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Fano resonances in photonic crystal slabs near optical bound states in the continuum
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Photonic crystal slabs are able to support optical bound states in the continuum. The latter are eigenmodes of
the structure that are truly guided (no radiation leakage) despite the fact that they lie above the light cone within
the continuum of radiation modes. Such peculiar states can be viewed as modes with an in nite quality factor
Q. Therefore, the question of the behavior of Fano resonances, as optogeometrical parameters are tuned close to
optical bound states in the continuum, is of importance for applications of photonic crystal slabs with ultrahigh
Q factors. We study theoretically the re ection and transmission of a photonic crystal slab close to an optical
bound state in the continuum with a phenomenological approach involving the poles and zeros of the scattering
matrix. In particular, we derive a general relation valid for asymmetric structures that gives the position of a pole
in the complex plane as a function of the positions of the zeros. We provide closed-form expressions for the
re ection and transmission. The proposed phenomenological approach is validated through rigorous numerical
calculations.
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I. INTRODUCTION slab can be understood as perturbations of the guided modes
. - upported by the uncorrugated dielectric sla].[ But even
witEh:toglr?o%ri)ésﬁls d(LIJDIQtCi:OSrz &cl)rfetﬁgl ;:é?rlascttritjlgt%%séfngomzdlsn the nonperturbative regime of strong modulations, the
P phenomenological approach is able to accurately describe

:’éi{gfg?ﬁg \?vceililliﬂ.o\-/rvze Eg{g%?écggncg tr;e r(ﬁ;‘gx;gieéh ano resonances in PhC slabs. The poles and zeros of
P 9app ' e scattering matrix have also been used to describe Fano

slabs can be formed by etching a one- or two-dimensional (1 - . . .
or 2D) PhC in a dielectric thin layer acting as a waveguidereson"’mces in metalic grating@1{22] and in arrays of

S . v - plasmonic nanoresonatoi2y.
[2.3]. L|gh§ IS 'Fhen con ned in the out-of-plane dwep'uon by It was recently pointed out that PhC slabs can support
the refractive index contrast. Compared to three-dlmensmn%l tical bound states in the continuum (BIC24{26]. A
(3D) PhCs, the simpli ed architecture of PhC slabs make P '

them attractive in the realm of on-chip integrated photonic IC is an eigenmode, which is truly guided (no radiation
. ; P 9 P ﬁeakage) despite the fact that it lies within the continuum of the
given that they are vertically compact and bene t from ease

of fabrication. These unique features have enabled a Widradlatlon modes, i.e., above the light cone in the corresponding

variety of applications, including antire ection coatingd,[ ispersion diagram. The existence of such peculiar states
ety PP - 9 ; o ’ strongly depends on the geometrical parameters. In particular,
switching devicesq], vertical-cavity surface-emitting laser

. .~ a variation of the slab thickness (all other parameters being
S/ecciirl;i)sﬁé]gas sensingf, and structural color generation xed) restores the expected leaky character of the mode.

Even if the term photonic crystal is relatively recent theWithin the polology framework, a BIC corresponds to a
interest in periodic pstructuresyand more pre)::isely ir,1 th(?real—valued pole of the scattering matrix. Therefore, unlike
way they scatter light, displays a long history. While Lord eaky modes that correspond to complex-valued poles, a

Rayleigh gave the description of an optical forbidden banolBIC can be exactly matched in frequency and wave vector

as soon as 18879 Wood experimentally discovered in with a propagative plane wave incident on the PhC slab.
1002 that weak modi cations of the geometrical parameter Naively, one then expects a divergence of the optical response.

of a diffraction grating may lead to sharp anomalies in theSHowever, any divergence of the re ection or transmission is

diffraction spectrum0]. The so-called Wood'’s anomalies are prohibited by energy conservation for a propagative incident

now well understood as resulting from the resonant excitation) 2 e Hence, the following basic questions arise. Does the
of a leaky mode supported by the PhC slai-fi4]. This IE)henomenologlcal model based on the poles and zeros break

; . down for a BIC? What are the values of the re ection and
optical phenomenon, also known as guided-mode resonance, s

: transmission as the parameters are tuned to match those of
a speci c case of Fano resonance that has been used to reallé%lc,, How does a Fano resonance behave as a function of
resonant lters 15-18]. Around the resonance, the spectral i

and angular behavior of the re ection and transmission can bgptogeometrical parameters in the vicinity of a BIC?
9 The aim of this article is to address these intriguing

accurately described with a phenomeno_loglcal approach bas %estions. Since a BIC can be viewed as a mode with an in nite
on the poles and zeros of the scattering mattig 19,20].

