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We address the issue of the dynamics of wealth accumulation and economic crisis triggered by extreme
inequality, attempting to stick to most possibly intrinsic assumptions. Our general framework is that of pure or
modified multiplicative processes, basically geometric Brownian motions. In contrast with the usual approach of
injecting into such stochastic agent models either specific, idiosyncratic internal nonlinear interaction patterns
or macroscopic disruptive features, we propose a dynamic inequality model where the attainment of a sizable
fraction of the total wealth by very few agents induces a crisis regime with strong intermittency, the explicit
coupling between the richest and the rest being a mere normalization mechanism, hence with minimal extrinsic
assumptions. The model thus harnesses the recognized lack of ergodicity of geometric Brownian motions. It also
provides a statistical intuition to the consequences of Thomas Piketty’s recent “r > g” (return rate > growth
rate) paradigmatic analysis of very-long-term wealth trends. We suggest that the “water-divide” of wealth flow
may define effective classes, making an objective entry point to calibrate the model. Consistently, we check that
a tax mechanism associated to a few percent relative bias on elementary daily transactions is able to slow or
stop the build-up of large wealth. When extreme fluctuations are tamed down to a stationary regime with sizable
but steadier inequalities, it should still offer opportunities to study the dynamics of crisis and the inner effective
classes induced through external or internal factors.

DOI: 10.1103/PhysRevE.95.052307

I. INTRODUCTION

Mathematical models for economy using microscopic
agent-based descriptions have attracted a lot of attention in
the past few decades [1–12]. They draw on the rich tools
of physics to describe some characteristic observed trends
in several complex fields. Notably, various features of the
statistical distribution of wealth among individuals or entities
(firms, cities, etc.), especially those featuring power-law
distributions (Pareto tails or Zipf’s law), have been studied
within assumptions of simple stochastic ingredients [13–17].

Furthermore, nowadays, the degree of inequality in wealth
distribution as well as its evolution are issues of growing
interest. A witness of this worldwide interest, beside the echo
of extreme wealth inequality as yearly reported by Oxfam for
instance, is the success of Thomas Piketty’s analysis [18,19],
namely the “r > g” paradigm (where r is the return rate
of capital and g the growth rate of the whole economy):
from a “law” that is deceivingly simple, historical analysis
of long-time series of patrimonial wealth and incomes across
centuries suggests that its implications at the multidecadal
scale are possibly very large.

Adverse or beneficial consequences of inequality in agent-
based models are mostly thought in terms of some explicit extra
variable(s) with threshold or similar procedures that amount,
from a physicist’s point of view, to nonlinearity. The economics
narrative translates this in various ways, within current political
biases [20]: The “trickle down” effect suggests that any “added
value” created by the large means of the affluent shall, sooner
or later, diffuse down all social strata of society and incur an
overall benefit. Features that can be explicitly considered are
for instance the advent of monopolies and how their adverse
effects on competition, pricing, innovation, firm creation, and
death can be tracked. Note also that a majority of wealth
distribution studies stick to a static view, even if fine rendering

of actual data is sought, including for instance the role of
inheritance and bequest strategy [21].

The generic idea that such nonlinearities or extra parametric
bias then induce crisis, and change the growth regime
from smooth to moderately or highly intermittent, has been
acknowledged generically in the broad wake of John Maynard
Keynes and specifically by the economist Hyman Minsky.
More recently, the work by the “heterodox” economist Steve
Keen could substantiate recent trends in escaping the “repre-
sentative agent model” and its questionable ability to describe
crisis mechanisms. In statistical econophysics models, the
“wealth condensation,” which describes the advent of extreme
events, extreme inequality in particular [3,9,18,22], emerged
in the first years of the discipline.

However, the lure of describing accurately Pareto tails or
other fat tails epitomizing inequality led to the dynamics of
wealth distribution being rarely investigated until a few years
ago. The input of econophysics hinged a lot on equilibrium
thermodynamics, with its ability to bridge micro to macro
and predict emergences such as phase transitions for instance.
So, nonequilibrium thermodynamics, that is, how wealth
distributions adapt to permanently moving landscapes and
possibly never relax to a steady state, was rather left aside.

A compounded effect on this state of affairs is the fact that
the geometric Brownian motion (GBM) of “agent” ensembles,
a tenet of stochastic studies of wealth distributions, leads,
when left to evolve freely, to nonstationary distributions:
essentially log-normal distributions with drift and broadening
width over time. The lack of ergodicity of these ensemble
distributions was recently pointed out (i.e., the average wealth
of a population at time t does not converge at all, at large times,
to the same value as the average of individual asymptotic
fates). This is mathematically no more than an issue of
noncommuting limits [23]. But the lack of recognition of this
issue has plausibly induced several weaknesses in mainstream
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economics, as recently pointed out [24,25], the most striking
being the outright rejection of diverging utility functions in
models. Studying the heart of the topic, conversely, led to
a possibly more intrinsic metric of inequality based on the
logarithm [24,25].

Practically, it is of course desirable to confront the “socially
agnostic” GBM distributions to a description of growing
inequalities [26]. This can be done by attempting to track
the large inequality modulations in the last century through a
reallocation mechanism acting as a restoring force [27]. Doing
so, it appears that, even without any social bias such as lower
education of the poor class or the likes, the best description
of the past four decades is one of diverging inequality and
negative reallocation. The chiasm is large compared to a
conventional “adiabatic” picture of a stationary distribution
that would evolve close to a local equilibrium with gentle
disturbances from economic factors addressed through various
“output gaps” [27].

The relevance of models in relation with their dynamics
rather than their equilibrium distribution is also addressed by
Ref. [26], as the study finds that any bare GBM would cause
too slow a dynamic, once a plausible stationary calibration
of the GBM is done. Only by introducing a nonlinearity
related to an inner society structure can the dynamics be
appropriately fitted. The work by Liu and Serota [28] shows
that nontrivial nonstationary mathematical distributions can
be characterized through the time-constants and correlations of
their momenta. So the issue of modeling (and calibrating) both
the transverse (population) and longitudinal (time-dependent)
wealth distributions is becoming the minimally significant
scope to exploit such models and get insight from them.

Along this scope, it seems logical to explore all the
dynamics of GBM-based models, and notably involving their
most striking feature, related to nonergodicity, the inequality
“condensation,” whereby the wealthiest individuals not only
capture a large fraction of the total but also generate the largest
positive or negative fluctuations. For instance, there is no
clear intuition whether a few time constants can be relevant
to describe realistic dynamics, or if a wilder evolution with a
“noisy” spectrum is the better picture. It is therefore interesting
to exploit the background of GBMs to explore such issues, with
the view that they can reveal subsets and dynamics that are not
an obvious part of the conventional wisdom in the way the
science of complex systems is applied to economics.

In this paper, we focus in the spirit exposed above on a
model whose intermittence is related to high inequality, but
whose nonlinearity is as implicit as possible. We thus avoid
casting a moral stance on microscopic behaviors and their
intended modifications. Still, we believe that the way it reveals
the dynamics of inequality suggests a vision of the diagnoses
to be made in actual economies and of the possible counter-
measures to be associated. Such visions could help broadening
the much-demanded alternative points of view to the so-called
conventional wisdom.

