F. Keilmann and R. Hillenbrand, Near-field microscopy by elastic light scattering from a tip, Phil. Trans. R. Soc. A, vol.362, p.787, 2004.

N. Ocelic, A. Huber, and R. Hillenbrand, Pseudoheterodyne detection for background-free near-field spectroscopy, Applied Physics Letters, vol.47, issue.10, p.101124, 2006.
DOI : 10.1063/1.1320844

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev et al., Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging, Mott transition in VO 2 revealed by infrared spectroscopy and nano-imaging, p.1750, 2007.
DOI : 10.1103/PhysRevLett.90.017402

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices, Nano Letters, vol.8, issue.11, p.3766, 2008.
DOI : 10.1021/nl802086x

M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti et al., Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution, Nature Photonics, vol.47, issue.11, p.841, 2014.
DOI : 10.1103/PhysRevB.47.3842

URL : http://arxiv.org/pdf/1604.04304

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin et al., Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes, Nature Photonics, vol.487, issue.8, p.515, 2015.
DOI : 10.1103/PhysRevB.65.235412

M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu et al., Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy, Nano Letters, vol.14, issue.8, p.4529, 2014.
DOI : 10.1021/nl501558t

J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv, p.745, 2012.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez-rivas, R. E. Algra et al., Nanoscale Free-Carrier Profiling of Individual Semiconductor Nanowires by Infrared Near-Field Nanoscopy, Nano Letters, vol.10, issue.4, p.1387, 2010.
DOI : 10.1021/nl100145d

J. M. Stiegler, R. Tena-zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, Correlative infrared???electron nanoscopy reveals the local structure???conductivity relationship in zinc oxide nanowires, Nature Communications, vol.205, issue.1, p.1131, 2013.
DOI : 10.1002/pssa.200779426

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, vol.76, issue.6816, p.66, 2001.
DOI : 10.1063/1.125956

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao et al., Optically pumped room-temperature GaAs nanowire lasers, Nature Photonics, vol.4, issue.12, p.963, 2013.
DOI : 10.1038/nphoton.2010.88

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris et al., Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Letters, vol.9, issue.6, p.2331, 2009.
DOI : 10.1021/nl900772q

A. Janotti and C. G. , Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, vol.72, issue.12, p.126501, 2009.
DOI : 10.1088/0034-4885/72/12/126501

E. C. Garnett, Y. Tseng, D. R. Khanal, J. Wu, J. Bokor et al., Dopant profiling and surface analysis of silicon nanowires using capacitance???voltage measurements, Nature Nanotechnology, vol.13, issue.5, p.311, 2009.
DOI : 10.1038/nnano.2009.43

E. Koren, N. Berkovitch, and Y. Rosenwaks, Measurement of Active Dopant Distribution and Diffusion in Individual Silicon Nanowires, Nano Letters, vol.10, issue.4, p.1163, 2010.
DOI : 10.1021/nl9033158

J. E. Allen, D. E. Perea, E. R. Hemesath, and L. J. Lauhon, Nonuniform Nanowire Doping Profiles Revealed by Quantitative Scanning Photocurrent Microscopy, Advanced Materials, vol.17, issue.30, p.3067, 2009.
DOI : 10.1038/NNANO.2009.51

H. J. Joyce, J. Boland, C. L. Davies, S. A. Baig, and M. B. Johnston, A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy, Semiconductor Science and Technology, vol.31, issue.10, p.103003, 2016.
DOI : 10.1088/0268-1242/31/10/103003

D. Vanmaekelbergh, L. K. Van, and . Vugt, ZnO nanowire lasers, Nanoscale, vol.90, issue.89, p.2783, 2011.
DOI : 10.1103/PhysRevLett.90.027402

Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol.312, issue.5771, p.242, 2006.
DOI : 10.1126/science.1124005

S. Kalusniak, S. Sadofev, and F. Henneberger, ZnO as a Tunable Metal: New Types of Surface Plasmon Polaritons, Physical Review Letters, vol.112, issue.13, p.137401, 2014.
DOI : 10.1038/nphoton.2012.244

X. G. Xu, L. Gilburd, and G. C. Walker, Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy, Applied Physics Letters, vol.105, issue.26, p.263104, 2014.
DOI : 10.1021/jp047425i

X. G. Xu, A. E. Tanur, and G. C. Walker, Phase Controlled Homodyne Infrared Near-Field Microscopy and Spectroscopy Reveal Inhomogeneity within and among Individual Boron Nitride Nanotubes, The Journal of Physical Chemistry A, vol.117, issue.16, p.3348, 2013.
DOI : 10.1021/jp4008784

V. Giliberti, E. Sakat, M. Bollani, M. V. Altoe, M. Melli et al., Functionalization of Scanning Probe Tips with Epitaxial Semiconductor Layers, Small Methods, vol.58, issue.3, p.1600033, 2017.
DOI : 10.1080/09500340.2010.547262

URL : https://hal.archives-ouvertes.fr/hal-01698439

]. F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, P. Krutokhvostov et al., Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy, Nano Letters, vol.13, issue.3, p.1065, 2013.
DOI : 10.1021/nl304289g

J. Frigerio, A. Ballabio, G. Isella, E. Sakat, G. Pellegrini et al., Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics, Physical Review B, vol.4, issue.8, p.85202, 2016.
DOI : 10.1002/adom.201500446

URL : https://hal.archives-ouvertes.fr/hal-01696946

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher et al., Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates, Nano Letters, vol.15, issue.11, p.7225, 2015.
DOI : 10.1021/acs.nanolett.5b03247

