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Abstract: Adaptive optics provides real time correction of wavefront dis-
turbances on ground based telescopes. Optimizing control and performance
is a key issue for ever more demanding instruments on ever larger tele-
scopes affected not only by atmospheric turbulence, but also by vibrations,
windshake and tracking errors. Linear Quadratic Gaussian control achieves
optimal correction when provided with a temporal model of the disturbance.
We present in this paper the first on-sky results of a Kalman filter based
LQG control with vibration mitigation on the CANARY instrument at the
Nasmyth platform of the 4.2-m William Herschel Telescope. The results
demonstrate a clear improvement of performance for full LQG compared
with standard integrator control, and assess the additional improvement
brought by vibration filtering with a tip-tilt model identified from on-sky
data, thus validating the strategy retained on the instrument SPHERE at the
VLT.
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timal control; (010.1285) Atmospheric correction; (350.1260) Astronomical optics; (120.7280)
Vibration analysis.

References and links
1. G. Rousset, J.-C. Fontanella, P. Y. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, and
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1. Introduction

Adaptive optics (AO) is a technique that allows a deformable mirror (DM) to perform real-
time compensation of the wavefront (WF) distortion induced by the atmospheric turbulence
encountered during astronomical observations. AO has been successfully demonstrated and
made available for astronomers since the early 1990’s [1]. Its success is such that the next gen-
eration of Extremely Large Telescopes (ELTs) cannot be conceived without it. The associated
future astrophysical programs rely on sophisticated AO systems able to fulfill ever demanding
requirements. These systems can be globally split into two categories. On one hand wide-field
AO (WFAO) uses a large field for wavefront sensing and/or for correction. On the other hand
single conjugated AO (SCAO) uses an on-axis guide star both for wavefront sensing and correc-
tion. Extreme AO corresponds to very high performance SCAO feeding specific high contrast
instruments.

The present paper is focused on SCAO, with on-sky experiments conducted using the SCAO
mode of the CANARY demonstrator [2]. This demonstrator has been initially designed to vali-
date a specific WFAO concept: multi-object AO (MOAO), required for the study of primordial
galaxies, where several objects of small angular dimensions and spread over a large field of
view are observed simultaneously [3]. The CANARY MOAO pathfinder is the demonstrator
for the future MOAO instrument EAGLE [4] and the first on-sky demonstration of MOAO was
performed successfully in September 2010 [5].

Control and performance optimization of complex AO systems are a key issue. Linear
Quadratic Gaussian (LQG) control is an appealing strategy for AO since it provides global-
ly optimal control with respect to an explicit minimum variance performance criterion [6, 7].
Numerical studies [8] and laboratory demonstrations [9] have shown that LQG control can
give better performance than integral controllers due to the use of spatial and temporal priors.
Theoretical studies [10,11] have also shown that an advantage of LQG controllers over integra-
tor was the possible relaxation of system constraints (actuator saturation, sampling frequency,
noise requirements) which may be of particular interest for ELT systems. A major issue in AO
is also the correction of non-turbulent perturbations such as windshake or vibrations [12–15].
LQG control, thanks to its flexibility, can provide a very efficient compensation of these effect-
s, as shown for vibrations through laboratory tests [16], and through numerical simulations for
windshake [17].

LQG control has been implemented for tip-tilt correction on the SPHERE instrument, the
European extrasolar planet finder [18]. It has also been considered during preliminary studies
on GPI using a Kalman filter with predictive Fourier-domain control [19]. LQG control has
been demonstrated on-lab for WFAO systems [20]. Note that tip tilt optimal control has been
tested on-sky using an AO system installed at the McMath-Pierce solar telescope [21]. The next
step was to demonstrate full LQG control on-sky, full meaning with optimal LQG control of all
modes, and not only tip and tilt.

This paper presents a detailed analysis of the first SCAO on-sky validation of a full LQG con-
trol with vibration mitigation, performed in July and August 2012 [22,23]. We compare perfor-
mance obtained with integrator versus LQG, with and without vibration mitigation. Vibration
models for tip and tilt modes are identified on line from WFS data, using the frequency-domain
identification method selected for the instrument SPHERE [17], hence validating on sky and
for the first time its tip-tilt identification and control strategy. Analysis of models relevance is
conducted, and the advantage of LQG control is also discussed on the basis of power spectral
densities and rejection transfer functions.

We organize the paper as follows. In Section 2 we briefly present the CANARY bench and its
SCAO mode. Section 3 introduces the formalism of the LQG control for SCAO. In Section 4 we
discuss practical implementation issues such as model identification or real-time complexity for
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the CANARY instrument. Then in Section 5 we present the first on-sky results with a detailed
data analysis. This is followed in Section 6 by a frequency-domain and a robustness analysis
for integrator and LQG, and Section 7 concludes this paper.

2. The single conjugated adaptive optics mode of CANARY

CANARY is a European project led by Durham University and Observatoire de Paris. The
CANARY bench is set up at the Nasmyth focus of the 4.2-m William Herschel Telescope at
the summit of the Roque de los Muchachos mountain on La Palma, Canary Islands, Spain [24,
25]. CANARY can perform AO in several possible configurations including SCAO, MOAO
using a four Natural Guide Stars (NGSs) asterism (three off-axis stars and one on-axis for
performance evaluation and scientific IR images) and laser based MOAO with four additional
Laser Guide Stars (LGSs) in the technical Field of View (FoV). In this paper we focus on the
SCAO mode of CANARY. In SCAO, an on-axis WF Sensor (WFS) (so-called Truth Sensor
(TS)) provides closed-loop 7×7 Shack Hartmann WFS data on the on-axis star. Correction is
performed by a high-speed tip-tilt mirror developed by Observatoire de Paris, and a CILAS 8×
8 piezostack array DM conjugated to the telescope’s pupil. The CANARY Real-Time Computer
(RTC), called DARC, is developed by Durham University [26,27] and IR images are recorded
thanks to the near-IR camera CAMICAz, developed by Observatoire de Paris. CAMICAz has
a NICMOS-3 array composed of 256×256 pixels. The camera has several spectral filters. We
observe in the two spectral bands H and K. The central wavelengths areλH = 1.67µm and
λK = 2.18µm with ∆λH

= 0.14µm and∆λK
= 0.15µm. The plate scale of the IR camera is

p= 28.8 mas. A telescope simulator developed by UK ATC allows performance evaluation on
internal sources with emulated turbulence being introduced by rotating phase plates.

3. LQG control for SCAO

LQG control can be derived when the system is described by a linear state space model. This
approach provides a general framework based on explicit models of the AO system including
wavefront perturbations [8]. We present here a full LQG on-sky SCAO demonstration,i.e.LQG
control is applied on all modes (tip, tilt and higher orders). For tip and tilt modes, vibratory
components are accounted for as in [16,17].