This is the so-called polology framework. For PhC SIabsquaIityfactorQ,the question of Fano resonances close to such

with a weak modulation, this approach provides an in-depttpecu“ar states is of fundamental importance for applications

: S of PhC slabs with ultrahigkp factors. We will show that the
physical understanding since the leaky modes of the corrugateu(JLe of the poles and zeros of the scattering matrix is still

valid and useful to describe light coupling to a BIC as well
as the behavior of the corresponding resonance as geometrical
*Corresponding author: cjfblanchard@gmail.com parameters are varied.
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We start Secll by a brief reminder of phenomenological where the symbol stands for Hermitian conjugate (conjugate
expressions for the re ection and transmission coef cients intranspose) of the matrix.
terms of the poles and zeros of the scattering matr@21]. In the following we rst recall phenomenological expres-
Then we derive original and general relations between thsions for the re ection and transmission coef cients that
different parameters (pole, zeros, and prefactors) that appeare valid near a Fano resonand®{21]. These expressions
in the phenomenological expressions. In contrast to previousvolve the poles and zeros of the scattering matsix
works [19], these relations are valid for asymmetric structures.Then we derive original and general relations between the
In Sec. lll we discuss the values of the pole and zeroddifferent parameters (pole, zeros, prefactors) that appear in the
associated with a BIC. We provide closed-form expressionphenomenological expressions.
for the re ection and transmission coef cients. This model
a”OWS us to Sem'analyt'ca”y deSCt‘Ibe the eVO|UtIOI’1 Of the A. Phenomeno'ogica' expressions for the reBection and
resonance as a function of any geometrical parameter. Finally, transmission coefbcients
the model is validated in Seb/ by comparing its predictions
with rigorous numerical calculations for three different Ph
slabs: a 1D array of slits in a dielectric membrane, a 2D lattic
of circular holes in a dielectric membrane, and a 1D array o
dielectric cylinders. Sectiod concludes the work.

o The scattering matri$ depends on the many parameters of
éhe problem such as the wavelengtlthe in-plane wave vector,
pr the geometrical parameters of the PhC slab (thickhess
Il factor F, period ). It also depends on the refractive
index n of the material, which may be frequency dependent.
The phenomenological approach known as polology consists
Il. GENERAL PROPERTIES OF THE POLES AND ZEROS of using an analytic continuation o6 in the complex
IN ASYMMETRIC STRUCTURES plane by considering one of these parameters as a complex

variable, all other parameters being xed. We refer hereafter
Ao this complex variable as Usually,z represents either the
wavelength/frequency or the in-plane wave vecl@;19-21].

We consider a dielectric PhC slab that displays no particul
symmetry, as depicted in Fid. The following derivations
grigoanggfrtet%g?girha; a:';i;?;:}éw(ﬁ)agﬁrmopr:fré?&r(gctt?oer: ote however that such a choice is not mandatocgn stand
order is ropa ative They latter assum tior): ensures that tH‘gr any other optogeometrical parameter.

propag ) P Fano resonances in the diffraction spectrum of a PhC slab

Lar-aelglxdlszﬁgttlr?; '?’ﬁ;hsirsgﬁrslignczg ibllir;lfrlgtggslg r'kt)ve\}/g are due to the resonant excitation of leaky modes supported
y ' y by the corrugated slab. Such modes correspond to poles of the

g:;p;cgzve; r\:\gtrvlvg\r;r;p;lltt:geg aa?t?nld.uTr\]/?grgI\(/c(jaoz/lvsr?vxfgrfjv)v?/vithscattering matrix extended in the complex plane. All re ection
) P propagating up ) . and transmission coef cients are holomorphic functions with
amplituded, (d4), as shown in Figl. The scattering matris

is de ned from the linear relation connecting the amplitudesthe same poles. However, energy conservation imposes them

i o o to remain nite whenz is taken on the real axis, even in the
of the diffracted wavesd],,da] to the incident onesi,i ], vicinity of a pole. As a consequence, the coef cientSafdmit

a zero close to each polég-21]. Accordingly, near a Fano
resonance, the re ection and transmission coef cients can be
approximated by the following functions:

dy _gld _ W Ty i (1)

dd - iu g ty Iy’