In a nutshell, we examine a model whereby, according to
the saying, “the tail is wagging the dog,” i.e., the presence of
a tail of a few very large wealth moves the distribution as a
whole. Its discrete nature can be anticipated to blur simplified
collective dynamics, e.g., those with simple time constants.
The interest of this emphasis is to attract the attention to the

general features (in time and in instantaneous distribution)
that are likely to link excessive inequality and a situation
of uninterrupted crisis reminiscent of the last decades of
worldwide economic troubles. Generality is granted here by
simplicity, not taking the bias of a “mean-field” approach
with an average representative agent, but rather outlining the
“space-time” roles of the extremes [29]. Further mapping
on various topologies of networks [10,30] could of course
help understanding, as well as a cross-analysis with emerging
GBM dynamics studies [21,26,27]. Our exploitation will be to
identify a “water divide” of wealth flow, opening opportunities
to view the separated “basins” as classes.

The basis of our model is a simple set of N random multi-
plicative processes that describe the daily fate of agents wealth
[1,2,5–11,17,31]. Needless to say, multiplicative process are
associated to interest rates, but as is usual for GBMs in this
context, we do not model anything but “wealth” and have
no time horizon (i.e., no long-term correlation, finite agent
life, etc.) in microscopic features. If we denote wj (t) generic
variables at integer times t (days) submitted to a multiplicative
process, described by a probability distribution �(λ)dλ to
get wj (t + 1) = λwj (t), we have an additive process by
considering their logarithm xj = log(wj ). We initially stick to
the balanced case where the average gain expectancy of agents
is zero, that is

∫
λ�(λ)dλ = 1 [15,16]. This makes more clear

the dynamic role of extremes, as the primary evolution without
sizable extremes in the distribution is a gentle unstructured
noise, compatible with the impression of a fair game.

In Sec. II, based on the known log-normal distribution,
we develop what happens in this fully independent but yet
discretized evolution [15]: We give a few “calibration” hints
to justify a rather high daily “bet,” independent of the Kelly
criterion, noting the unsatisfactory status of time constant
calibration [27]. We explain what happens when starting
from an idealized Dirac-type egalitarian wealth distribution
P (w) (much as in Refs. [23,25,27] accounts). We use the
underlying log-normal distribution of xj , which has a residual
nonzero drift because

∫
�π (�)d� < 0, where � = log(λ) de-

scribes the additive process deriving from the multiplicative
one [1,2,14–16]. The evolution of this distribution causes a
strong intermittency regime occurring when the wealthiest
agents reach a large fraction of total wealth [3,10]. The drift
component results, at long times, in a global impoverishment
of all agents. We assess the role of log(N ) in determining
essential time constants. Note that we impose a nonzero
(“floor”) lower wealth. Although it has no influence in this
Sec. II, it is consistent with the next sections and affects the
post-condensation fate.

In Sec. III, we introduce the simple feedback mecha-
nism of normalizing the average wealth to its initial value
[5,9,13,15,29,30]. We show that this results in endless inter-
mittency that affects the whole wealth spectrum. Here, our
“wealth floor” plays a dynamical role, as it provides a flux
even after a large collapse. We confirm the picture that “the tail
is wagging the dog,” i.e., that the wealthiest agent fluctuations
are those that impact on the rest, by studying the correlation
of ordered wealth series. There are two aspects here: first, we
observe how the dynamics can be momentarily much shorter
than the log(N ) one. Second, we identify a “water divide” of
wealth flow. There is therefore an effective closure between
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system size (thus, N ), system collective dynamics (crisis and
intermittency), and this inner divide.

In Sec. IV, we deduce how a damping mechanism could
act and summarize the possible meaning and use of the
results in Sec. V. If our diagnosis holds, then preventing
the buildup of too large entities should be averted. A brief
“stylization” discussion is made [18–20,22,30]. Our choice in
Sec. IV is to bias the daily “exchange,” which has zero-change
expectation in the nondamped model [

∫
λ�(λ)dλ = 1]. We

do so by favoring a small gain of the poorest, and a small
loss of the richest, by an amount that is very small (0.5–2%)
compared to the daily “bet.” This choice was inspired by the
pricing mechanisms introduced by Aristotle, whereby the price
has no absolute underlying reference that the market should
“discover” but is rather related to the “social status” of the
agent, as Paul Jorion pointed out from his anthropological
studies of various communities [32]. This view does not really
contradict the usual pricing law of supply and demand in
a linear regime (a continuum of status), but it allows us
to extend it to extreme cases, enabling a survival revenue
notably, i.e., forms of solidarity that go beyond mere greed
and are present in an “embedded” view of economy, to use
Karl Polanyi’s words. We show that small amounts of this
bias are effective in suppressing the intermittency and result
in a stationary self-replicating wealth distribution. Then the
equilibrium distribution can be found as the solution of a
tractable eigenvalue problem. The eigenvalue spectrum could
also help further dynamical studies. Indeed, a remaining degree
of nonstationarity could also be part of the required stylization
of human economies. Let us finally underline that we have no
substantial consideration for the wealth’s distribution in terms
of Pareto tail or power law [15], leaving this for further work,
as obviously there is interest in the topic [17].

II. THE N-AGENT MULTIPLICATIVE MODEL
IN THE CASE OF MERE RANDOM WALK

We consider here N agents of wealth wj (t) at discrete times
t = 1,2, . . . To study the wealth distribution intrinsically, we
set the average wealth at the start as a constant w1. We want to
account for the exchange of wealth and information among
agents without any explicit microscopic mechanism. The
simplest assumption is that education of agents teaches them
to stay on the crest of gain and loss on the average. We then
have a zero-sum exchange, with only individual fluctuations
[2,5,6,9]. We thus model the process as a multiplicative one
(often called Gibrat’s law) with some simple added features
detailed below: at each time (each day) the agent engages a
given fraction β of his wealth. To make the model easier to
grasp in terms of metaphor, we set it up as follows:

w1 = 1000, (1)

wp = 400, (2)

wj (t + 1) = wp + λ [wj (t) − wp], (3)

where we use for the multiplier λ a rectangu-
lar distribution uniformly spanning [1 − β,1 + β] for

simplicity:

�(λ) = �0 rect

(
λ − 1

2β

)
= 1

2β
rect

(
λ − 1

2β

)
, (4)

where rect is unity in the interval [− 1
2 , 1

2 ]. Clearly,∫ ∞
0 λ �(λ) dλ = 1; i.e., there is no ensemble average change

in wealth in an individual process. The reader should neverthe-
less be aware of the nonergodicity of such ensembles [23]. We
will see later the time scales at which care is needed, at least
when initial conditions are canonical. Equation (2) introduces
wp = 400 as a minimum “floor” wealth. It is important to set
the ratio wp

w1
to values such as 0.4 here that at least grossly

represent developed economies. A simple aspect is that in
this way, we will stick to an underlying Brownian motion (a
simple Brownian motion for the logarithm of w) and preserve
a decent value for total wealth at the slumps, without need to
introduce a barrier or other nonlinearity at the small wealth end
of the distribution. Also, when it later comes to the feedback
(Sec. III, Sec. IV), the coupling itself will have noticeable
effects because it acts on nonzero wealth for the (many)
poorest agents, hence a likely role on dynamics. Thus, while
it introduces an unneeded feature in the present section, we
retain this poverty “floor” here and throughout the paper.

As is well known [1,2,5,9,13,15,23,25,31], starting from a
given initial state at t = 0, we have a diffusion+drift process
in the x = log(w − wp) space. Starting from an initially
single-valued distribution P (w,t = 0) ≡ δ(w − w1), in other
words, a distribution concentrated at x0 = log(w1 − wp), the
distribution of the variable w − wp undergoes two evolutions:
it spreads diffusively like a Gaussian in x space, thus taking the
form of a parabola in a log-log representation, and its center
also drifts.

