
ods. A better sampling (between 1 and 4 points per sub-
aperture) of the predicted phase clearly improves LQG
performance, as shown in Table 3. Indeed, having 4

Figure 5: Turbulent phase screen on a VLT-like simulation

Figure 6: Predicted phase screens depending on the zonal
base sampling (1, 4, 9 or 16 points per subaperture area)

points per subaperture in the predicted phase improves
the estimation quality and gives a better representation
of the spatial frequencies that the DM can correct. The

Sampling of subaperture Strehl Ratio
1 point / subaperture 42.2 %
4 points / subaperture 50.3 %
9 points / subaperture 50.7 %
16 points / subaperture 51.5 %

Table 3: Performance of LQG regulator using an AR1
dynamic model and estimate phases φ̂turk+1|k in zonal bases

atmospheric turbulence contains very high spatial frequen-
cies [1], that are beyond WFS Nyquist spatial frequency.
The Shack-Hartmann WFS thus introduces aliasing effects
on the wavefront measurements, that the Kalman filter
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can partially unfold by estimating the phase with statis-
tical priors, on a finer grid than the WFS subaperture
grid. However, we only have marginal improvements from
4 points to 16 points per WFS subaperture. The aliasing
unfolding is probably limited by the crudeness of the AR1
dynamic turbulent phase model.

3.3 DKF performance & limitations

The DKF is a highly parallelizable filter, which evalu-
ates the prediction equation much faster than the stan-
dard Kalman Filter as defined in equation (10). We com-
pare two LQG regulators performance, one with standard
Kalman filter (KF-based control) and the other with a
DKF (DKF-based control), both using an AR1 dynamic
model (20, 21). As a standard KF-based control, the

Sampling of one DKF-based KF-based
WFS subaperture control control

1 point / subaperture 41.9 % 42.2 %
4 points / subaperture 47.5 % 50.3 %

Table 4: Performance of LQG regulators, based on
Kalman filter and DKF, both using a zonal AR1 dynamic
model

DKF-based control is sensitive to the discretization of the
zonal basis (Table 4). Nevertheless there is a performance
decrease of the DKF-based controller with respect to the
KF-based control, particularly for the 4 points per sub-
aperture case. The infinite pupil hypothesis may cause
this degradation. Indeed, although rather valid at the
center of the pupil, it is less relevant at the edges.

4 CONCLUSION

In this paper, we analyze the performance of model-based
AO controllers, evaluated on a VLT-like SCAO system.
We study different LQG regulators, based on either a
Kalman filter or on a distributed Kalman filter, in order
to guide future developments for ELT-sized AO. We first
consider LQG controllers based on Kalman filters with
two different AR models. As expected, a more accurate
dynamical model of the turbulent phase allows LQG to
outperform standard integral action control. Then we an-
alyze phase description bases and show that a modal ba-
sis with more Zernike modes or a zonal basis with a finer
sampling improves LQG performance. In the case of the
DKF, an oversampling is acceptable in terms of compu-
tational time because of its highly parallelizable structure
well adapted to ELT-sized AO systems. However, we show
that the DKF leads to lower control performance than
the standard Kalman filter. This performance degrada-
tion is mainly located at the telescope pupil edges, and
is thus probably due to the infinite pupil hypothesis. We
envision two actions to overcome the current limitations
of the DKF. First, we need to design more accurate AR
models of the turbulent phase in zonal basis in order to in-
crease control performance for all model-based controllers.
Then, using this new modeling, a so-called ”hybrid” con-
troller can be designed, where the DKF-based controller

is used inside the telescope pupil and another controller is
in charge of the actuators located close to the edges.
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