wherery,rq,ty, andty are the re ection and transmission

coef cients in amplitude. We have chosen this de nition of r(@ ru(@ Aruizi”, (3a)
the scattering matrix so that it reduces to the identity matrix z § z
in the absence of any structure. zS z,
Since we are considering nonabsorbing materials, energy ra@  1a@  As zS 7’ (3b)
conservation imposes th@tis unitary and satis es 28 z,
W@ W@ A T , (3c)
SS=SS =1, 2) 292
zZS z
a2 @ Ay—x—, 3d
@ WD Az (3d)
Lu dy wherez is the pole and, ,z,,z,,z, are the zeros. We use the
following notation:z, is the complex zero of the re ection

coef cient from the upper interface of the PhC slab. These
/ expressions assume that the pole and the zeros are simple and
that no other pole or zero exists in the domain of interest.
Consequently, the prefactofs are slowly varying functions
/1}1' dd\L of z. For the sake of simplicity and with no signi cant loss of
accuracy, we assume these functions to be constant. The rst
FIG. 1. Generic scheme of an asymmetric PhC slab supportin§tructures that have been studied with the polology approach
a single diffraction order. All materials are nonabsorbing. Thewere shallow gratingslP,21]. In this case, the prefactoss
amplitudes of the incident (diffracted) plane waves are denotég by are usually approximated by the re ection and transmission
andig (dy anddy). The four amplitudes are linearly related through of the slab without corrugation. But a PhC is in general more
the scattering matri$ de ned in Eq. (). than a simple perturbation of the dielectric slab. Therefore, this
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approximation is not valid and the coef cierksarea priori satisfy a few important relations, which are given in the next
unknown. two sections while their demonstrations can be found in the

Itis noteworthy that the zeros &fare not independent from Appendixes.
one another. It is known that they are related b§j [

-5 (4a) B. Relations between the coefpcientd
% o By writing Eq. (6) with the phenomenological expressions
Zy = Znye (4b)  in Eq. (@) and taking the limitz , it is straightforward
Forthe sake of completeness, we recall the demonstration §f Show that the coef cientd, Ar,,Ay,, andA,, satisfy the
Eq. @) in AppendixA. We emphasize that these relations holdfollowing relations:
for any asymmetric structure that satis es energy conservation

and that supports a single diffraction order. Neither reciprocity Ayl + A2 = 1, (78)

nor symmetry properties are needed to prove them. 1AL 2= | A2 (7b)
Finally, within the phenomenological framework, the four v o

re ection and transmission spectra near a Fano resonance A% = Ayl?, (7c)

are fully given by 14 real parameters: four complex coef- LA, A

cients A, two complex zeros, and one complex pole. It is Ay =S '&t : (7d)

well documented in the literature that these parameters are
not independent if the structure possesses some symmetry The details of the derivation can be found in Appengix
properties. In particular, for a PhC slab with a mirror symmetryThe main consequence of these relations is that the four
with respect to the horizontal axis, the two zeros are real andomplex coef cientsA,,A;,,A;,, andA,, are notindependent.

a simple relation exists between the complex pole and the reglhey can be entirely described by four reals parameters
zeros [L9). However, in the general case of a fully asymmetric |, | | and ., that are de ned by

structure, little is known about the relations between the

different parameters. Hereafter, we show that it is not necessary Ay, = cos()expl ], (8a)
to invoke symmetry properties to derive a few important ¢ ] ¢
relations between the parameters in Eg). (Ve provide a Ar, = sin( ) expli ], (8b)
general derivation of these relations based on the analytic A, = cos()expl 1], (8c)
continuation of theS-matrix unitarity in the complex plane. . .

Indeed, the unitarity dBfor real values of given by Eq. ) Arg = sin()expli( 4+ S n+ )l (8d)
can be extended to the complex plane 519 The angles, ¢, r,, and , are chosen in the interval

Sz)S2)=2S((z)=1, ) 102 ]

where the symbol represents complex conjugate. We recall

that if a complex function of a complex variabfe(z) is C. Relation between the pole and the zeros

analytic, thenf (z) is analytic as well. Equation5j is Furthermore, writing the unitarity of the scattering matrix
equivalent to eight different equations. We will use six of themwith the phenomenological expressions leads to a closed-form
for the following derivations: expression for the polé as a function of the zeros and the

parameter . We obtain

tq(z )ta(2) + ry(z )ra(2) = 1, (6a) 3= Rez, cof + Re@)sir?

re(@ )@+ t,(z )ra(z) = O, (6b) o ) _

@)@+ 4@ = 1, (60) HiImTz, cos - Imie,) s

W@ty )+ ru@r,z) = 1, (6d) + it co$ Rez, SRe@,)’ " (9
ta(ry(z )+ ru@t,(z ) = 0, (6e) The.derivation of Eq.¥) can be found in AppendixX.
ra@rq(z )+ @t (z) = 1. (6f) ,:\icr;é:or(:il?%:jzl.iﬂls(siair?;dweeb%,avxg Er?gtsaecr??hesz)As\;;il\/zean?uare