Both effects are determined by the second and first momenta
of the distribution � = log(λ), denoted π (�), which obeys
π (�) d� = �(λ) dλ. It is found by standard algebra that in
our case of zero-average exchange of Eq. (4), the drift velocity
(per unit time in x space) is given by

νdrift = 1

2β
((1 + β) log(1 + β) − (1 − β) log(1 − β)) − 1

� −β2

6
, (5)

where the approximation is valid for small β. The distribution
and its standard deviation σ (t) in x space take the form

P̂ (x,t) = 1

2π
√

t
exp

{
− [x − (x0 + νdriftt)]2

2σ (t)2

}
, (6)

σ (t) = 2β

√
t

4π
, (7)

as depicted in Fig. 1(a) in log scale of w and Fig. 1(b)
in linear scale of w. The fact that there is a drift for a
zero-exchange distribution is one of the several not-so-intuitive
aspects of GBMs (see the example of Fig. 2 in Ref. [24]
pinpointing the less-intuitive aspect of multiplicative versus
additive processes, as appears from the authors account of a
large swath of scientific history through two Bernoulli family
members and Laplace).
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FIG. 1. (a) Gaussian distribution of w − wp at increasing times
as indicated (log-scale), with β = 0.06 and initial distribution
concentrated at w1; (b) wealth distribution P (w) on a linear scale.

Apart from the two wealth ingredients w1 and wp, we have
to discuss a realistic value for β. If we had to discuss agents
faced with optimizing their utility when risking their wealth
in some bet, we could recourse to the Kelly criterion, for
instance. But our scope is distinctly different: we rather want
to calibrate the randomness of the economy as a whole (and
not as a stationary distribution, but rather versus its dynamics),
and thus in our spirit, the choice of β rather has to be dictated
by the spread of fate for a bunch of agents of any given initial
wealth: the relative spread 
(w−wp)

w−wp
is independent of initial w

in a multiplicative process. Also, while a multiplicative process
resembles an interest rate, we should not follow this analogy,
as an interest rate is a drift, not a spread (see Refs. [26,27] for
calibration issues with GBMs). By considering the width of
the distribution at a typical time of economies, t = 1000 days,
about 3 years (and less than typical periodicity of economic
cycles, say 8–40 years), we chose to home in on relatively large
variations [3,8]: Using β = 0.06, we have νdrift = −0.0036
(per day) and, for instance, σ (t = 1000 days = 1.07). This
seems large, but the corresponding characteristic factor eσ =
2.92 should be applied to (w − wp), whose most frequent or
median value is expected to be closer to wp than to w1. So
we describe, over a duration of 1000 days, a spread from,
say, w = 600 (w = wp + 200) to the 1-standard-deviation
interval [400 + 200e−σ , 400 + 200eσ ] � [469, 983]. See the
discussion section for further comments.

We now turn our attention to the fate of the whole set of
N agents. We pinpoint the role of the wealthiest agents in
determining the overall fate of the ensemble [1,3,5,15,18,30].
Since we have an analytical form of the wealth distribution, we
can deduce the statistics of the wealthiest agents at time t [31].
We do not embark on this exercise rigorously [15], though, we
only remark in passing that extremes are key to nonergodicity
demonstrations (Eq. (7) in Ref. [23]), but rarely explicit. We
can get enough indication of the location of the maxima by
a simpler use of the Gaussian normal distribution [31]: if we
have N realizations of a Gaussian variable, we have a good
approximation of the statistics of the largest by slicing the
Gaussian into N slices of even weight (see work on electron
relaxation bottleneck in quantum boxes [33,34] for a similar
use of a Poissonian statistics). The N th slice is an acceptable
approximation of the distribution of the largest wealth, in
spite of its abrupt cutoff, avoiding the more tedious math of
the theory of extrema [15,31]. What is interesting for us is
the ability to use the complementary error function erfc(x)
and its inverse erfc−1 to deal with the main aspect of such
statistics. This is simpler to grasp, for those less familiar
with extremal laws, than using the exact Gumbel law, i.e.,
expressing the cumulant U (x) of the largest value distribution
in a form often denoted U (x) = exp{− exp[−z(x,N )]}, with
z(x,N ) = [x − a(N )]/b(N ) with analytical expressions of
a(N ) and b(N ): the typical error by taking this naive mean
instead of the exact one is ∼0.2 standard deviation, thus an
(e0.2 − 1) ∼ 20% error.

With just a little more generality, we look for the edge
xN/k of what we can term as the N/kth slice, with k = 1 for
the largest, k = 2 for the second largest, etc., in the spirit of
quantiles [15,18,19]. And we also allow ourselves to use a
fractional k, e.g., k = 0.25 in N/k in order to target a range
reached by the largest variable only in 25% of the statistical
events. We shall call these approximate quantile boundaries
those of the N/k-iles, generalizing on deciles or centiles,
notably in the plot of Fig. 2 below. Specifically, using standard
Gaussian statistics, we identify the moving edge xN/k of the
N/kth slice accounting for the N/k-iles statistics, such that

∫ ∞

xN/k(t)
P̂ (x,t) dx = k

N
, (8)

xN/k(t) = (x0 + νdriftt) +
√

2 σ (t) erfc−1

(
k

N

)
. (9)

Note that the second formula takes into account the center
drift. If we run a simulation of N agents during a long
enough time, we expect xN/k(t) to first feel the influence
of the diffusion and the erfc−1 function. In a log-log scale,
the largest element (k = 1) is the upper envelope of the
set of the N xj (t) = log [wj (t)] traces. If we neglect drift,
at short times, we have xN/k(t) − x0 ∝ √

t = exp[log(t/2)],
so we start with a set of rising exponentials with just
different coefficients as a function of k, namely the coefficients
erfc−1(k/N) whose trend against k is logarithmic. This can
be seen on the left of Fig. 2, for N = 3 600, where a set of
several k values is represented, with k = 1, i.e., the N -ile of
the Gaussian, shown as a magenta solid curve superimposed
over the set of dashed-lines for other k values.
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FIG. 2. Log-log plot of N /k-iles xN/k(t) (dashed lines) as a
function of time for N = 3 600, β = 0.06, as defined by Eq. (9), i.e.,
the point in the Gaussian distribution such that the partial probability
above xN/k(t) is (k/N ). The curve k = 1 is superimposed as a solid
dark magenta line. The largest of N wealth lies around and above
xN (t), plotted with an added solid line. The largest wealth from
several simulations are shown at selected time points (green dots),
the fraction of points above xN/k(t) at a given time t showing the
expected rarefaction trend with decreasing k.

Now, at long times, since we have a negative drift, as
illustrated by Fig. 1(a), even though the standard deviation
grows, the average locations of the N/k-iles must all, sooner
or later, shift left to x → −∞. More precisely, the smaller
k the later the trend of increasing xN/k(t) (i.e., diffusion) is
reversed by drift to a decreasing one [15]. This is the essence
of the mechanism allowing the breakdown of GBM ergodicity
as noted in Ref. [23]. In other words, it demands too small a
fraction of the sample (much less than N−1, thus less than one
agent) to get a chance of realizing high values in the tail, even
though such values carry a major contribution to the (unbound)
expectation value in a continuum view.