In this Section we explain how to establish the dynamical models including vibrations, and
we derive an optimal control based on a criterion that simplifies system calibrations. We first
present the minimum variance performance criterion and the optimal solution in Section 3.1.
We then present the modeling of the disturbance stochastic process (Section 3.2) with a specific
treatment for tip-tilt components (Section 3.3). Section 3.4 establishes the corresponding SCAO
state space representation on which is based the Kalman filter used for control computation
(Section 3.5).

3.1. Performance criterion and optimal solution

The perturbation phase is a continuous time process. Since the DM is applied through a zero
order hold and the DM’s time response is small compared to the loop sampling periodT, the
continuous time minimum-variance criterion can be equivalently replaced by a discrete time
criterion for control optimization [6]. We briefly recall here this construction in the simple
‘synchronous’ case where controls are applied at the same sampling timest = kT, and where
one sampling interval is allocated for WFS measurement processing and control calculation.
In this case, the control objective is therefore to minimize the following discrete-time infinite-
horizon quadratic performance criterionJ(u), which corresponds to the variance of the residual
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phaseφ res
k , φk−φcor

k :

J(u) = lim
K→+∞

1
K

K

∑
k=1

||φ res
k ||2 = lim

K→+∞

1
K

K

∑
k=1

||φk+1−Nuk||
2 (1)

where the correction phaseφcor
k is related to the command vectoru through

φcor
k = Nuk−1, (2)

and whereuk−1 is the control vector applied at time(k−1)T, N being the DM influence matrix.
In formula (1), the discrete-time perturbationφk is the averaged perturbation over the sampling
interval[(k−1)T,kT[, defined as

φk ,
1
T

∫ kT

(k−1)T
φ(t) dt. (3)

All phase variables are defined similarly as temporal averages over one frame of durationT.
When the phase is described by Zernike coefficients, the influence matrixN is the operator that
connects command vectoru to Zernike modes.

The optimal solutionu∗k that minimizesJ(u) is given through an LQG approach if these two
hypothesis are satisfied:

• the system can be described by a linear state-space model with additional noise inputs;

• the noises are white and Gaussian,i.e. uncorrelated sequences of Gaussian vectors; co-
variance matrices are known.

More details on LQG control can be found in [28]. When the controluk is computed from
measurementsyk, . . . ,y0, the stochastic separation principle allows to solve this problem in two
steps:

• compute the estimated phase as the conditional expectation ofφk+1 knowing all measure-
mentsyk, . . . ,y0 available at time stepk:

φ̂k+1|k , E[φk+1|yk, . . . ,y0] (4)

• project the estimated phase onto the DM:

u∗k = Puφ̂k+1|k (5)

wherePu is the projector defined as pseudo-inverse ofN:

Pu , N† = (NTN)−1NT (6)

The optimal prediction̂φk+1|k is computed recursively as the output of the Kalman filter based
on a state-space representation of the complete system (see Section 3.5).

The measurement equation is defined as

yk = Dφ res
k−1+wk (7)

which can be written using Eq. (2) as

yk = Dφk−1−DNuk−2+wk, (8)

#217026 - $15.00 USD Received 15 Jul 2014; accepted 17 Jul 2014; published 18 Sep 2014
(C) 2014 OSA 22 September 2014 | Vol. 22,  No. 19 | DOI:10.1364/OE.22.023565 | OPTICS EXPRESS  23570



whereD is the WFS matrix that characterizes the WFS response in terms of the input phase,
andw is the measurement noise supposed to be white Gaussian and independent ofφ , with
covariance matrixΣw. Note that this measurement equation features a two-frame loop delay
between DM controlu and WFS outputy, also called ‘plant delay’ in control literature. This
loop delay induces an important limitation of the closed-loop performance.

A difficulty may arise for the calculation of the projectorN† in Eq. (6). It requires the knowl-
edge of the influence matrixN, which depends on the actual system geometry.N is not only
related to the DM influence functions but also to the relative position of the actuator grid with
respect to the pupil. Moreover it has to be oriented with respect to the WFS geometry. Rota-
tions, magnifications, and misregistrations may occur between these grids which imply specific
calibration procedures [29,30] that can also be avoided by modifying the control criterionJ(u)
as explained below.

Since the interaction matrix defined asMint , DN is easily and regularly recorded on the
bench, we propose to minimize the alternative quadratic criterionL defined as

L (u) = lim
K→+∞

1
K

K

∑
k=1

||Dφk+1−DNuk||
2 = lim

K→+∞

1
K

K

∑
k=1

||Dφ res
k ||2. (9)

This modified criterion is the residual slopes variance as opposed to the residual phase variance
J(u). Minimizing L (u) instead ofJ(u) leads to the same optimal phase estimate and the same
control structure, but with a different projector onto the DM, namely:

Pu , (DN)†D (10)

Computing this new projector only requires the knowledge of the WFS matrixD and of the
command matrixMcom= (DN)†, i.e. the pseudo-inverse of the command-to-slopes interaction
matrix Mint = DN. Although sub-optimal with respect to the residual phase variance criterion
J(u), this control has the advantage to be very robust to system mis-alignments and avoids tricky
calibration procedures for the determination ofN. The relative geometry between WFS and DM
is indeed accounted for inMint, therefore avoiding an explicit determination of magnification,
rotation and decentering between WFS subaperture grid and DM actuator grid. Note that the
same ‘slopes-oriented’ approach lies at the heart of the APPLY MOAO control strategy, where
open-loop on-axis WFS slopes are reconstructed from off-axis measurements using a static
minimum-variance estimator [31].

The WFS matrixD is needed to compute the slopes-to-control projectorPu. Because it ap-
pears in the measurement equation (8), it is also needed to compute the Kalman filter presented
in Section 3.5. In practice,D was computed theoretically from a geometrical model and scaled
using straightforward calibrations done on internal sources, a procedure which enables to de-
termine both the sensitivity of the WFS and the ordering of the subapertures. The interaction
matrixMint = DN was also calibrated on the bench.

3.2. Disturbance stochastic dynamical model

As explained above, the computation of the optimal predictionφ̂k+1|k relies on a state-space
representation. It can be established when a stochastic dynamical model of the perturbation
is available. Tip and tilt (TT) are the most energetic turbulent modes and frequently include
additional perturbations due to vibrations in the telescope and system structure, windshake and
residual tracking errors. These factors led us to separate TT modeling from that of the higher
orders (HO).