The derivations of the relations between the parametersoot for the imaginary part of. In practice, the sign of the
in Eq. ) are based on the following principle. The phe- square root that has to be chosen depends on the physical
nomenological scattering matr§(z) built with the functions  variable represented k& For instance, if one uses the time
ru(2),r4(2),t,(2), andtq(2) is a good approximation of the exact factor exp§it ),Im(2) > 0 if z stands for the wavelength,
scattering matrixS(z) for values ofz close to the pole. z= ,whereas In®) < 0if zstands for the frequency,=
Therefore,S(z) satis es the unitarity relation foz  Z. We Equation Q) gives the position of the pole in the complex
show thatS(z) can in fact be chosen to be unitary for any valueplane with respect to the positions of the zeros. We emphasize
of z, even ifS(2) is not accurate to descrils€z) aszis moved that, in contrast to previous results, this expression is valid
away fromz. In other words, the functions,(z),rq(2),tu(2), for any asymmetric structure, only energy conservation is
andty(z) can be chosen to satisfy Ed) for anyz. This can  required. In the particular case of a PhC slab symmetric about
be done by forcing the coef cientd,,,Ar,,Ar,, andA, on  the horizontal axis, the zeros are real and Bj.réduces to
the one hand and the pole and the zeros on the other hand tiwe relation that has been previously derivéf]]
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Equations 8) and @) show that eight real parameters are imply that z;, = z, and z,, = z;,. Because of Eq.4), the
suf cient to fully describe the re ection and transmission of zeros of the re ection and transmission coef cient are thus
a PhC slab near a Fano resonance. These parameters are ris@ numbers]9] and the rst condition for the existence of
angles, ¢, r,, t, andthetwocomplex zerag andz,. We  a BIC is satis ed. The imaginary part of the pole given by
will now use this important result to describe the behavior ofEq. ) then reduces to
the resonance as a function of a geometrical parameter in the N . =
vicinity of a BIC. Im(2) = sin cos z,Sz, . (20)
Note that the sign of Ink) is imposed, as mentioned in
1. MODEL OF FANO RESONANCES NEAR OPTICAL Sec.ll. For the sake of convenience, we write EtQ)(with a

BOUND STATES IN THE CONTINUUM positive sign and let the angleébe choseninthe [@ ]interval

. in order to obtain the correct sign. The choice oflepends

We now employ th_e ph_enomenologlcal approach an_d th%n the sign ofz, S z.., which can be positive or negative.
general relations derived in Selt.to address the question quation (0) con rmsu,that the zeros have to be equal for
of the shape of the Fano resonance associated with a ?Al;ie pole to be real. In the case of a mirror symmetry with
and Its gvoll_mon as geometrical parameters are varied. F\ESpect to the horizontal axis, E®) (can also be simpli ed
provide in this section closed-form expressions for the re ec- ’

X e . . since , = ¢ and ,= + / 2+ p ,with p an integer.
tion and transmission coef cients. This model allows us tOFlnaIIy, the re ection and transmission spectra (as a function

funcii ; tical ter H ft tSf z) can be fully described by four real parameters, the angles
as a function of any geometrical parameter. Hereafter we rst - 4 . and the real zeras, andz;, .

discuss the values of the pole, the zeros, the re ection, and -, practice we are not only interested in the re ection and