We have added on Fig. 2 the plot of extremal values at
selected logarithmically spaced times drawn from a set of eight
numerical simulations up to tmax = 55 000 “days” (about 150
“years”), using the resident random MATLAB generator. Let
us comment, for instance, on the outsiders that are the highest
points situated around the “N/0.01-ile” curve. Since we chose
to sample about 75 points per curve, hence 600 points for
8 curves, the hundred-times rarefaction versus k = 1 entails,
probabilistically, a number of points around the N/0.01-iles of
the order of 6. If we look only around the maximum of the data,
the trend-reversal region of the curves around t = 20 000 ±
15 000, where these outsider points are more clearly seen than
at earlier times, we are concerned with a subset of about 160
points, and we find around 2 to 4 points in this subset instead
of the 1.6 expectation, a reasonable amount for a random draw
of this kind (factoring also our approximate extremal law).

The above exercise is useful to grasp how the Gaussian
statistics can be sampled along a long time series: we may,
at some times, and provided that we are not restrained by
correlation [hence at the lower limit, not at the scale of two
adjacent times with w(t + 1) and w(t) separated by less than
a factor β] [28], reach values much higher than xN (t) in a
given simulation.

FIG. 3. Average wealth of eight simulations (solid lines of
different colors) with the same parameters N = 3 600, β = 0.06.
The initial Brownian-like motion around w1 (level indicated by the
right-hand side dashed line) is gradually suffering larger and larger
fluctuation, essentially associated to the large xN (t) at intermediate
times (t ∼ 15 000–30 000). At larger times, the drift eventually
dominates and the average wealth is stuck to the poverty level wp

(indicated by the left-hand side dashed line).

Let us now focus on the global wealth. Although the
statistical average of a single operation is zero, actual oper-
ations have some nonzero average. This emphasizes the role
of discretization [9,15] (again, ergodicity breakdown is the
overarching issue [23,25]). At the start, with all w’s of the same
order ∼w1, fluctuations of this origin cancel out reasonably
well: as N−1/2 at a given time. Further along the time series,
they pull also randomly up or down. So for some time after the
start, the average wealth gently performs a Brownian random
walk around w1 (and the total wealth around Nw1), as seen on
the left-hand side of Fig. 3 on a linear time scale.

But, as time goes and the largest agents wealth samples
values around xN/k(t) for k = 1 easily, and further at even
smaller k values, large fluctuations are introduced on the total,
and thus on the average wealth. This is the “tail of the dog,”
but here the tail is not “wagging the dog” forever, as actually
there is independence of the N agents wealth, so the stronger
fluctuations of the average wealth only reflect the inescapable
maximum regions of the curves of Fig. 2, when the diffusion
to large wealth is compensated by the slow drift in the x-
space (also an onset of apparent ergodicity breakdown). The
β2 scaling of the drift velocity shows how discretization, and
thus β, is a significant (but not critical) parameter.

We can deduce the order of magnitude of most quantities as
a function of N and β, the sole relevant parameters at this stage,
using the approximate drift and the approximate extremal law:

xN/k(t) �
(

x0 − β2

6
t

)
+

√
2

π
β
√

t erfc−1

(
k

N

)
, (10)

tmax
N/k � 18

πβ2

[
erfc−1

(
k

N

)]2

, (11)

xmax
N/k � x0 + 3

π

[
erfc−1

(
k

N

)]2

, (12)

where the two last lines point the maximum of the first line.
For instance, in our case N = 3 600, we obtain for the N -ile
position: tmax

N � 3 600 and xmax
N − x0 � 6.31 = 2.74 log(10),
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meaning that the edge of the richest N -ile slice is around (w −
wp) ∼ 102.74 (w1 − wp) = 550(w1 − wp) � 3.30 × 105 (the
crude approximation erfc−1(u) � [− log(u)]1/2 is thus too
coarse).

Hence, we can also understand that the typical time frame
of the large intermittency window can be assigned a practical
interval, such as [tmax

N , log(100) tmax
N ] � [10 520,48 530], with

an upper boundary taken here so as to be exceeded only in
one out of 100 cases: the statistical character of this upper
boundary is apparent through the presence of a smaller but
clear isolated intermittency peak at t ∼ 42 000 ∼ log(50)tmax

N

in one of our eight simulations. The typical time scale of the
intermittencies is more difficult to provide [8,10,11], but it is
logical that it appears as only a fraction of tmax

N because it
takes less time than this for extreme fluctuations to enter and
leave the extreme domain (tmax

N is the time to go from average
wealth to extreme wealth for the fastest of N elements). From
the point of view of realism [3], since tmax

N is about 30 years,
we have here a confirmation that our β = 0.06 daily value is
not that large: this time scale of 30 years is not incongruous
with that of actual major crisis in capitalist economies.

Last, the typical large deviations of the average are on the
order of a few times the naive quantity (w1 − wp) exp(xmax

N )/N
found when counting the role of a single wealthy agent as
causing the fluctuation in the mean: this quantity associated to
k = 1 is small, (w1 − wp) × 550/3 600 = 91.7. But we have
enough time in one run, given the relatively flat situation
around tmax

N , to sample rarefied maxima with smaller k,
typically k ∼ 0.25 in one run. Then the above quantity
becomes (w1 − wp) exp(xmax

N/4)/N , which is about 2 000. On
few (statistically on one) of our eight runs, we can of course
experience eight times scarcer cases (k = 1

32 ) reaching a
maximum average at ∼12 000.

We now comment the β = 0.06 connection with N . If one
takes for N the population of a large city, N ∼ 107, then, since
3 6002 ∼ 1.2 107, we get at given β essentially a doubling of
xmax

N and tmax
N since [erfc−1( 1

N
)]

2 ∼ log(N ). So if we wish to re-
tain the same characteristic time, a couple of decades, we have
to modulate β = 0.06 by a factor

√
2 (and going to the world

population N ∼ 1010 would demand a factor of 2 [3,6,8]).
Having explored an ensemble of N perfectly noninteracting

agents, we next implement a mechanism for the tail to be “wag-
ging the dog.” Overall, the dynamics of the global wealth of our
simple noninteracting set of N GBM epitomizes how delicate
it is to describe the region of largest manifestation of ergodicity
breakdown. We conjecture that clarifying its dynamics would
be helpful for the understanding of related models.

III. THE N-AGENT MULTIPLICATIVE MODEL
WITH RESET AVERAGE

We now consider a feedback mechanism that consists in
resetting the average at its initial w1 value at all times. This
will therefore introduce correlations [28] and will imprint
the intermittent dynamics of the total wealth onto the whole
distribution, paralleling the way emerging social structures
affect all corners of society. The above model of independent
agents with its indefinite downward drift that accumulates
all agents’ wealth to the poverty “floor”cannot inspire even

FIG. 4. Same log-log plot of maximum wealth vs. time as Fig. 2,
in the case of reset average, i.e., forced normalization of the total
wealth to N w1. After reaching the point of maximum wealth
expectation without reset, the permanent regime retains a fluctuation
pattern similar to that occurring around the maximum.

a stylized description of economic reality. We do not want
to affect the multiplicative aspect (the GBM), however.
Technically, we simply impose, for all agents j ,

wj (t + 1) = λ(j,t) wj (t) ×
∑N

m=1 λ(m,t) wm(t)

N w1
, (13)

where we made explicit the random variable draw for the j th
agent at time t , following the distribution law of Eq. (3).