Vibrations are additive perturbations and independent from the turbulence, so that the com-
plete perturbation phase can be written as:

φ = φ tur+φvib. (11)
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Assuming that vibrations only affect the tip and tilt modes, the TT and HO components of the
disturbanceφ , written as

φ =

(
φTT

φHO

)
, (12)

can be decomposed as {
φTT = φ tur,TT +φvib,TT

φHO = φ tur,HO . (13)

We thus have:

φ tur =

(
φ tur,TT

φ tur,HO

)
, φvib =

(
φvib,TT

0

)
. (14)

In the case of CANARY we have checked that there were no noticeable vibration peaks on
temporal PSDs for modes above tip and tilt, hence the restriction of the specific treatment to
these two modes. Note however that the above equations can be easily extended to the case
where vibrations may affect higher orders than tip and tilt, as expected on large structures such
as ELTs. In this case, the superscript TT has just to be replaced with LO (for low orders) and
the corresponding vectors will contain as many components as needed.

A widely used class of models to describe the phase temporal correlation is the class of
vector-valued autoregressive (AR) processes. First studies have shown that an AR model of
order 2 (AR2) for each turbulent phase mode leads to good performance, see [32] and in the case
of CANARY see [33]. We can thus model the turbulence process as a discrete-time stochastic
process in the form

φ tur
k+1 = Atur

1 φ tur
k +Atur

2 φ tur
k−1+ vtur

k (15)

whereAtur
1 andAtur

2 are diagonal matrices andvtur , {vtur
k }k≥0 is a generating Gaussian white

noise.

3.3. Tip-tilt modeling

The vibrations affecting the system can also be modeled by an AR2 [16] (resonant order 2
model). Tip and tilt are treated separately and considered as decoupled. For either tip or tilt
components each particular vibration peak will be associated with a scalar vibration model in
the form

φvib,•,i
k+1 = avib,•,i

1 φvib,•,i
k +avib,•,i

2 φvib,•,i
k−1 + vvib,•,i

k (16)

whereφvib,•,i
k is a scalar variable and• stands for tip or tilt. The scalar parametersavib,•,i

1 and

avib,•,i
2 depend on damping coefficient and resonant frequency, andvvib,•,i , {vvib,•,i

k }k≥0 is a
white Gaussian excitation noise with varianceσ2

v•,i . The global resulting phase in the pupil can
be written as:

φTT
k = φ tur,TT

k +φvib,TT
k = φ tur,TT

k +

(
∑nv

i=1φvib,tip,i
k

∑nv
i=1 φvib,tilt ,i

k

)
(17)

with nv the total number of vibrations on tip or tilt. As explained in the introduction, these
vibration models will be identified on-sky from WFS data (see Section 4.1).

As already mentioned, the extension to vibrations on other modes than tip and tilt is straight-
forwardly obtained by considering that• stands for all the concerned modes, and with super-
scripts tip and tilt replaced by a mode number. The right hand term in Eq. (17) will therefore
have as many lines as the number of modes affected by vibrations.
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3.4. SCAO state-space representation

The state vector can be simply chosen as the concatenation of turbulence and vibration phases
at two consecutive time steps:

xk ,

(
xtur

k
xvib

k

)
, xtur

k ,

(
φ tur

k
φ tur

k−1

)
, xvib

k ,

(
xvib,tip

k

xvib,tilt
k

)
, xvib,•

k ,




xvib,•,1
k

xvib,•,2
k

...
xvib,•,nv

k



, xvib,•,i

k ,

(
φvib,•,i

k

φvib,•,i
k−1

)
.

(18)
The models presented above can then be re-arranged into a compact state-space model in the

form: 



xk+1 = Axk+Γvk

yk =Cxk−DNuk−2+wk

φk =Cφ xk

. (19)

The last line in Eq. (19) expresses the perturbation as a sum of contributors stored in the statex.
Both the WFS measurementyk and the disturbanceφk are thus obtained as outputs of the state
model. The other vectors and matrices in the state space representation are defined as

vk =

(
vtur

k
vvib

k

)
, A=

(
Atur 0
0 Avib

)
, Atur =

(
A1 A2

I 0

)
(20)

Avib =

(
Avib,tip 0

0 Avib,tilt

)
, Avib,•,i =

(
avib,•,i

1 avib,•,i
2

1 0

)

Avib,• =




Avib,•,1 0
...

0 Avib,•,nv




wherev , {vk}k≥0 andw , {wk}k≥0 are independent Gaussian white noises with variance-
covariance matrices Var(vk), Σv and Var(wk), Σw, and where

Γ ,

(
Γtur 0
0 Γvib

)
, Γtur =

(
I
0

)
, Γvib =




Γ0 0
...

0 Γ0


 , Γ0 =

(
1
0

)
. (21)

To obtain the perturbation as the sum of turbulence and vibrations, the matrixCφ is defined as

Cφ ,
(

Ctur
0 Cvib

0

)
(22)

with

Ctur
0 =

(
I 0

)
, Cvib

0 =




c0 . . . c0 0 . . . 0
0 . . . 0 c0 . . . c0

0 . . . 0 0 . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 . . . 0



, c0 =

(
1 0

)
. (23)

Likewise, to obtainCxk = Dφk−1, the matrixC should be defined as

C, D
(

Ctur
1 Cvib

1

)
. (24)
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with

Ctur
1 =

(
0 I

)
, Cvib

1 =




c1 . . . c1 0 . . . 0
0 . . . 0 c1 . . . c1

0 . . . 0 0 . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 . . . 0



, c1 =

(
0 1

)
. (25)

3.5. Kalman filter and control computation

The optimal prediction̂xk+1|k, which enters the optimal control expression in Eq. (5), is com-
puted recursively as an output of the Kalman filter based on the state-space model (19). S-
ince the control criterion is defined on an infinite horizon, we restrict ourselves, without any
performance degradation, to the steady-state time invariant version of the Kalman filter [34].
Real-time implementation boils down to the so-called update and prediction equations:

{
x̂k|k = x̂k|k−1+H∞(yk− ŷk|k−1) = x̂k|k−1+H∞(yk−Cx̂k|k−1+DNuk−2)
x̂k+1|k = Ax̂k|k

(26)

whereH∞ is the asymptotic Kalman gain computed off-line as

H∞ , Σ∞CT(CΣ∞CT +Σw)
−1, (27)

Σ∞ being the unique solution of the algebraic Riccati equation

Σ∞ = AΣ∞AT +ΓΣ∞ΓT −AΣ∞CT(CΣ∞CT +Σw)
−1CΣ∞AT. (28)

Finally we are able to compute the control vector applied to the DM:

uk = PuCφ x̂k+1|k (29)

= Pu(φ̂ tur
k+1|k+ φ̂vib

k+1|k)

wherePu depends on the control criterion: Eq. (6) for residual phase variance and Eq. (10)
for residual slopes variance. The control gain that relates the state estimate ˆxk|k to the optimal
control is thus simplyPuCφ A.