the transmission for optogeometrical parameters that exaCtWansmission spectra (as a function of the wavelength or the
match those of a BIC. Then we study the evolution of thesefnmdent angle), but also in the evolution of these spectra as a
quantities as one parameter is varied. function of another optogeometrical parameter. We therefore
de ne a real numbeu that represents this second parameter
A. Pole and zeros corresponding to a BIC (different from the one represented by We denote hereafter
Because of the absence of leakage, a BIC corresponds RY Uo 0ne particular value of this parameter (corresponding for
a real pole of the scattering matrix, I} 0. A BIC can instance toaBIC)and we look at the evolution of the re ection
hence be exactly frequency and wave vector matched with @nd transmission spectra (as a functiorzpfor values ofu
propagative incident plane wave. This is clearly a very speci cclose touo.
and interesting case since neither leaky modes nor usual guided For this purpose we use a Taylor expansion of the zeros.
modes can be directly addressed with a propagative wavé/ore precisely, since the imaginary part of the pole is governed
Indeed, the rst ones correspond to complex poles and th®Y z, S z,, we expand in Taylor series afS uo the zero
second ones lie, by de nition, below the light cone. Sinceof the transmissiom, and the difference;, S z,. Since we
we are considering a nonabsorbing structure, energy has ftave assumed that the prefactérsin Eq. (3) are constant
be conserved for a propagative incident wave. According tavith respect taz, we also consider them to be constants with
Eq. (3), the sole possibility for the re ection and transmission respect to the second parametefhe comparisons with exact
to satisfy energy conservation is to hawez,, = z,, = z, = z,. numerical data in the next section show that this is a reasonable
The polology framework provides thus two conditions for assumption which drastically simpli es the proble@v]. The
the existence of a BIC. First, all zeros have to be real. Secon@ngles and , are thus constant.
the zeros have to be equal to the pélewhich is real by For a BIC we have shown that the zeros are real and equal
de nition of a BIC. As a consequence, the re ection and to each other. The zeroth-order coef cieag in the Taylor
transmission do not take partlcular values such as 0 or 1€xpansion ofz, S z, around a BIC is thus equal to zero. In
they are simply given byry|2 = | A, |2, ]ral? = | A |3 [tu]? = addition to that, Im&) cannot change its sign ass varied and
|A|2, and|ty|? = | Ay,|2. This means that a BIC cannot be the function Img) = f (u) hasto be differentiable for any value
excited by an incident plane wave. We emphasize that thigf u. It follows that the rst-order coef cienta, in the Taylor
situation is drastically different from leaky modes or usual€xpansion ok, S z, has also to be equal to zer2d. This
guided modes lying below the light cone that can all beshows thata BIC corresponds to an extremum equal to zero of

excited by an incident wave, provided that it is evanescenthe curvez, Sz, = f (u). For this reason we chose to study

In this case, the re ection and transmission do not Sat|sfylhe behavior of the resonance as a function of the parameter

energy conservation and diverge (nothing unphysical since thié the vicinity of an extremunug of z,S z;, = f (u),

incident eld is evanescent). We have checked (not shown _ 2

here) that the eld in the Phc): slab in response to afn incoming 2,52, = a0+ 8(uS o)’ (11)

plane wave is totally different from the eld pro le of the BIC. If up correspond to a BIC, then we hamg= 0. Equation

(11 evidences that the imaginary part of the pole, and thus

B. Evolution of a Fano resonance near a BIC the inverse of theQ factor of the Fano resonance, varies

guadratically with geometrical parameters. Upon introduction

f Eq. (11) into Eg. @), we get the following expression for
the pole:

Up to now, BICs have only been observed in PhC slab
with a mirror symmetry with respect to the horizontal axis
[24-26]. We will therefore restrict the following study to such _
structures. In this case, we hate= tqy andr, = rgq, which 2=z, + isin()ao+ ax(uS up)’e . (12)
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Now we introduce the Taylor expansionzf,
z, = bo+ by(uS ug) + ba(uS up)?. (13)
Finally, for a PhC slab with a vertical symmetry, the re ection and transmission coef cients irBEgke the following form
as a function o andu:
2S by S bi(uS ug) S by(uS up)?
zS by S bi(uS ug) S by(uS ug)2Sisin( )ag+ a(uS ug)?le ’
z8 g S bg S b]_(l.l S Uo) IS (a2 + bz)(l.l IS Uo)2
ZS by S bi(uS ug) S by(uS ug)2Sisin()a+ ax(uS ug)le

ty = tg = cos()e w (14a)

re = rg = (S1)Pisin( )e w (14b)

(

These closed-form expressions allow a semianalyticaby the PhC period , for an incident angle = 10. The
description of the evolution of a Fano resonance as on&ansmissiol hasbeen rigorously calculated with the RCWA.
optogeometrical parameter is varied. In practicdés often  One may observe several particular features for which the
the wavelength/frequency or the in-plane wave vector@and transmission experiences a rapid variation from near-unity to
is a geometrical parameter such as the slab thickness. Theear-zero values. They are the signature of Fano resonances
parameters, ,,a0,a2,b0,b1, andb, can be tted from one corresponding to the resonant excitation of a leaky mode
spectrum for one particular value of They can then be used supported by the PhC slab. The resonances seem to disappear
to predict re ection and transmission spectra for any otherfor a few points (o,hg); some of them are shown by black
value ofu close toup. arrows in Fig.2(b). These points correspond to BICs: as