Most usual discussions of “normalization” in agent-based
simulations are about the growth rate. They are also invoked
in several works on random Brownian motion and thus GBM,
but we could not find the consequences that we find here
[1,3,5,9,13,15]. We shall discuss in Sec. V the socioeconomic
meaning of this choice.

In our model, it is most instructive to visualize the fate
of the extreme wealth and that of the whole distribution
under this new assumption, as we propose through Fig. 4 and
5(a)–5(c), respectively. Of course, the word “fate” means here
all the coupled dynamics of society and inequality, with its
distribution of events, correlations, and characteristic times.

In Fig. 4, we see that under the new assumption of mean
normalization, once large wealth are obtained, the downward
drift is canceled: the maximal wealth remain around the
established level xmax

N and display large fluctuations. We thus
operate permanently at the brink of ergodicity. We give a
microscopic look into the distribution of wealth thanks to
Fig. 5(a), a color map of histograms fabricated at linearly
spaced times t (spacing 
t ∼ 30 days), by integrating over 
t .

We can now see that there are collective collapses of the
wealth distribution core, down to values close to wp, as soon as
there is a chance that the largest value reaches xmax

N , say from
t ∼ 3 000 days on (the analytical value xmax

N can be reached
for the first time at a moderate fraction of tmax

N , not surprisingly
from the general above analysis of Sec. II).

Also striking is the fact that these collapses are followed
by revivals, some of them as developed as the start sequence
(where we remind that all wj start from w1), with an overall
intermittency pattern. Since we have seen above that there
would be occurrences of large average wealth deviations and
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FIG. 5. Illustration of a typical sample of wealth wN (t) under
the reset-to-average assumption. (a) Histogram of wealth using a
few hundred log-spaced bins, showing intermittency at multiple time
scales; (b) the sorted trajectories of wj − wp for selected wj ’s. Note
the correlation among the majority of small wealth, but note that
there is rather an anticorrelation among this vast majority and the top
three wealths; (c) Gini coefficient of the distribution vs. time, with
large random fluctuations that still bear the signatures of intermittency
of the few wealthiest agents.

that they are due to very few individuals down to a single
one, we infer that the same mechanism works here: once
an agent is becoming the wealthiest in a steady enough way
(that perturbs only marginally the distribution), it suffices that
this wealthy agent undergoes larger fluctuations to induce an
overall fluctuation of the masses (see the treatment of firms
death in Ref. [15] with extremal law statistics: it provides a
resembling, but not directly comparable pattern). That is what
we picture as “the tail wagging the dog.”

In terms of current analysis of GBM-based economics
models, we should be looking at time-constant distributions of
different classes of agents and at their correlation. This would
be a highly rewarding analysis if the resulting dynamics can be
correlated to the available economic data through not only the
trends of inequality, but also economic, sectoral, and territorial
discrepancies. The fact that we can see a “tail” and a “dog”
also points to the possibility of distinguishing social classes
and their line of divide, as will be developed briefly.

FIG. 6. Correlation analysis on ranked wealth. See text and
Eq. (14) on the particular correlation-based indicator Ci,j used here.
We represent as a color a quantity measuring the fluxes and their
signs, between the affluent and the poorest of the agents, with a
stepwise logarithmic sampling of the 3 600 × 3 600 matrix. Note that
the anticorrelation is neatly defined, and that it clearly stems in this
graph from gains of the few richest. The inset on the bottom left is a
zoom on the ∼40 wealthiest agents.

The detail of the wealth fate can be perceived in Fig. 5(b),
where we plot on a log scale a selection of the sorted temporal
profiles of wj (t) − wp. We clearly see that the troughs apparent
in the tail of the poor agents correspond to the aftermath of a
peak of the very few wealthiest agents. In other words, in a
zero-sum exchange game due to the fixed mean wealth, any of
the larger-than-average fluctuations of the wealthiest is felt by
essentially all agents, and can be felt as a big shock.

Let us present our distributions of wealth as a preferred
economic indicator. Although fundamental ones have recently
been proposed in relations with GBMs [24,25], we present
in Fig. 5(c) the well-known Gini coefficient [29,35]. Its
variations are clearly triggered by the few wealthiest agents.
The curve shapes are not identical, but the major peaks,
troughs, and shoulders are clearly correlated. These curves
contain both (i) the dynamics of inequality in terms of
distribution of time constants, insofar as a picture of subsets
with a reasonable stationary distribution of time constants
applies, (ii) an indication of the amount of correlation within
agents, as they account for the amplitude of the fluctuation.

As for the possibility to define subsets, since we have seen
that the largest fluctuations are the leading events, we try
below to define two dynamical “classes,” separated by a “water
divide” line of wealth flow. Such a picture may provide an
account of the actual GBMs mechanisms and invite resonances
for the stylization step between model and economic reality.

Specifically, we elaborate a color map of a matrix describing
the flux pattern between agent pairs (i,j ), as is done in Fig. 6.
Mathematically, we work on the sorted series of wealth: we
take first the product of the time series of the sorted wealth
derivatives, yj = dwj/dt , and we then fabricate a log-type
indicator of the absolute value, but we keep track of the sign
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of the product to distinguish between gain and losses:

Ai,j =
t=tmax∑
t=1

[
w

(s)
i (t + 1) − w

(s)
i (t)

] [
w

(s)
j (t + 1) − w

(s)
j (t)

]

≡
∫ t=tmax

t=0

[
dw

(s)
i

dt

] [
dw

(s)
j

dt

]
dt

Ci,j = sign(Ai,j ) [log(Ai,j )]2, (14)

where the superscript (s) denotes the sorted ensemble
(dynamical sorting at all time t , so it scrambles the actual
agents throughout the simulation time).

In Fig. 6, we clearly see a negative correlation between the
first four agents (i = 1 to 4) and all agents beyond j ∼ 200.
The zoom on the low-(i,j )-corner at the top-left of this
matrix shows that until values of the indices (i,j ) ∼ 12, the
correlation is still not clear-cut, although the trend toward
positive correlation increases for smaller (i,j ). This is a
signature that we have a fairly abrupt partition between the
wealthiest and the mass (a mass that includes the 10–100
“affluent” wealthiest out of N = 3 600), the former influencing
the overall fate by attracting wealth from all other agents
[3,5,11,12,18].

Thus, our indicator tells how to define two “effective
classes,” separated by the “water divide” of wealth flow, on
the average. The fact that it is not a single agent is a good
omen for the application of the model. Playing with the basic
GBM parameters (N, β, and the ratio wp/w1), the relative size
of this class would evolve from this ∼0.1% to another fraction.
The inner fluxes inside each class could be studied in order to
further partition each of these “basins” of the water divide
picture. Then, a reverse procedure could help establishing
sensible clever GBM nonlinearities, for example, a β(N,w)
dependence, which could help mapping actual econometric
data sets into GBM models with somehow socially agnostic
assumptions. The dynamics of each subset equally deserves
attention [25–28].

What we can do with modest effort is to examine Fig. 5(b)
in more detail to get qualitative clues on the dynamics. If
we look at the lower part of the distribution, well below
the “water divide,” the large intermittency features are more
and more quickly washed out as we go to small wealth, and
the main governing factor seems to be the negative impact
of the aggregate wealth. If we now look at the population
across all times, in the Fig. 6 color map, we see that, as is
logical, the indicator tends to vanish for the least wealthy
agents (blue-green shades at the bottom right). The absence of
randomness of the indicator’s sign occurring for the smallest
wealth suggests that their interexchange (that takes place in
principle through the forced averaging process, which includes
their own collective fluctuation) is a minority mechanism.
Their fate is dominated, as is obvious from the overall
distribution in time, by the influences of the wealthiest: the
trickle-down effect in recovery phases (when the wealthiest
give or “emit” wealth) or the austerity effect in collapse phases.