4. Practical implementation

4.1. Model identification for turbulence and vibrations

We describe in this Section the identification procedures used to derive the parameters of our
AR2 models. As explained before, we apply a separate treatment for the TT and the HO:

• TT components are identified thanks to the method presented in [17], which allows i-
dentification of a TT turbulent model together with vibration components. This method
uses open-loop slopes to compute the mean slopes PSD. The superimposition of several
AR2 models is fitted to this PSD: a low frequency AR2 model for turbulence, andnv

vibration components. For each identified vibration the method estimates the resonan-
t frequency, damping coefficient and power (i.e. variance of the excitation noise). The
number of vibration componentsnv to be identified is set to 10 both for tip and tilt. Note
that pseudo-open loop slopes could be used as well if residual slopes only were available.

• As mentioned above, HO modes are not affected by vibrations, so that their model can
be based on the heuristic formula in [8, 35] derived from the Zernike turbulent temporal
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PSD structure [36]. It relates the AR coefficients of theith mode to wind speed norm and
radial order and is an extension of the method proposed in [8]:

{
ω0 = 0.3(n(i)+1)(Vwind/Dpup)2π
ωr = ω0

√
1− ξ 2 (30)

{
a1 = 2e−ξ ω0T cos(ωrT)
a2 =−e−2ξ ω0T (31)

whereVwind is the average wind speed norm value in the pupil,Dpup is the pupil diameter,
n(i) the Zernike radial order of modei, ξ is the damping factor set to 0.9, T is the sam-
pling period. Note that the model noise varianceσ2

vi
is derived from the HO covariance

matrix deduced from the Fried parameter. Wind speed and Fried parameter are estimated
thanks to the LEARN algorithm [31, 37]. The maximum radial order has been chosen
equal tonrad= 14.

4.2. Complexity, real-time control and delays

From Eq. (18), the state vectorx includes the values of all phase variables at two consecutive
time steps. The phase value at each time step is expressed usingnrad(nrad+3)/2= 119 Zernike
modes. When filtering vibrations with 10 vibrations peaks both on tip and tilt, the size of the
statex is thereforenx = 2× (119+2×10) = 278. The number of measurements is equal to
ny = 36×2= 72. We have 52 actuators on the DM and 2 actuators for the TT mirror, so that
the size ofu is na = 54 components. To speed computation, the LQG implementation of the
DARC RTC has been optimised to remove unnecessary operations (such as products of zero or
identity matrices). Consequently, the number of floating multiplications performed in real time
is equal tonx/2+n2

x/2+3nxna/2+nxny ≈ 52k per frame for this configuration.
The Kalman gain computation, which centrally involves solving the Riccati equation (28), is

not part of the RTC data pipeline and is performed off-line on a separate interface computer, in
our case a standard desktop device. For a state vector with 278 components, solving the Riccati
equation took only about 1 to 2 seconds using the efficient doubling algorithm [28].

Both on- and off-line computation times are not a limiting factor for routine operations, and
the very flexible general formulation given in Eqs. (26)–(29) makes it advantageous. Of course
when moving to more complex systems for VLTs, or even ELTs, both off-line and on-line
calculations may become an issue. However various approaches have been recently proposed
to overcome this problem by exploiting the particular structure of the operations (linear shift
invariance, sparsity, structure...) [38–41], and RTCs’ computing power keeps increasing.

Another important practical and theoretical issue is the influence of loop delay on closed-loop
performance. In the system model presented in Section 3, we make the standard assumption
that the total loop delay between DM controlu and WFS outputy in the measurement equation
(8) is equal to two frames. However, during on-sky operations the actual system loop delay
d was measured at aroundd = 1.6 frames for a loop frequency of 150 Hz (the value usually
selected in order to achieve adequate signal-to-noise ratio for a 10-12 magnitude star at visible
wavelengths). In all the simulations and replays presented in this paper, the system loop delay
was therefore set tod = 1.6. With integrator control, it is easily seen that lower delay means
better disturbance rejection (in addition, as we shall see, it also renders integrator performance
considerably less sensitive to changes in the controller gain). The LQG controller is based
on an explicit model of the AO system, including delays. In our case, it has been designed
using a model with a loop delay of two frames, which simplified its implementation in DARC
RTC. This creates a system/model mismatch which may lead to a slight degradation of LQG
performance. However, in order to be consistent with on-sky implementation, the value of two
frames for the model loop delay in the LQG controller has been kept in all what follows.
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5. On-sky results

We present in this Section the first results obtained on-sky using an LQG control on all modes.
Taking advantage of the CANARY RTC’s flexibility, LQG control (with and without vibration
mitigation) and standard integral control were alternatively put on line over successive periods,
during which sequences of residual slopes, open-loop slopes and PSF images were recorded.
This enabled to compare the performance of these three controllers (LQG with and without
vibration compensation and integrator) in the most possible similar on-sky conditions. How-
ever, sudden and important variations of the Fried parameterr0 regularly occur, which makes
fair comparisons of performance series often difficult. We have thus preferred to compare per-
formance as a function ofr0, estimated as further explained. These SCAO results have been
obtained during the nights of August 28th and 29th 2012 (time is indicated hereafter in GMT+1,
La Palma local time) on the star BD+10 3697 of magnitudemV = 9.7.

The WFS slope noise estimated on the slope data is of the order of 80 nm rms, expressed as an
optical path difference at the edge of a WFS subaperture. This noise is mainly a consequence of
photon noise at the level of the WFS subaperture images detection, since we use a low detector
noise EMCCD ANDOR camera. Its impact on performance is difficult to estimate precisely
and depends on the choice of the controller. We still estimate in our case that an upper bound
of its contribution is 10% of the global residual phase variance in H band.

5.1. Tuning parameters for control

5.1.1. Integrator

The control computation for the integrator is given by:

uk = uk−1+gintMcomyk (32)

wheregint is the global feedback gain (i.e., the same gain was used for all modes). This gain has
been optimized on-sky for each night of the CANARY runs. In Fig. 1, we give an example of
on-sky determination of the gain. We can see that performance is not very sensitive to the gain
value. For this particular night, the gain was set to 0.6. This flatness of the on-sky performance
sensitivity seems counterintuitive, since one would normally expect a parabolic-like perfor-
mance curve. However, such parabolic performance would correspond to a total loop delay of
two frames, whereas ford = 1.6 the expected performance becomes essentially flat (more on
this in Section 5.3).
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Fig. 1. On-sky optimization of the integrator gain during the observation done the 28th of
August 2012. Different colors represent three gain tuning sequences at different times of
the night.