Before comparing the model predictions with rigorouspredicted in Seclll, the mode is not excited by the incident
numerical calculations, let us discuss the existence of BICgave and the transmission does not exhibit any resonance at
in PhC slabs without mirror symmetry with respect to thethese peculiar points.
horizontal axis. Up to now, BICs in such asymmetric structures We start by checking the validity of the closed-form
have not been demonstrated and therefore their existence carpression givenin Eqlég), which describes the transmission
be questioned. Unfortunately, the polology framework doesaround the resonance. We focus on the rst BIC that shows up
not provide a de nitive conclusion; neither the existence nor
the nonexistence can be proved. Indeed, no general result exists
on the zeros of an asymmetric structure. They are in generg/,
complex numbers, but no fundamental reason prevents ther
to be real. Therefore, the only conclusion that can be drawr
from the polology framework is that a BIC could exist in an
asymmetric PhC slab with real zeros.

IV. VALIDATION OF THE MODEL

In this section the proposed model is validated through(b) 2.5,
comparison with rigorous numerical calculations for three
different PhC slabs. We rst study light diffraction by a 1D

array of slits in a dielectric membrane, see Fn) We then < o8
calculate a 2D lattice of circular holes in adielectric membrane, =
see Fig4(a) Finally, we show that the model is also accurate ¢ 15 06
for a 1D array of dielectric cylinders, see Fig(a) Exact 2
numerical calculations for the rsttwo examples are performed 0.4
with the rigorous coupled-wave analysis (RCW23[30]. For =
the 2D PhC slab, we have used a speci c implementation of 5[ 0.2

the RCWA for diffraction gratings with circular patterrizl].
The 1D array of dielectric cylinders has been calculated with

: > 0
a multipole method adapted to periodic structu%33). 95 Wavele rﬁgth WA 25

FIG. 2. (a) Lamellar 1D PhC slab in a dielectric membrame (
) ) . 3.5) with a thickness. The structure is illuminated by an incident

We consider a lamellar 1D structure, that is a simplepjane wave with an angle = 10 . (b) Transmission in intensity
array of slits in a dielectric membrane with refractive indexT =|t,|2 as a function of the wavelength and the thicknes$
n=3.5 embedded in air, as shown in Fig(a) The Il normalized by the period . The transmission has been rigorously
factor in dielectric material i$= = 0.6. Figure2(b) shows calculated with the RCWA. The arrows show the locations of a few
the transmission in intensit§ = |t,|2 as a function of the BICs (not all BICs are shown). The rectangle corresponds to the
wavelength and the slab thicknesh, both normalized zoomed area that is shown in FRy.

A. Lamellar one-dimensional PhC slab
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MA h/A FIG. 4. Two-dimensional PhC slab. (a) A 2D lattice of holes

o _ (period ) in a dielectric membranen(= 3.5) is illuminated by a
FIG. 3. Lamellar 1D PhC slab. (a) Transmission calculated Wlthp|ane wave at normal incidence. (b) Transmission spectrum near a
the RCWA around the BIC corresponding to the smallest slalgc for h/ = 1.282. (c) Quality factoiQ of the Fano resonance
thickness (zoom-in of the black rectangle in F4y.(b) Transmission a5 a function of the slab thickness. The point for wh@hends to
calculated with Eq.143 and the tted parameters. (c) Transmission iy pity corresponds to the BIC. In (c) and (d) the exact calculation

spectrumnearthe BICfo¥ = 0.692[see the dashed white linesin g4t with the RCWA (black circles) are compared with the predictions
(a) and (b)]. (d) Quality facta@ of the Fano resonance as afunction of ot . (144 (solid red curve).

the slab thickness. The point for whi€htends to in nity correspond
to the BIC. In (c) and (d) the exact calculation data with the RCWA
(black circles) are compared with the predictions of Bgg (solid

red curve). is doubtlessly in nite for the BIC alg/ 0.7018: we attain

Q > 10 both with the model and the exact calculation. Such
an extremely large value re ects the accuracy of our approach.

when the thickness is increased, i.e.hgt 0.702 and
of 1.987. We t Eq. (149 to the exact transmission

data around this point by takilg= / andu= h/ . The B. Two-dimensional PhC slab
obtained values for the tting parameters ares 2.3616 rad, The presented model is naturally valid for 2D PhC slabs.
t, = 1.3150 rad, ug = 0.7018ap = 0,a =S 2.3996bo =  We consider the structure displayed in Fi#g(a), a square