We have now examined a canonical version of our mul-
tiplicative wealth model. Once sufficiently large wealth are
generated, there is a regime of boom and busts, with abrupt
collapses and slower revivals, due to the coupling induced by

the constant average. Fluctuations of the richest are enough to
cause large swaths of the population to be affected within short
times. More analysis would entail tools such as momenta or
Laplace transforms, with a scope of finding “excited modes”
of the distribution. While this has a simple sense around
equilibrium, we have no clues as to what are excited modes in a
deeply nonstationary and broken ergodicity context. However,
if we tame the nonstationarity, we may recover a system
amenable to an eigenmode (fundamental and excited modes)
analysis. The idea would then be to track how these excited
modes behave when reintroducing nonstationarity. Taming
nonstationarity and inequality intermittency is just the purpose
of the following.

It is tempting to think of “nudging” the underlying laws
so that this intermittency regime and its induced collapses are
avoided. This entails avoiding the advent of large wealth if
we want to maintain that β itself represents a “psychological
constant,” the amount associated to risk at daily scale (scaling
with the square root of time, basically). Forbidding large bets
to owners of large wealth per se, even when they are designed
well within regulatory barriers, would be a too directive way
to interfere with the economic microscopic decisions. So in
Sec. IV below, we introduce a modification of the basic
probability law of our multiplicative process, �(λ), which
averts the build-up of “extremely extreme” wealth. Stationarity
is viewed as the obtainment of a fundamental mode of the
system, with the corollary that obtainment of excited modes in
the same frame is natural, but we shall not study their dynamics
in the present work.

IV. AGENT ENSEMBLE WITH RESET AVERAGE
AND WEAKLY WEALTH-DEPENDENT

MULTIPLICATIVE PROCESS

To avoid the advent of large wealth, we first define a
“status indicator,” based on wealth here. The role of “status”
as a general factor in setting the price of exchanges dates
back to Aristotle and was revived in social science and
anthropology by P. Jorion [20,30,32], with the aim of escaping
the conventional wisdom of prices fluctuating around a
“fundamental price” that an undistorted market is supposed
to reveal (see also the final discussion). Aside such general
views, a “status indicator” would be a good channel to link in
the future our deliberately limited study to more complex ones
with a developed social account [4,18,22,29]. We cannot use
the “intrinsic” classes defined by the “water divide,” because
they correspond to time average of a nonstationary process, so
that they are not known until the relevant fluctuations did take
place. We thus find it sensible to define a continuous status
without connection to the nonstationary dynamics. Here, our
status indicator denoted Sj is a simple homographic function
based on the comparison of wealth above poverty to average
wealth:

Sj (t) = wj (t) − wp

w1 + [wj (t) − wp]
. (15)

So it tends to unity for large wealth, is one-half for w =
w1 + wp(w = 1 400 in our case), and tends to zero for w →
wp. We then modify �(λ) to introduce a counteracting bias.
Specifically, we make �(λ) status-dependent (S-dependent)
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using a skew factor ε as follows:

�ε(λ) = �1(ε,S) rect

[
λ − (1 + εS)

2β(1 + εS)

]

= 1

2β(1 + εS)
rect

[
λ − (1 + εS)

2β(1 + εS)

]
. (16)

So �ε(λ) is centered at its centroid λ̄ = 1 + εS, spanning
uniformly the range 1 − β → 1 + β(1 + 2εS). Technically,
we obtain it as (1 + β[1 − 2 rand])(1 + εS) instead of 1 +
β[1 − 2 rand] for Eq. (3 c), rand being the usual uniform
random variable in [0,1].

We see that ε plays the role of a wealth amplifier if ε > 0:
the wealthiest entities turn exchanges to their advantage, a
well-known fact, evidenced by Piketty using the yields of the
funds of U.S. universities [19]. It plays the role of a taxation
mechanism if ε < 0, pushing the average factor λ̄ to more than
unity for the poorest and less than unity for the wealthiest.

We shall see that, surprisingly, very small skew factors ε

are sufficient to avoid the build up of large wealth. Or not
so surprisingly, as it boils down to inhibiting the growth of
the very few large wealth agents of the histogram that was
built up in years, not days. If this distribution is diminished
at large wealth by a modest factor per octave, then, since
concerned agents are 10 or more octaves wealthier than the
median (210 ∼ 1 000, cf. Eq. (12) and the 102.74 factor that
gave the maximum N -ile at 550(w1 − wp) � 3.30 × 105), it
provides a significant inhibition of the tail. We will report
below efforts to quantify the stationary distribution that results
from this modification. Let us examine the impact of ε 	= 0
through simulations first, using all other parameters as before.

In Fig. 7, we examine the wealthiest agent evolution for
various skew parameters ε. We have left as a guide the curves
of the (N/k)-iles of Sec. II. We see that the modification does
have the expected effect, and that this effect is large even for
ε values as small as ε = −0.005. The effect is not symmetric
as we already evolve at ε = 0 in a situation of extreme wealth
reaching a large fraction of the total wealth: there is little
room to expand more the wealth, and the distribution clearly
saturates (akin to wealth condensation) for the ε = 0.03 skew
(positive feedback) parameter shown here. For negative skew
parameters ε, we see that the wealthiest values clearly diminish

FIG. 7. Fate of the richest wealth under different assumptions for
the skew parameter ε. The analytical curves provided for the simple
case of no skew and no reset in Sec. II are left as a guide to the eye.

FIG. 8. Gini coefficient under different assumptions for the skew
parameter ε as indicated.

by about 1.5 decade for ε = −0.03. At the same time, relative
fluctuations tend to diminish (graphically obvious in log scale).

In Fig. 8, we show the Gini coefficient evolution for various
values of the skew parameter ε. The largest fluctuations are
those of ε = 0.03, but, as said, they “bump” on the ceiling
of wealth saturation. Also, due to the positive feedback and
the subsequent roll-off of large wealth, variations are very
quick. For negative values of ε, now, fluctuations of the Gini
coefficient diminish clearly even for ε = −0.005. And as the
distribution finds a stationary shape, these fluctuations nearly
vanish for ε = −0.03.

In Fig. 9, we illustrate the evolution for ε = −0.005,
an interesting limit in our simulations window (a window
intended to describe boom-and-bust cycles at the ∼2 centuries
scale). We see in Fig. 9(a) that the distribution histogram is
stable most of the time, but still vulnerable to intermittent
limited collapses, at t = 36 000 and t = 45 000. At these
points, the wealthiest agent clearly exhibits an anticorrelation
with most others, and shakes the whole distribution, see
Fig. 9(b), as identified on similar earlier graphs. These are
the points of surging Gini coefficient, as is seen on Fig. 9(c),
albeit by a moderate amount. For the sake of comparison,
we provide on Figs. 9(d) and 9(e) histograms of the two
extreme and contrasted situations ε = ±0.03. In the positive
case, we see that the evolution is a tale of few moments of
“shared prosperity” and many moments of utter inequality.
But as soon as an agent takes over, it acts over the whole
distribution, and it is “wagging” all the distribution very
soon (∼1000 days scale, that corresponds to periods such as
revolutions). And in the negative case, stabilization is obtained
early, only gentle fluctuations are seen in those slices of rarefied
statistics, indicating by contrast that all slices below operate in
a stationary stabilized and balanced regime.