5.1.2. LQG

A convenient tuning parameter in LQG control is the measurement noise varianceΣw taken
in the model. Performance is generally improved when setting a noise level higher than the
physical noise values so as to absorb various model uncertainties inherent to experimental op-
eration [9, 20, 33]. Prior to starting on-sky operation, this relationship was confirmed through
investigation using the CANARY telescope simulator in similar noise conditions to that expect-
ed on sky. An amplification of the noise variance by a factor of 2 improved performance and
thus this tuning value was used for subsequent on-sky tests.

5.2. Performance results

We first present overall performance in terms of Infra-Red (IR) Strehl Ratio (SR), and then
focus more specifically on the TT correction.

5.2.1. Overall performance

The SRs are estimated on long exposure images (typically 3 sec) recorded with CAMICAz in
H or K-band. SR are computed with a particular care for what concerns dead pixel correction,
background subtraction and fine re-centering. For each image we associate a Fried parameter
valuer0 estimated from the 3 NGS off-axis WFS open-loop slope data (typically datasets of
2048 samples at 150 Hz, hence≈ 14 seconds).
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Fig. 2. Strehl ratios as a function of the Fried parameter for integrator and LQG controllers.
Top left: SR in H-band recorded on Aug. 28th 2012. Top right: SR in H-band recorded on
Aug. 29th 2012. Bottom: SR in K-band recorded on Aug. 29th 2012. Colors: red stars =
integrator control, green triangle = LQG control without vibration mitigation, and magenta
square = LQG control with vibration mitigation.

Figure 2 presents the SRs obtained on August 28th 2012 in H-band and on August 29th 2012
in H and K-band. We compare in each case integrator control (gain set to 0.6), LQG control
with no specific handling of vibrations and LQG control with vibration filtering. Despite strong
dispersion in seeing conditions, we clearly see that LQG with vibration mitigation indeed brings
a gain in performance compared to LQG without vibration mitigation. Moreover, the LQG
controller behaves as expected, globally better than integrator, in terms of performance and
stability.

The turbulent priors used in the model building for LQG control (V, r0, Σw) are identified
thanks to the LEARN algorithm [31,37] which uses an open-loop WFS data sequence of 5000
samples. At a sampling frequency of 150 Hz, this corresponds to 33 seconds of acquisition.
These data sets are also used for the identification of the TT models. We record a new set of
such open-loop data every time we change configuration or asterism on the sky to re-estimate
all priors and parameters. LQG matrices were updated in this fashion about every hour.

The fact that performance is not very sensitive tor0 may seem surprising at first glance.
However a gross estimate of error contributors for the integrator shows that more than half
the residual phase variance is related to non-seeing dependent terms (Fig. 3). These terms are
mainly due to uncorrected bench static errors and to vibrations.
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Fig. 3. Example of integrator control relative error budget in H band for a data sample on
August 29th 2012 withr0 = 21 cm.

Figures 4 and 5 show some examples of Point Spread Functions (PSFs) obtained with the
3 control strategies (integrator, LQG with and without vibration mitigation). As the controller
becomes more efficient, SR improves, the PSF becomes more symmetric and first Airy ring
more contrasted.

Fig. 4. PSFs recorded in K-band on August 29th 2012 observing BD+10 3697. Left: inte-
grator (SR = 62.1% @r0 = 16.1 cm). Center: LQG (SR = 70.3% @r0 = 15.1 cm). Right:
LQG with vibration mitigation (SR = 77.8% @r0 = 17.2 cm).

Fig. 5. PSFs recorded in H-band on August 29th 2012 observing BD+10 3697. Left: inte-
grator (SR = 50.9% @r0 = 19.4 cm). Center: LQG (SR = 61.9% @r0 = 19.5 cm). Right:
LQG with vibration mitigation (SR = 68.7% @r0 = 19.3 cm).
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5.3. Performance analysis in replay mode

These on-sky comparisons between LQG and integrator controller raise two important ques-
tions. First, would LQG retain its edge when compared with a properly tuned Optimized Modal
Gain Integrator (OMGI), where different feedback gains are used for different turbulent modes
in lieu of the global gaingint? A second relevant question is whether the gap in performance be-
tween LQG and integrator is mainly due to vibration peaks and their particular localization, in
which case the said performance gap might just as well vanish altogether for slightly different
on-sky conditions.

In order to address these issues, we exploited the fact that during CANARY experiments a
sequence of open-loop WFS slopes is systematically recorded every time a control is tested.
To evaluate the performance that any other controller would have achieved on-sky at this par-
ticular moment, it therefore suffices to feed this open-loop WFS data sequence in a filter that
emulates its closed-loop rejection transfer function. This produces sequences of residual slopes,
from which we extracted residual phase trajectories by applying a minimum-variance slopes-to-
Zernike modes reconstructor. This so-called ‘replay mode’ enabled to replicate with excellent
accuracy the actual on-sky performance of both LQG and integral controllers. Furthermore,
replay mode simulations reveal that integrator performance is highly sensitive to changes in
the system loop delayd. Figure 6 presents the performance variation as a function of the gain,
obtained by replaying the data in two cases:d = 1.6 frame andd = 2 frame delay. The same
behaviour has been obtained on all data sets: the 1.6 frame delay curve is essentially flat, which
is consistent with on-sky results in Fig. 1.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1
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2.5

3
Residual phase variance vs gain − 2012−08−28 23h10m
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ra
d2

 

 

delay 1.6 frame
delay 2 frames

Fig. 6. Residual phase variance in rad2 for integrator as a function of global feedback gain
gint obtained by replaying the open-loop on-sky data of the 28th August at 23:10. Two
different loop delays are considered:d = 1.6 (blue) andd = 2 (magenta).

5.3.1. Optimized modal gain integrator performance in replay

As already mentioned, the same gain has been used for all modes in on-sky integrator tests.
To explore in replay the benefit of choosing a different integrator gain for each mode, Zernike
modes were reconstructed from open-loop on-sky WFS data; we then applied to each sequence
the integrator rejection transfer functions corresponding to values ofgint ranging from 0.2 to
0.8 and draw performance curves in terms of residual phase variance (in rad2) for each re-
constructed mode. This detailed modal analysis showed that, due to the presence of vibrations
affecting only tip and tilt and to the moderate WFS noise level, best OMGI performance could
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be achieved by using only two different gains: a lower valuegTT for tip and tilt modes and a
higher valuegHO set identical for all higher-order modes.