1.9923b; = 0.5947, and, = S 1.0476. Figure$(a)and3(b) lattice of air holes in a dielectric membrane (refractive index
display a zoom-in of the area inside the black rectangle im = 3.5) embedded in air. The lattice period isand the hole
Fig. 2(b) and offer a comparison between the exact numericadliameter isd/ = 0.7. We recall that previous derivations
data [Fig.3(a)] and the model predictions for these tting are valid for a structure that supports only one propagative
parameters [Fig3(b)]. The results are in good agreement diffraction order, otherwise the scattering matrix is no longer
with each other, which demonstrates the ability of our modegiven by a 2x 2 matrix. We therefore limit this study of
to accurately describe the resonance. The discrepancy th2b structures to normal incidence for avoiding polarization
can be observed in the bottom right corner is due to theonversion (e.g., a fraction of a TE-polarized incoming wave
presence of a second resonance nearby, se@®plin order  can be transferred into a TM-polarized diffracted wave) that
to better visualize the agreement, the transmission spectrumould result in the existence of two propagative diffraction
is plotted in Fig.3(c) for h/ = 0.692; this thickness value orders. We use the same methodology as for the 1D lamellar
is highlighted in Figs.3(a) and 3(b) by white dashed lines. PhC slab. We determine the parameters in E4g(by tting
Since we have chosen a thickness value close to a BIC, thfer one thickness close to a BIC the closed-form expression
curves are reminiscent of a Fano resonance with a high qualityith rigorous calculation data obtained with the RCWA; we
factorQ. get = 0.5150 rad, , =S 3.9947 rad,up = 1.3072a =

We now use the model to quantify the variation of the0,a, = 0.0366by = 2.8644b, = 0.2241, and, = S 0.2224.
resonanceQ factor in terms of the slab thickness The  \We then use these values to calculate transmission spectra for
quality factor can be directly calculated from the complexany thickness and to predict the variation of @dactor with
pole asQ = 2@ with the model,Q can be analytically the slab thickness. In Figi(b) are displayed the transmission
predicted, by means of EdLZ), for any thickness close tm,. spectra folh/ = 1.282 calculated with the RCWA and with
The results, depicted through the solid red curve in B{d),  the model. Figure4(c) shows theQ factor as a function
are in excellent agreement with the exact calculation of thef h around a BIC. The latter corresponds to the thickness
complex pole corresponding to the black circles. Thiactor  that renders th&) factor in nite. The comparison between
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(@) In particular, so-called optical bound states in the continuum
(BICs) are intriguing modes that are truly guided (i.e., without
radiation leakage), whereas they lie within the continuum of
radiation states. In this article we have provided a theoretical
analysis of the coupling between incident light and BICs. In
particular, we have studied the evolution of the corresponding
Fano resonance as optogeometrical parameters are varied. We
have used a phenomenological approach based on the study of
the poles and zeros of the scattering matrix. We have derived

¢ . closed-form expressions for the re ection and transmission of

10 — Model the PhC slab that provide insight into the way light interacts

O Bxact with the system as the parameters are varied. For asymmetric

PhC slabs, we have expressed the position of the pole in the

complex plane as a function of the positions of the zeros. The

predictions of the phenomenological approach are supported

by rigorous numerical calculations for three different cases: a

1D array of slits in a dielectric membrane, a 2D lattice of holes

in adielectric membrane, and a 1D array of dielectric cylinders.

—~
O
~

Transmission
Quality factor

0
2.009 2.0091 2.0092
/

FIG.5. (&) A 1D array of dielectric cylinders (period) is ACKNOWLEDGMENTS

illuminated by a plane wave with an incident angle 10 . The The authors acknowledge Philippe Lalanne for fruit-
diameter of the cylinders is varied and denotedhb{p) Transmission  fy| discussions. C.B. acknowledges nancial support from

Spectrum near a BIC fd/ = 0.35. (C) QUalityfaCtOQ of the Fano Agence Nat|0na|e de |a Recherche (ANR) on ANR pro]ect
resonance as a function of the slab thickness. The point for viich NEHMESIS.

tends to in nity correspond to the BIC. In (c) and (d) the exact
calculation data with the RCWA (black circles) are compared with

the predictions of Eq.144) (solid red curve). APPENDIX A: DERIVATION OF THE RELATIONS

BETWEEN THE ZEROS

We recall hereafter the demonstration of Ed), which
rigorous simulations and our model shows again an excellergives the relations between the zeros of the four re ection and
agreement. transmission coef cients19]. This demonstration is based
on the analytic continuation of th&matrix unitarity in the
complex plane, see Eq®)(and ©).

