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Abstract. We present in this paper the very first on-sky results of full Multi-Object Adaptive Optics
(MOAO) LQG control (i.e. all modes, with coupling, controlled with an LQG regulator), obtained in
Spring 2013 on the CANARY demonstrator at the William Herschel Telescope (La Palma, Spain). The
MOAO on-sky pathfinder CANARY features two AO configurations that have both been tested: single-
conjugated AO and multi-object AO with NGS and NGS+LGS, together with vibration mitigation on tip
and tilt modes. The successful MOAO results are presented and shortly analyzed in terms of performance
and tuning.

1 Introduction

Many concepts of Wide Field AO (WFAO) systems are under development, especially for Ex-
tremely Large Telescopes (ELTs) instruments. Multi-Object Adaptive Optics (MOAO) is one of
these WFAO concepts, well suited to high redshifts galaxies observations in very wide Field of
View (FoV). CANARY is the on-sky pathfinder for MOAO operating at the William Herschel
Telescope (WHT, La Palma, Spain) since 2010. We have demonstrated that Linear Quadratic
Gaussian (LQG) control was an appealing strategy in this context [Sivo et al.(2012)], which
moreover provides optimal performance (in the sense of minimum residual phase variance)
with respect to the chosen models. It is based on a unified formalism that allows accounting
for multi WaveFront Sensors (WFSs) channels, both on Laser Guide Stars (LGSs) and NGSs,
and for various disturbance sources (turbulence, vibrations). We present the very first on-sky
IR images recorded with full LQG AO. These world premieres have been obtained in Sum-
mer 2012 and Spring 2013 at the WHT on the CANARY demonstrator. Two AO configurations
have been tested: single-conjugated AO (see [Sivo et al.(2013)]) and multi-object AO with NGS
and NGS+LGS. These results demonstrate the feasibility of implementing an LQG control for
single-conjugated and tomographic AO, as well as the efficiency of our strategy for vibration
identification and filtering on tip-tilt. The MOAO results presented in this paper are shortly
analyzed in terms of performance, and influence of turbulence conditions and control tuning
parameters is evidenced. Note that this very first demonstration has been made possible thanks
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to a close collaboration between the CANARY teams (Durham University, Observatoire de
Paris LESIA-GEPI, IOGS/UP13, ONERA, UK ATC, ING).

The first section presents the structure of the dynamical models used for LQG design. Sec-
tion 3 presents the chosen perturbation models and their identification. We also illustrate our
LQG tab within the graphical user interface (GUI) STYC (the GUI developed at Observatoire
de Paris-LESIA). Section 4 presents the MOAO on-sky results. Some perspectives for ELTs and
conclusion elements are proposed in Section 5. Also note that references given throughout the
paper are limited to contributions directly related to the LQG approach as implemented on CA-
NARY. See, e.g., [Sivo et al.(2013)] for a more comprehensive state-of-the-art on LQG control
developements in AO.

2 Minimum variance control and dynamical models for LQG control

The control performance criterion to be minimized is the residual phase variance

Var(φ − φcor) (1)

where the correction phase φcor is defined using the influence matrix N as

φcor
k = Nuk−1, (2)

uk−1 beeing the Deformable Mirror (DM) command applied during interval [(k−1)T, kT ] where
T is the frame length. Details on such a formulation for adaptive optics and on the develope-
ments below can be found in [Kulcsár et al.(2012)]. The optimal control is obtained thanks to
the separation principle, which consists in splitting the optimization procedure into two steps:
minimum variance estimation of the phase through

φ̂k+1|k = E(φk+1|yk, . . . , y0), (3)

and control computation through an orthogonal projection of the phase onto the DM:

uk = Pprojφ̂k+1|k (4)

where the projector Pproj corresponding to equation (1) is simply the pseudo-inverse of N. When
the stochastic process φk is obtained as the output of a linear state-space system with Gaussian
white noises, the conditional expectation in equation (3) can be computed as the output of a
Kalman filter. The state-space system takes the following form


xk+1 = Axk + vk

yk = Cxk + wk

φk = Cφxk

, xk =

(
xtur

k
xvib

k

)
,


xtur

k =

(
φtur

k
φtur

k−1

)
xvib

k =

(
φvib

k
φvib

k−1

) (5)

where φtur and φvib are the turbulence and vibration parts of the global perturbation φ defined as