Figure 7 shows representative performance levels (in rad2) obtained on the same open-loop
data-set (August 29th at 22:07) for this gain tuning strategy. The blue curve is the performance
of the integral controller when tip and tilt gains are set togTT = 0.3 while the higher orders
gain varies fromgHO = 0.2 to gHO = 0.8. The red curve corresponds to another tuning, where
the higher orders gain is set togHO = 0.6 while the tip and tilt gaingTT varies from 0.2 to 0.8.
Note that forgTT = 0.3 the performance curve exhibits a minimum aroundgHO = 0.6 and is
almost flat for 0.5≤ gHO ≤ 0.8. Thus, a finely tuned OMGI controller would give roughly the
same performance asgTT = 0.4 andgHO = 0.6 – a quasi-optimal setting which corresponds
to the lowest point on the red curve. The on-sky setting for the global integrator gain during
this night wasgint = 0.6, which corresponds to a quasi-optimal choice ofgHO but a markedly
sub-optimal choice ofgTT. It also appears that using this setting instead of the optimal tuning
would increase the residual variance by about 5%, whereas LQG residual phase variance (in
magenta) is 25% lower than this best integrator performance. This trend was confirmed on the
many data sets recorded during different nights.
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Fig. 7. Integrator performance in rad2 obtained in replay on the open-loop on-sky data of
the 29th August-22:23 for different gain values. Blue: tip and tilt gaingTT = 0.3 and higher
orders gain 0.2≤ gHO ≤ 0.8. Red: tip and tilt gain 0.2≤ gTT ≤ 0.8 andgHO = 0.6. Pink:
LQG performance.

5.3.2. Vibration mitigation/amplification and performance

Comparing on-sky performance of different controllers is difficult because disturbance con-
ditions vary over very short time periods. Replay mode offers a neat way to circumvent this
difficulty, since it enables to compare the performance that different controllers would achieve
when confronted to exactly the same disturbance trajectory. To assess the impact of vibration
on closed-loop integrator and LQG performance, we thus present here results obtained by re-
playing an open-loop sequence of WFS measurements acquired on the night of August 29th
with the 3 controllers (integrator, LQG with and without vibration compensation) that had been
tuned and tested on-sky at that point in time. For LQG control, this means that we have used
here the matrices that have been computed during on-sky operations.

From this sequence of on-sky open-loop slopes and these 3 sequences of residual slopes ob-
tained in replay (one for each controller), we extracted tip and tilt modes trajectories using a
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modal reconstructor (pseudo-inverse ofD) and computed the corresponding ‘tip plus tilt’ cu-
mulated PSDs (i.e. the sum of tip and tilt cumulated PSDs at each frequency). These cumulated
PSDs, which thus provide for each controller a frequency-by-frequency total tip and tilt residual
variance, are presented in Fig. 8.
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Fig. 8. Cumulated PSDs for open-loop and residual tip plus tilt disturbance and residuals
computed from WFS data recorded on-sky on Aug. 29th 2012. Tip and tilt are evaluated in
equivalent on-sky angle, expressed in arcsec, hence PSDs in arcsec2. (Open-loop data on
bottom plot has been lowered by 0.013 arcsec2 to increase vertical resolution.)

The open loop curve presents several steps indicating vibration peaks at different frequencies.
At frequencies up to a few hertz they are strong but have very limited impact on performance
since all controllers have a good rejection (see Section 6.2). The last vibration peak, located
at 22 Hz, is more critical since it is amplified by the integrator control (see Section 6.2 for
details) and not corrected by standard LQG control. However, LQG with dedicated vibration
identification and filtering mitigates this contribution. On these data we estimate that the 22 Hz
vibration contribution amounts, for the integrator control, to a loss of SR in K band by a factor
0.9 .

For results such as the ones in Fig. 8, it is clear that the vibration peak affecting tip and tilt
modes around 22 Hz is amplified by the integrator and mitigated by the LQG controller. To
make a quantitative assessment of the impact on overall performance for this particular on-sky
dataset, we have evaluated the corresponding cumulated open-loop and residual tip plus tilt
DSPs over the frequency range[10 Hz− 75 Hz]. The step for the open-loop PSD (tip+tilt)
is 510−4 arcsec2, to be compared with 3.410−4 for LQG and 10.910−4 for integrator, which
clearly amplifies the vibrations. On this example (fairly representative of our on-sky results), the
tip+tilt residual variance of the integrator is 107% higher than LQG. We could expect an OMGI
controller to give better results, and we have thus evaluated its performance in replay. However,
even with a finely tuned OMGI controller (in our simulation,gTT = 0.3 andgHO = 0.7), the
residual variance would still remain 43% higher than with LQG.

While many real AO systems exhibits vibration spectra spanning a wide frequency range (see
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for example [12]), we may also consider ideal ‘vibration-free’ situations, i.e. where perturba-
tions exhibiting no vibration peak in any ‘critical’ frequency range. Would high-performance
SCAO controllers still improve performance? We have thus conducted tests to give an idea of
what could be gained with an LQG controller on such data for which the vibrations within the
integrator overshoot zone have been removed. This was achieved by modifying on-sky data sets
to obtain filtered data without vibrations in the range 10−40 Hz. An example of such spectra,
corresponding to the data of August 29th 2012 at 22:02, is given in Fig. 9.
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Fig. 9. On-sky original x- and y-slopes CANARY data (red) and a filtered version (blue)
where vibrations have been removed in the range 10-40 Hz. Data set of August 29th 2012
at 22:02.

We have evaluated the performance obtained by replaying the loop on these data for the LQG
controller – with TT model based on Eqs. (30)–(31) – and for the integrator controller with a
fixed gain of 0.7 (the best tuning in replay). The LQG residual variance is around 6% better, thus
keeping slightly ahead. Depending on the processed data set, this percentage varies between 5
and 10 %. Note that some improvement could be gained by designing the LQG controller with
a system loop delay of 1.6.

6. LQG vs. integrator: frequency-domain and robustness analysis

This Section presents a comprehensive comparative analysis of LQG and integrator perfor-
mance from a frequency-domain perspective. We seek to provide answers to the following
questions: 1/ Do the disturbance models used for LQG control accurately match the turbulence
and vibration modes’ PSDs reconstructed from on-sky data? 2/ Is the quality of LQG cor-
rection for these modes, as measured by their modal rejection transfer functions, significantly
better than with an integrator? 3/ Is LQG control robust to modeling uncertainties?

These three issues are in fact closely intertwined, because of the fundamental perfor-
mance/stability trade-off inherent to any control loop: on the one hand, efficient disturbance
rejection requires high feedback gains; on the other, (too) high feedback gains render the loop’s
behavior unstable or at least too sensitive to modeling uncertainties. In order to negotiate a
sensible trade-off between these inherently conflicting requirements, the controller gain thus
needs to be finely adjusted according to the disturbance’s PSD and also to the measurement
signal-to-noise ratio.
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6.1. Model relevance for turbulence and vibration

We discuss here the relevance of the models of high-order (Section 6.1.1) and tip-tilt modes
(Section 6.1.2) used for LQG control by comparing their temporal PSDs to those of on-sky
data.