On the one hand, far = z, (z= z,), Eq. 68 simpli es
Finally, let us show that the proposed model is also valid togg ra(z,)ra(ze) = 1 [ty(z,)ta(z,) = 1], which implies that
describe Fano resonances associated with BICs in structurggz ) = 0 [ty(z;,) = 0]. On the other hand, Eq6k) yields
more complex than the binary systems previously StUdiedt-u(th)rd(th) = 0[r,(z,)ta(z,) = 0], meaning that,(z,) = 0
We consider a 1D array of dielectric cylinders (refractive[ru(zrd) = 0].
index n= 3.5) as depicted in Fig5(a) The diameter of This demonstrates that the zeros of the two transmission
the cylinders is varied and denoted by The results can (re ection) coef cients are complex conjugate of each other,
be observed in Figs5(b) and 5(c) with again a good gz =z andz, = z. It is noteworthy that these relations
agreement between direct numerical calculations and modelre true for any structure that can be described byxa22
predictions. In this case we have found the following valuesscattering matrix and that satis es energy conservation. In

C. One-dimensional array of dielectric cylinders

for the tting parameters in Eq.1@3: = 04945 rad, particular, reciprocity is not needed.
. = $ 00762 rad, uo = 0.3497a, = 0,8, = 5.282Qby =
1.9992b, = 5.4424, andy, = S 1.0176. APPENDIX B: DERIVATION OF THE RELATIONS

BETWEEN THE COEFFICIENTS A, A, Ay, AND A,

V. CONCLUSION In order to derive the relations between the coef cients

Photonic crystal slabs are a centerpiece in many practica, ,A,,,A,, and A, we introduce the phenomenological
photonic applications. The understanding of the mechanismexpressions given by EcBin Eq. (). Then, by multiplying
that drive the con nement of light within them is fundamental. the result by £ S 2)(z S 2 ), we obtain

J

A A, 28z, z2Sz, + A A, 257, (zSz,)= (2S29)(zS2), (Bla)
A A, 2S5z, 2Sz, + A A, 2S5z, (zSz,)= 0, (B1b)
A A, 2SSz, 2SSz, + A A, 2Sz, 2Sz, = (2S2(@zS2), (Blc)
AuA, 2Sz, 2Sz, + ALA, 2S5z, 2Sz, = (zS2)(zSz2), (B1d)
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AtdArd
AA, 2S5z, 2SSz, +AA, 2S5z, 2S5z,

zSz, zSz, +AA, 25z, zSz =0, (Ble)
25 2)z82). (B1f)

(

Since we force the phenomenological expressions to satisfy

the unitarity relation for any value a we can take the limit Since|A|* +| Ar,|? = 1 [see Eq. )] we nally get

Z . The system becomes
, , A ? 7,28 2z,Rez, § A, °Z =|21S 2z,Re).
A, "+ AL =1, (B2a) (C3)
A A+ ALAL =0, (B2b)
A, 2, A, 2. (B20) Writing likewise Eq. C1) for z= z, leads to
A, P+ AL %=1, (B2d) A, ° z, °52z,Rez, S A, °Z =|2?5 2z, Ref@).
AA, + ALA, = 0, (B2e) (C4)
2 2 _
Arg + A, =1 (B21) Then, by subtracting EqC4) to Eq. C3) and using the
These relations lead to Eq7)(which connects the coef- factthata complex numbersatis es|z|* + z> = 2zRe(z), we
cientsAr,,Ar, Ay, andAy,. obtain a closed-form expression for the real part of the pole
Re@),
APPENDIX C: DERIVATION OF THE RELATION Re@) = A, 2 z, +|Atu|2 z, . (C5)

BETWEEN THE POLE AND THE ZEROS

We now focus on Eqgs.Bla), (B1lc), (B1d), and @1f).
Sincezy = z,.z,, = zu [see Eq. 4)], |A,[*=]Al?% and

Combining this relation with EqQ3) yields an expression
for the modulus of the pole,

2

|Ay,|% = | A, |2 [see Eq. 7)], these four equations are in fact 1212= A, 2 z, “+ A, 2 z, 2 (C6)
identical, . L . .
. . 5 . 5 Finally, the determination of the imaginary part of the pole
Ay, 2SSz, zSz + A, 2S5z, 2S5z, is straightforward from EqsQ6) and C5),
=(@s529(@s2). (C1) Im2(2) = A, >A, °Rez, SRez,

Forz = z , this equation becomes 2 2
b a + AL M2z, + AL Am?z, . (C7)

2 o 2 & = 2 152 &
Azt z, " S2zRez, =1z +|2|°S 2z,Re). Equations C5) and (C7) lead to the closed-form expression

(C2) for the complex pol& given in Eq. 0).
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