φ = φtur + φvib. (6)

The state matrix A defines the dynamical behaviour of the perturbation, yk is the measurement
vector, Cφ is a matrix that extracts the global perturbation φ, w is a white Gaussian measurement
noise, and v is a white Gaussian state noise independant from w.
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3 CANARY implementation: model building and identification

Both turbulent and vibration models are chosen as auto-regressive models of order 2, as pro-
posed for example in [Sivo et al.(2012)]. The turbulence model is described for all modes in
each layer as

φtur
k+1 = Atur

1 φ
tur
k + Atur

2 φ
tur
k−1 + vtur

k (7)

where parameters Atur
1 and Atur

2 are defined such that the temporal Power Spectral Density (PSD)
cut-off frequency of each mode corresponds to the theoretical cut-off frequency of a process
satisfying the dynamical Taylor hypothesis and the spatial Kolmogorov statistics. The resulting
damping factors are then fixed at 0.9, meaning that there is no resonance (see [Sivo et al.(2013)]
for details). The covariance matrix of vtur is chosen so that φtur satisfies Kolmogorov statistics.

The vibration model for tip and tilt modes has the same structure:

φvib
k+1 = Avib

1 φvib
k + Avib

2 φvib
k−1 + vvib

k (8)

albeit with damping factors around 0.3, so that the models are resonant, see figure 1. Parameters
Avib

1 and Avib
2 also determine the location of the resonant frequencies, whereas the variance of

vvib determines the energy level.

Fig. 1. Spectra of AR2 models with different damping factors. For damping factors greater than 1/
√

(2),
there is no resonance.

3.1 Identification for tip and tilt modes

Tip and tilt models for turbulence and vibrations have been identified using the method in
[Meimon et al.(2010)] based PSDs fits. The method estimates the dynamical parameters needed
to build Avib

1 , Avib
2 , and the tip and tilt parts in Atur

1 and Atur
2 , together with the power of the cor-

responding generating noises vvib and vtur. The PSDs are estimated using x- and y-averaged
pseudo-open loop slopes from on-sky measurements.

3.2 Identification for higher orders modes

The models for higher modes are build from priors which are the C2
n profile, the wind norm in

each layer and the geometry of the asterism. All priors have been estimated from on-sky data
thanks to the Learn algorithm [Vidal et al.(2010)], save the wind norm in each leayer. However,
the Learn gave us a global wind value.
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3.3 The LQG tab on STYC

The GUI which provides the necessary interface between the bench and the user was developed
at LESIA. Thanks to their help, we have developed an LQG tab that gathers all necessary
parameters to compute the matrices used in LQG control and to tune the controller according
to a given strategy (number of Zernike modes in each layer, tuning of the model measurement
noise for the computation of the Kalman gain, choice of any substet of guide stars to evaluate
their impact on performance, possible activation of vibration filtering).

The tab is illustrated in figure 2. The blue rectangle gathers the parameters needed to com-
pute model matrices. The green rectangle concerns the vibration filtering method, and the red
rectangle contains the push buttons that activate the Kalman gain computation and the transfer
to the RTC DARC [Basden et al.(2010)] developed by University of Durham. Estimated spec-
tra of tip and tilt are plotted on the side for quick checking (red and black curves correspond to
estimations using truth or averaged off-axis NGS WFSs). The console on the far right informs
on the progression of the algorithms.

Fig. 2. The LQG STYC tab which allows to load as default values priors identified from the Learn tab,
and to define all options of the controller.

4 MOAO on-sky preliminary (and last minute) results

The results presented here have been obtained on 25th May 2013, in a configuration with 4
LGSs plus 3 NGSs WFSs, see figure 3 left, where LGSs are in green and NGSs are circled in
red. The maximum separation is here about 2 arcmin, and LGSs are at 20 arcsec from the central
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star. The loop sampling frequency is Fs = 150 Hz. Point Spread Functions (PSFs) correspond
to H band (1.55 µm).