6.1.1. Model matching for high orders

Figure 10 compares the temporal PSDs of the AR2 models used as priors for turbulence with
the experimental PSDs computed on reconstructed Zernike coefficients (Z4 and Z28).

We recall that the high order AR2 models are based on the physical description in Eqs.
(30)–(31), with a cut-off frequency proportional to radial order and wind norm, and an energy
related to Kolmogorov spectrum (see Section 4.1). The prior temporal PSDs of these models
(with wind norm andr0 estimated on the data) are plotted in Fig. 10. The experimental PSDs
have large dynamics, a high level at low frequency (of course larger for low orders), a sharp
decrease after the cut-off frequency and a noise floor at high frequency. We see that the cut-off
frequency increases as expected with the radial order of the Zernike polynomial [36]. The good
agreement between modeled and measured PSDs (even if the cut-off frequencies on left column
could be better adjusted) validates the model structure and the parameter estimation. On these
curves, the turbulent AR2 models of course do not include the high-frequency noise plateau
due to the measurement noise.

Fig. 10. PSDs of high orders Zernike Z4 and Z28. Black = Regularized reconstruction
from open-loop data, red = AR2 model. The theoretical cut-off frequency is indicated by
a magenta vertical dotted line. The data have been recorded the August 29th 2012. Left:
slopes data at 22h07m32s (V = 10.3m/s). Right: slopes data at 23h07m07s (V = 7.8m/s).
Top: Zernike number 4. Bottom: Zernike number 28. The AR2 models have been identified
on the sequence of open-loop data at: left: 21h53m26s and right: 22h54m21s.

6.1.2. Model matching for tip and tilt

We now compare the PSDs of on-skyx andy mean slopes with the model identified from this
data set as a sum of AR2 processes. Recall that in the turbulent model, the vibration compo-
nents and the noise plateau due to measurement noise are identified in the frequency domain
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with the method presented in [17]. Figure 11 shows two examples of fits provided by the identi-
fication procedure. A good agreement is found both for the smooth turbulence PSDs and for the
vibration peaks thanks to the flexibility provided by the adaptation of a damping coefficient for
each component. On Fig. 10 (right), a different tuning of the parameter identification algorithm
could have led to an even better fit around 15 Hz. However, during all on-sky tests, we retained
the same tuning of the identification algorithm.

Fig. 11. Identification of vibrations on Tip (left) and Tilt (right) and fit of the AR2 model
for vibration filtering in the perturbation modeling.

6.2. Rejection transfer functions

In the sequel, we denote byEtur(z) the AO loop’s disturbance rejection transfer function (a.k.a.
the discrete-time feedback loop’s sensitivity function), which is the transfer function between
the disturbanceφ and the residual phaseφ res. To computeEtur(z), one needs to take into account
the value of the system loop delay, that isd= 1.6 frame. In practice, a total loop delay 1< d≤ 2
means that the controluk is not applied between WFS sampling instantst = (k+ 1)T and
t = (k+ 2)kT, but instead betweent = (k+ d− 1)T and t = (k+ d)T. Thus, the correction
phaseφcor

k seen by the WFS during the sampling interval[(k−1)T,kT[ is not equal toNuk−1
but to

φcor
k = N ((d−1)uk+(2−d)uk−1) , (33)

so that the measurement equation that needs to be accounted for in the computation ofEtur(z)
is

yk = Dφk−1−DN((d−1)uk−1+(2−d)uk−2)+wk. (34)

Using this formula, it is immediately checked that the rejection transfer function is given by

Etur(z) =
(
I +
(
(d−1)z−1+(2−d)z−2)NG(z)D

)−1
, (35)

whereG is the controller transfer function (i.e. the open-loop transfer function from residual
slopes to control inputs). To characterize the effect of the rejection transfer function on a par-
ticular Zernike mode, it suffices to consider the corresponding diagonal term of the sensitivity
function.

From Eq. (32), the integrator controller transfer function is

G(z) =
(
1− z−1)−1

gintMcom. (36)

BecauseNMcomD ≈ I , the matrixEtur(z) is approximately diagonal, with the same rejection
transfer function for all Zernike modes.
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For LQG control, from Eqs. (26) and (29), we get:

G(z) =
(
I − z−1A(I −H∞C)+ z−2AH∞DNPuCφ

)−1
AH∞. (37)

6.2.1. Rejection transfer functions for high orders modes

In this Section, we compare the rejection transfer functions of integrator and of LQG for the
two Zernike modes Z4 and Z28. Because of a fundamental result in control theory known as
Bode’s integral theorem, which in its discrete-time version applies to all feedback loops with
delayd ≥ 1 (see e.g. [42], page 79), increasing rejection for some particular frequency will
be repaid in kind by disturbance amplification elsewhere (the so-called ‘water-bed effect’). As
a consequence, it is easily checked that for feedback loops with reasonably good signal-to-
noise ratio, the gain of an optimal minimum-variance controller should at low-and-medium
frequency be roughly inversely proportional to the square root of the PSD of the perturbation
while remaining bounded at high frequencies so as not to amplify measurement noise. This
rule of thumb provides a convenient way to gauge, by simple visual inspection, whether or not
a particular controller provides optimal or near-optimal rejection [11].

Figure 12 shows the AR2 model temporal PSDs and the rejection transfer functions. As
expected, the PSD cut-off frequency increases according to the radial order [36]. Note also
that LQG’s rejection exhibits a low-frequency ‘plateau’ which closely matches the turbulence’s
PSD, resulting in more efficient correction.
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Fig. 12. Left: Rejection transfer functions on Z4. Right: Rejection transfer functions on
Z28 (observing night 29 August 2012). Blue for integrator control and Magenta for LQG.
The red curve corresponds to the normalized square root of the PSD of the perturbation’s
model.

6.2.2. Rejection transfer functions for tip and tilt

Figures 13 and 14 show the rejection transfer functions of the TT modes for LQG control and
integrator together with the theoretical PSD of the global AR2 TT model (in red), which is
the sum of 11 AR2 processes, one for the TT turbulent component and 10 AR2 for identi-
fied vibration peaks. As explained above, the integrator has a high rejection at low frequency,
but the rejection degrades rapidly and presents even an overshoot centered at about 20 Hz.
On CANARY, as we have shown in Section 6.1.2, there are 2 energetic vibration peaks near
this overshoot frequency which significantly degrades the performance. LQG controller with
vibration filtering reject those vibrations peaks, leading to a much more efficient correction.
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Fig. 13. Rejection transfer functions on tip. Left: without vibration filtering. Right: with
vibration filtering. (observing night 29 August 2012). Blue: integrator control. Magenta:
LQG. The red curve corresponds to the normalised square root of the PSD of the model
perturbation.
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Fig. 14. Rejection transfer functions on tilt. Left: without vibration filtering. Right: with
vibration filtering. (observing night 29 August 2012). Blue: integrator control. Magenta:
LQG. The red curve corresponds to the normalised square root of the PSD of the model
perturbation.