URL : https://hal.archives-ouvertes.fr/hal-01696088

M. Fleischer, A. Weber-bargioni, M. V. Altoe, A. Schwartzberg, P. J. Schuck et al., Gold Nanocone Near-Field Scanning Optical Microscopy Probes, ACS Nano, vol.5, issue.4, p.2570, 2011.
DOI : 10.1021/nn102199u

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo et al., Highly Reproducible Near-Field Optical Imaging with Sub-20-nm Resolution Based on Template-Stripped Gold Pyramids, ACS Nano, vol.6, issue.10, p.9168, 2012.
DOI : 10.1021/nn303496g

URL : http://doi.org/10.1021/nn303496g

E. D. Andreani and . Fabrizio, Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons, Nat. Nanotechnol, vol.5, p.67, 2010.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma et al., Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging, Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging, p.1317, 2012.
DOI : 10.1021/nl1002153

URL : https://authors.library.caltech.edu/36125/6/Bao.SM.pdf

V. Giliberti, E. Sakat, L. Baldassarre, A. Di-gaspare, A. Notargiacomo et al., Three-dimensional fabrication of free-standing epitaxial semiconductor nanostructures obtained by focused ion beam, Microelectronic Engineering, vol.141, p.168, 2015.
DOI : 10.1016/j.mee.2015.03.022

URL : https://hal.archives-ouvertes.fr/hal-01696315

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, Surface plasmon resonances of optical antenna atomic force microscope tips, Applied Physics Letters, vol.94, issue.17, p.171107, 2009.
DOI : 10.1007/s00340-005-1748-y

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution, Nano Letters, vol.6, issue.7, p.1307, 2006.
DOI : 10.1021/nl0610836

J. J. Greffet, A. Sentenac, and R. Carminati, Surface profile reconstruction using near-field data, Optics Communications, vol.116, issue.1-3, p.20, 1995.
DOI : 10.1016/0030-4018(95)00033-5

URL : https://hal.archives-ouvertes.fr/hal-01618081

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber et al., Nanoscale Infrared Absorption Spectroscopy of Individual Nanoparticles Enabled by Scattering-Type Near-Field Microscopy, ACS Nano, vol.5, issue.8, pp.54042-054042, 2011.
DOI : 10.1021/nn2017638

R. Esteban, R. Vogelgesang, and K. Kern, Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast, Optics Express, vol.17, issue.4, p.2518, 2009.
DOI : 10.1364/OE.17.002518

Z. H. Kim and S. H. Ahn, Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles:?? Size-Dependent Dipolar Coupling and Contrast Reversal, Nano Letters, vol.7, issue.8, p.2258, 2007.
DOI : 10.1021/nl070753k

M. Esslinger and R. Vogelgesang, Reciprocity Theory of Apertureless Scanning Near-Field Optical Microscopy with Point-Dipole Probes, ACS Nano, vol.6, issue.9, p.8173, 2012.
DOI : 10.1021/nn302864d

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy, Optics Express, vol.15, issue.14, p.8550, 2007.
DOI : 10.1364/OE.15.008550

A. S. Mcleod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal et al., Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants, Physical Review B, vol.345, issue.8, p.85136, 2014.
DOI : 10.1017/CBO9780511813535

B. Jiang, L. M. Zhang, A. H. Castro-neto, D. N. Basov, and M. M. Fogler, Generalized spectral method for near-field optical microscopy, Journal of Applied Physics, vol.119, issue.5, p.54305, 2016.
DOI : 10.1364/OE.15.008550

URL : http://arxiv.org/pdf/1503.00221

M. Langlais, J. P. Hugonin, M. Besbes, and P. Ben-abdallah, Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting, Optics Express, vol.22, issue.S3, p.577, 2014.
DOI : 10.1364/OE.22.00A577

URL : https://hal.archives-ouvertes.fr/hal-01339339

D. Lindgren, O. Hultin, M. Heurlin, K. Storm, M. T. Borgström et al., Study of carrier concentration in single InP nanowires by luminescence and Hall measurements, Nanotechnology, vol.26, issue.4, p.45705, 2015.
DOI : 10.1088/0957-4484/26/4/045705

B. Ketterer, E. Uccelli, and A. , Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy, Nanoscale, vol.4, issue.269, p.1789, 2012.
DOI : 10.1038/nnano.2008.400

URL : https://infoscience.epfl.ch/record/175741/files/Ketterer-TransmissionRamanNanoscale2012.pdf

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney et al., Recovery of Permittivity and Depth from Near-Field Data as a Step toward Infrared Nanotomography, ACS Nano, vol.8, issue.7, p.6911, 2014.
DOI : 10.1021/nn5016314

G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, and M. Havenith, Nanoscale depth resolution in scanning near-field infrared microscopy, Optics Express, vol.16, issue.10, p.7453, 2008.
DOI : 10.1364/OE.16.007453

A. P. Engelhardt, B. Hauer, and T. Taubner, Visibility of weak contrasts in subsurface scattering near-field microscopy, Ultramicroscopy, vol.126, p.40, 2013.
DOI : 10.1016/j.ultramic.2012.12.010

Y. F. Hsu, Y. Y. Xi, K. H. Tam, A. B. Djuri?i?, J. Luo et al., Undoped p-Type ZnO Nanorods Synthesized by a Hydrothermal Method, Advanced Functional Materials, vol.99, issue.7, p.1020, 2008.
DOI : 10.1142/3719

URL : http://hdl.handle.net/10397/8205

E. Sakat, Near-Field Imaging of Free Carriers in ZnO Nanowires with a Scanning Probe Tip Made of Heavily Doped Germanium, Physical Review Applied, vol.8, issue.5, pp.54042-054042, 2017.
DOI : 10.1002/adfm.200701083

URL : https://hal.archives-ouvertes.fr/hal-01698535