The turbulence profile given by Learn corresponds to 3 layers at altitudes 0, 6 and 13
km (see figure 3 middle). The r0 values versus time given by STYC are plotted in figure 3
(right), where blue circles correspond to Apply tests and red ones to LQG tests. The Apply
[Vidal et al.(2010),Gendron et al.(2011)] reconstruction corresponds to a slopes-based MMSE
derived from the turbulence profile priors indentified with the Learn algorithm. It does not use
priors on the temporal behaviour of the perturbation, but spatial priors are exactly the same than
the ones used for LQG control.

The LQG state vector in this configuration had 1258 components corresponding to two tem-
poral occurences of the total perturbation and two delayed commands (56 actuators each). The
computational time for the Kalman gain was less than 3 minutes.

Fig. 3. Left: the asterism with 3 NGS, and the 4 LGSs plotted as green disks. Middle: C2
n given by Learn,

with layers at altitudes 0, 6 and 13 km and a 70% strength at ground layer. Right: values of r0 versus
time during the run as given by STYC.

Figure 4 presents Strehl Ratios (SRs) obtained with different star configurations, all with
vibration filtering. A first comment concerns comparisons between LQG 4LGS+3NGS and
LQG 3NGS, which show that the LGS+NGS fusion is efficient, and that the presence of LGS
WFS measurements clearly improves performance. The performance gap between LQG and
Apply is slightly in favor of LQG control, but the influence of the r0 value in these results may
be not negligible. Another point that worths to be mentioned is the influence of the wind. During
this night, we could have access to wind velocities in all layers thanks to the StereoSCIDAR
driven by J. Osborn from University of Durham [Osborn et al.(2013)]. These values were rather
high (30 m/s in high altitude layers), meaning that phase prediction may bring more in terms of
performance than in situations were the wind velocity is very low. Further data reduction and
behaviour analysis are still in progress, but these preliminary results show that LQG control is
efficient and are extremely promising in terms of overall performance.

5 Some conclusions

Myth busting (inspired from Olivier Guyon’s talk) may be required in order to revisit some
comments or appreciations encountered about LQG control:

5

Third AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes



Fig. 4. MOAO Strehl Ratios (SRs) for the 25th May 2013 run. Results are obtained with various config-
urations that are indicated by different colors. LQG control includes vibration filtering. The r0 variation
corresponding to these records is plotted in figure 3 right.

– “It will never work (too many priors and heavy computations)”: sensitivity to priors appeared
to be reasonnable. For example, while the wind norm was set by rule of thumb, this has not
led to any disaster. The fact that models are build on priors and that it works rather well
also means that the Learn algorithm did a good job! As for the off-line computations, the
heaviest calculations were obtained with 2000 components in the state vector, leading to 6
mn of computing time for the Kalman gain on a standard computer with a non optimized
code.

– “It will never work (LQG control is not robust)”: we never encountered any robustness issue.
In fact, as the control is obtained with a simple orthogonal projection, stability margins are
similar to those of the Kalman filter, see [Sivo et al.(2013)] for a detailed analysis in the
context of SCAO.

– “It will never work (too complex for real-time computation)”: the RTC DARC developed by
University of Durham is designed to offer a good compromise between speed and flexibility.
In this regard, we have tested up to 2000 components in the state vector without any real-time
computation problem.

A nice feature of these model-based controllers is their high flexibility to various single con-
jugated or wide-field AO configurations. The ability to account for specific disturbances like
vibrations [Petit et al.(2009),Correia et al.(2012)] or very slow low-order turbulence and wind-
shake is also very interesting [Conan et al.(2011)].

The extension of such control laws for ELTs is however not straightforward. However, large
number of degrees of freedom have been tackled in an AO LQG context, see for example
[Correia et al.(2010),Massioni et al.(2011),Gilles et al.(2013)]. The tricky part is obviously to
keep flexibility and performance, together with a highly parallelizable algorithm.
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