In Fig. 10, we show the same correlation map with the
quantity Ci,j defined above as in Fig. 6, but for a negative
intermediate value of the skew parameter ε = −0.015. The
“water divide” line between the richest and the poorest is now
lying around a gentle intermediate value, around the 300th of
the ranked agents. This is likely to coincide with the mean
wealth w1, but we have not examined this in detail. There
are a few spurious positive correlations on lines next to the
diagonal. We believe they stem from the choice of using an
indicator based on sorted distribution. The sorting introduces
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FIG. 9. (a–e) For a simulation with a small negative skew parameter ε = −0.005, the evolution is depicted: (a) the histogram of wealth
distributions as a color map coded as (d, e); (b) selected sorted wealth from highest to lowest, showing the few occurrences of anticorrelation at
times 36 000 and 45 000; (c) the Gini coefficient, with spikes at those moments; (d) and shows the histogram for a case of large positive skew
parameter +0.03, with extreme intermittency; (e) shows the case of a large negative skew parameter −0.03, with a very steady situation.

correlation between adjacent ranks, if they both mostly suffer
from other agents, but just spend some time “crisscrossing.”
Anyway, it does not perturb much the overall picture, but rather
indicates that the next steps in such simulations would be to
understand, as in many current physics problems, the role of
correlations [11,12,22,29], which is a general concern in the
newly emerged considerations of GBMs [25–28].

In Fig. 11(a) we show the histogram of wealth distribution
at t = 55 000 for various simulations. Depending on the skew

FIG. 10. Map of correlation of wealth variations, Ci,j , among
sorted agent records, as in Fig. 6, for a negative skew coefficient
-0.015. The transition from positive to negative fluxes is smooth
and lies around i,j ∼ 300; it is smooth and has no strong values,
except close to the diagonal (artifact of correlation when ranked
agents “cross”).

parameter ε, we see clear indices of the mechanisms operating
for these different distributions. For a skew parameter ε � 0,
we see strongly populated peaks that “scar” the left side of the
distribution, some of them not so far from the main peak. The
distribution is broad, and we also see on the large wealth tail
a few peaks with one or a few individuals that are above the
trend of the tail at lower values. Both indications are logical
with the mechanism of “the tail wagging the dog.” We see
now somewhat more in detail that there are highly populated
sets of agents that were in some narrow interval close to wp,
and that benefited from an upward kick when the wealthiest
agents fluctuated downward. The statistical characteristics of
these intermittent bunches may be an interesting part of future
work, in relation with GBM dynamics.

As for the distributions for ε < 0, they clearly get narrower
as ε becomes more negative, and logically, they tend to become
stationary. The equilibration time [8,26,27] is shorter for the
more negative values of ε. We now have a clearer view of how
the distribution is curtailed on the high end: by a decade or so
around w = 105, for the case ε = −0.015 versus the reference
ε = 0. The fact that such a small skew could avert the large
fluctuations initially surprised us (somehow as the diverging
feedback of inequality in the reallocation+GBM model of
Ref. [27] surprised their authors). But considering the effects
of the residual drift that we explored in Sec. II, it is not so
surprising that a very limited but “daily” drift acts in such a
large manner.

Since a stationary distribution results, we can determine it,
thus allowing comparison with the broad literature addressing
this topic [6,7,9,11,14,26,28,29,36]. It is possible because we
can assume that the normalization mechanism does not play
a role anymore [13,14]. The signature of this mechanism
was the set of peaks or bunches on the left side of the
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FIG. 11. (a) Histograms of (w − wp) on log-log scale, for various
skew parameters as indicated at a large enough time to escape the
initial phase. Note the spikes on the left side of the distributions
down to parameter −0.005, that are created at the “bust” events
of wealthiest agents. Spikes at the right end are the few wealthiest
agents; (b) Eigenmodes associated to the largest (unity) eigenvalue for
the continuous model without the normalization effect, for negative
values of the skew parameter. For too weak values, there is no solution
within the simulation space, the distribution is at the verge of unstable
negative drift, and hence the eigenmodes explore boundaries.

distributions. They are still seen in the limit case ε = −0.005
and are associated to very modest wealth steps values (less
than unity, hence ∼(w1 − wp)/600), thus to a small impact
of the normalization acting on modestly large wealth. Such
effects apparently rarefy and vanish for more negative values
within our simulation bounds.

To find the stationary limit, we do not need detailed balance
as exchanges are not explicitly accounted in our model. We
have to solve the functional integral equation,

P (w) =
∫ +∞

wp

P (w′)�ε(λ) dλ, (17)

which accounts for a single time step in a mean-field view,
assuming as a boundary condition that no probability flux
comes from the region close to wp. We should also care that the
probability �ε(λ) is actually coupled to w by the status factor.
A full notation would be �(w′,λ) or �(S(w′),λ). However, the
numerical values in this equation are spread on decades. So we
can transpose this in the {x,�} space, whose (now stationary)
probability law and multiplier law are, respectively, P̂ (x) and
π (�). With the now additive algebra, given that x ′ + � = x, and
with an adequate redefinition of π (�) into πε(�) to incorporate

the status S, we find

P̂ (x) =
∫ +∞

−∞
P̂ (x − �)πε(�) d�. (18)

This form is reminiscent of a convolution (as it should). But
due to the dependence of πε(�) on x through the status S, it
is not a convolution. Nevertheless, it is possible to solve for
this equation in the form of an eigenvalue problem onto a
discretized and uniform set {xm = m 
x} of M values of x.
Also, in the limit of a large enough number of iterations, we can
remember that the fate of the distribution was given at ε = 0 by
its drift and second momentum (diffusion constant, essentially
β for us) [1,2,9,15]. While we do not have a theorem to extend
this to the case ε 	= 0, we conjecture that the first-order findings
we want can be made retaining this assumption. So the matrix
representing Eq. (17) as an operator on P̂ is built up as a
Toeplitz matrix, with the nth diagonal having a coefficient
πε(n δx). This introduces a constraint as we want to span
several decades (12 decades, see below), so that even in a large
ensemble {xm = m 
x} with an M value of a few thousand,
only a few of these values fall within the modest range located
between extrema of �, essentially log(1 ± β), apart from the
small corrective action that describes the law πε(�). However,
with some care on this sampling, and given the assumption
mentioned above, we could find significant solutions with
matrix sizes M of a few thousand, and typically 10–20 filled
diagonals. Then, a significant πε(�) can still be put up by
operating on the rows of the matrix, shifting the centroid of the
πε(�) distribution to the proper drift-induced value equivalent
to Eq. (16), but not taking into account the modified width
of the distribution. This introduces some second-order effects
when it comes to converge to a stationary distribution.

Figure 11(b) shows the result of this approach using a set
spanning 12 decades. We indeed find that the largest eigenvalue
of our matrix is nearly unity, and its eigenvector is generally
a bell-shaped distribution. For too-weak negative values of ε,
about |ε| < 0.002, the distribution peaks near the truncating
boundary condition that we implemented at the lowest x

values. Just because we do not normalize the rows of the
matrix at its “corners,” the probability can be “dissipated”
there, and the drift+diffusion processes must accommodate
this numerical boundary. Such a typical appearance, provided
here for ε = −0.001, means physically that the distribution
is still dominated by the negative drift and is not stationary,
essentially as in Sec. II [but not really as in Sec. III as Eq. (17)
ignores the total wealth renormalization].