6.3. Robustness stability margins

An important issue for all feedback systems is closed-loop stability. For the LQG AO system,
closed-loop stability means that the matrix-valued rejection transfer functionEtur(z) defined by
Eq. (35) should be stable, i.e. should have all its poles (all the values ofz for which Etur(z) is
not defined) inside the unit circle of the complex plane. Because LQG is a minimum-variance
controller, closed-loop stability is guaranteed at least for the nominal value ofEtur(z). In addi-
tion, an important insight into robust stability – does the closed-loop system remain stable when
parameters deviate from their nominal value? – can be derived from the frequency responses of
the modal rejection transfer functions (including their phases).

This is achieved by noting that each diagonal termEtur
i (z) of Etur(z) can be viewed [7] as

the disturbance rejection transfer function of an equivalent monovariable feedback loop with
loop transfer functionLi(z), unitary feedback and additive output disturbance. Thus,Li(z) can
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be retrieved fromEtur
i (z) using the identity:

Etur
i (z) =

1
1+Li(z)

. (38)

Under the assumption thatLi(z) is a so-called ‘regular’ loop transfer function (i.e., without zeros
or poles outside the unit circle), the Nyquist stability criterion requires that in order forEtur

i (z) to
be stable, the Nyquist plot ofLi(z) must remain at the right of the critical point -1 for all positive
frequencies. The next step is to evaluate the associated gain, phase and delay margins. Thus,
denoting asθp,1, . . . ,θp,mi the normalized frequencies at which arg(Li(ejθ )) = π , the largest
extra gain which can be added without destabilizing the loop is given by the gain marginMG,i

defined through

MG,i = min
k=1,...,mi

1

|Li(ejθp,k)|
. (39)

Likewise, denoting asθc,1, . . . ,θc,ni the normalized frequencies at which|Li(ejθ )| = 1, the
largest negative phase shift and the largest extra delay which can be added without destabi-
lizing the loop are given respectively by the phase marginMφ ,i and the delay marginMD,i

defined through

Mφ ,i = min
k=1,...,ni

(
arg(Li(e

jθc,k))−π
)

(40)

MD,i = min
k=1,...,ni

arg(Li(ejθc,k))−π
θc,k

(41)

Real Axis
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
Nyquist diagram of tip for LQG controller

Im
ag

in
ar

y 
ax

is

Fig. 15. Nyquist plot of LQG loop transfer function, tip
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Fig. 17. Nyquist plot of LQG loop transfer function, Zernike mode 28

Figures 15–17 show the Nyquist plots ofLi(z) for 3 representative Zernike modes (tip, de-
focus Z3 and Z28) for a system loop delay of 1.6 frames. These Nyquist plots keep clear of
the critical point−1, leading to good robustness margins. Table 1 presents the gain, phase and
delay margins for 7 different Zernike modes (low, medium and high-order). In order to provide
a point of comparison, the table also gives the gain, phase and delay margins for the integra-
tor controller with the standard default settingg = 0.5. This suggests excellent robustness of
LQG, especially since in this particular case the Kalman filter and the control gain have been
computed for an incorrect total loop delay of two frames.

#217026 - $15.00 USD Received 15 Jul 2014; accepted 17 Jul 2014; published 18 Sep 2014
(C) 2014 OSA 22 September 2014 | Vol. 22,  No. 19 | DOI:10.1364/OE.22.023565 | OPTICS EXPRESS  23589



Table 1. LQG and integrator rejection rejection transfer function’s gain, phase and delay
margins for different Zernike modes

Controller & mode gain margin phase margin delay margin (frames)
LQG Z2 (tip) 12.9 dB 75.9◦ 1.61
LQG Z3 (tilt) 12 dB 69.4◦ 1.77
LQG Z4 (defocus) 11.1 dB 54.7◦ 1.79
LQG Z5 (astigmatism) 12.4 dB 58.2◦ 2.21
LQG Z7 (coma) 11.5 dB 58.7◦ 2
LQG Z14 13.3 dB 67.8◦ 2.76
LQG Z28 14.3 dB 84.7◦ 3.91
integrator,g= 0.5 (all modes) 10.5 dB 59◦ 2.1

7. Conclusion

We have presented in this paper the first SCAO results obtained on-sky with LQG control on
all modes. These results, that include vibration mitigation on tip and tilt, have been obtained
on the CANARY demonstrator installed at the William Herschel Telescope on the Roques de
Los Muchachos in La Palma (Canaries Islands, Spain). A detailed performance analysis is per-
formed and comparison is conducted with the integral action controller. Note that preliminary
LQG results obtained in MOAO with CANARY have been presented in [23].

LQG control gives better on-sky performance than a single gain integrator controller, and
proved to be reliable with perfect loop stability and robust performance. Like most AO system-
s, the CANARY demonstrator is submitted to several vibrations affecting the tip and tilt modes.
Using the frequency domain identification method presented in [17], LQG with vibration fil-
tering leads to significant additional improvement in performance. This validates the tip-tilt
control strategy adopted on the European extrasolar planet finder SPHERE at the VLT. Exten-
sion to vibration mitigation on other modes is straightforward, as indicated in the formulation
presentation.

Replays on on-sky data have allowed to test an Optimized Modal Gain Integrator (OMGI).
We show that LQG control still leads to better performance. Besides, even in the absence of
vibrations in the overshoot frequency range of the integrator, LQG control keeps a slight ad-
vantage.

The designed LQG controller relies on a simple and physical state model adapted to the
disturbance’s PSD which leads to a better compromise between perturbation rejection and noise
propagation in the loop. The selected second order autoregressive perturbation models are in
good agreement with CANARY on-sky data. Performance is also analysed through evaluation
of rejection transfer functions (RTF) and stability margins. Important attenuations in the RTFs
confirm the ability to efficiently damp vibratory components. As for stability, excellent gain,
phase and delay margins have been evaluated on the on-sky LQG controllers.

This allows to confidently envision more informative models. We could for instance account
for wind direction since estimation of wind profiles in norm and direction is achievable with
ever better accuracy [43–46]. This may be of particular interest in the context of WFAO [47].
Robustness in stability does not mean robustness in performance, and sensitivity to errors in
wind direction estimation thus also needs to be investigated.
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