For more negative values of ε, we find stationary bell-
shaped curves. They present most of the characters of the
actual distribution: there is notably a shift to the right and
to a narrower distribution that is quite comparable to the
simulation of Fig. 11(a). However, we suspect that our solving
procedure is not accurate enough to attempt a meaningful fit:
a better numerical solution should be sought. Even without an
exact account of our model, we can nevertheless discuss its
benefits.

An interesting exercise around the class of stationary
distributions that are currently under scrutiny is to attempt
to look at the relaxation rates of the excited states [27]. Very
plausibly, the relaxation rates will be faster for the higher
excited states, and the first excited state [26] gives a measure
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of the most relevant time scale for external shocks that affect
inequality, i.e., that affect differentially the rich and poor
agents. Nonlinearities could also be investigated in terms of
the effect of correlation. Naively, letting an initial state evolve
from the two linear combinations |p〉 ± |q〉 of the pth and qth
modes could modify the relaxation rate due to the status term,
as this latter is not respecting any of the mode orthogonality
conditions.

V. DISCUSSION

The quest for econophysics models to understand inequality
recently evolved from the study of stationary distributions
[2,4,5,12,14,16,18,19,22,29,30] to the much more fascinating
issue of the distribution dynamics [25–28]. The simple tool
of GBM gives insight to such models, not least because it
addresses some limitation of mainstream economics (e.g., a
bounded utility function), but also because it helps tackling
the false intuitions that arise when ergodicity breaking is not
properly taken into account [23,24].

Setting up a model with a finite number of agents and a
fine-grain (“daily”) time discretization, we have introduced a
nonstationary regime of sustained intermittency by using the
normalization of the total wealth. A lively dynamics emerges,
with still much to analyze. The number of agents used in the
simulations (N = 3 600) was enough to attain in a reasonable
time scale the situation of an extreme degree in wealth capture
by a few individuals, whose decisions then impact the fate of
all agents within short times (say, a few months), but not in
any circumstances, rather only once a crisis is triggered [15].
The way the fluxes have their signs undergoing inversion when
scanning in a sorted agent distribution (Figs. 6 and 10) is one of
the most meaningful signatures we got. It defines two natural
subsets across a “water divide” of wealth flow. Their coupled
fate can then be captured in a nutshell by the “tail wagging the
dog” metaphor. It could be applied to actual statistics or to any
of the many more explicit models. Sticking to the dynamics
of subsets and aggregates, we would have tools that remain
intrinsic or “agnostic” enough along this line. We are also
aware that calibration of GBMs is in infancy and will by itself
reveal several features of interest or even prompt new uses of
GBMs.

Also, generally speaking, when inside a general large
system, a subsystem presents sufficient stationarity, its degree
of redistribution could be studied with an appropriate scaling
of N [6,8,9,12,15,16] (we considered only GBMs coupled
by the normalization, but an absence of reallocation in the
sense of Ref. [27]). The comparison is not limited to wealth
as traditionally quantized in economics, it can be adapted to
various cases around the general balance idea. This principle
entails the statistical fairness in the microscopic trend (as
much chance to get more than less in a single event), but
nevertheless the small gain of a minority in relative terms
appears to be self-amplifying, even weakly. This could be,
for instance, the fate of fashionable topics in a domain of
science, where the developing trend first looks like a fair
reward, but if it becomes a dominant trend, it can lead to too
many followers and production of apparent knowledge with
little actual relevance in a majority of cases [35]. As several
of these domains are not as long-lived as human economies, it

makes sense to start simulation from an apparently stationary
distribution. Then, the issue of dynamics has a simple focal
point: how much the first main crisis can be anticipated (see the
rich studies on firm births and deaths [15]) or more precisely,
can we find how the onset of crisis can be described in a
more detailed fashion, e.g., by connecting its probability to all
average features/momenta of the wealth distribution or of its
underlying log-scale counterpart?

In the economic domain, the large intermittency is often
linked to the Black Swan paradigm of Nassim. N. Taleb, which
relates rather to bust phases, but it is more difficult to assign
“white” or “whitish” swans in the positive boom phase of
cycles among the impact of technological, societal, or political
changes. Microscopic studies of different sectors and their
interactions could benefit from a comparison with our kind of
stochastic model in this respect.

After such “microscopic” considerations, let us take briefly
a broader perspective: Our initial intention, which we hope
to be still present in the result, was to put Piketty’s historic-
economic narrative [18,19] and some of its “obvious” conse-
quences into a model that would go one step beyond the stage
of “riches become richer,” with the further prospect of shedding
light on how the underlying networks and their concentration
effects operate in terms of statistical distribution of economic
and social variables [22,30,32]. In this way, we were faced
with the fact that growing inequalities and nonstationary
distributions occur even in the simple paradigm of apparently
local fair exchange, a result that stems from the natural drift of
a zero-sum-exchange in log-scale terms. There was not much
appearance of such issues in the econophysics literature until
a few years ago. Then, as the issue of evolving inequalities
became more paradigmatic with data available across the
2008 crisis, the dynamics of inequality and the capability of
GBMs to describe them became a center of intense attention
[23–28]. Indeed, there is an interesting parallel between, on the
one hand, Piketty’s “divergence” of the r > g picture, whose
meaning is rather more historical than a precise econometric
exercise (hence Piketty stops short of a divergence model), and
on the other hand, the nonstationarity and ergodicity breaking
of GBM ensembles [23–25].

Taming this nonstationarity involves no less than assessing
whether our economies run in a near-equilibrium fashion, or
more deeply out-of-equilibrium [27], even though sociology
and economics can track a number of slowly drifting items that
are deceivingly suggestive of an adiabatic evolution restoring
an equilibrium induced by the noise of external shocks.

In our case, instead of introducing an explicit taxation
mechanism having an extra variable and entailing no less
than the prerogatives of a “State” to run it, we chose a more
implicit or self-contained approach: Our above presentation
of the equilibrating mechanism as relying on “status” is
drawn from anthropological considerations brought into the
realm of finance and economics by Paul Jorion, who found
that the law of supply and demand was only marginally
verified in actual communities submitted to extreme risks
of subsistence (fisher communities for instance). Rather,
based on Aristotle inspiration (picked up from Karl Polanyi’s
writings), the survival of the community, and the reproduction
of the member’s status throughout its social and economic
exchanges, was felt to be a more general factor, preventing
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prices from falling too low, or on the contrary, causing the
buyers to have the last word even in periods of high demand
as part of their accepted higher status.

We have therefore introduced an equalizing mechanism
akin to taxation directly as an exchange bias that can be
seen also as an average price bias. The fact that with enough
corrective strength, the distribution turns from nonstationary
to stationary is no surprise. The interesting point that would
not have been guessed easily at first is that a quite limited
skew or bias, on the order of 1% in the daily transaction, is
sufficient to strongly suppress the advent of inequality-induced
crisis. It is admittedly not obvious to connect (and possibly
contrast) a small daily bias, on the one hand, and, on the other
hand, the current conventional wisdom that yearly tax rates for
the affluent must lie somewhere in a range of 15–60%. At a
time when economic models are under criticism from several

points of view [18,22,29], we believe that the knowledge
brought by our simple model is a source of inspiration for all
three communities of physics, econophysics, and the broader
social sciences that embed economics. This inspiration rests
on a fertile ground thanks to the recent consideration of all
GBM properties and of their subtle consequences in inequality
models [23–25,28].
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