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We investigate the out-of-equilibrium dynamics following a sudden quench of the interaction
strength, in a one-dimensional quasi-condensate trapped at the surface of an atom chip. Within a
linearized approximation, the system is described by independent collective modes and the quench
squeezes the phase space distribution of each mode, leading to a subsequent breathing of each
quadrature. We show that the collective modes are resolved by the power spectrum of density
ripples which appear after a short time of flight. This allows us to experimentally probe the expected
breathing phenomenon. Our results are in good agreement with theoretical predictions which take
the longitudinal harmonic confinement into account.

The out-of-equilibrium dynamics of isolated quantum
many-body systems is a field attracting a lot of interest.
On the theoretical side, many questions are currently in-
vestigated and debated. Whether and how the system
relaxes towards an equilibrium state is in particular the
subject of intense work and the role of integrability is
still not completely clear. A particular focus has been
devoted to the case of sudden quenches where the sys-
tem is brought out-of-equilibrium by a sudden change
of a Hamiltonian parameter [1, 2][3], and in particular
the case of an interaction quench. On the experimental
side, the subsequent evolution of correlation functions
has been investigated in several experiments [4, 5]. In
particular in [5], a light cone effect has been observed in
the first order correlation function after splitting a 1D
Bose gas into two copies. After the light-cone extends
over a few correlation lengths the system showed thermal-
ization [6] . However, this apparent thermalization may
conceal an underlying non-equilibrium behavior. This is
especially true for integrable or quasi-integrable systems
where the system might not relax towards a Gibbs ensem-
ble. In a recent experiment, long term non-equilibrium
dynamics has been revealed by a revival phenomenon [7],
although the dynamics at play before the revival were not
visible in the first order correlation function. Finding
proper observables revealing the dynamics is thus a key
point for investigating out-of-equilibrium phenomena.

In this paper, we investigate the out-equilibrium dy-
namics following a sudden quench of the interaction
strength in a quasi-1D Bose gas with repulsive inter-
actions. While the complete treatment is tremendously
difficult and has been the subject of several theoretical
studies [8–10], the problem is greatly simplified if one can
rely on a linearized approach. For each collective mode
one then expects the quench to produce a squeezed phase
space distribution, leading to a subsequent oscillation of
each quadrature width — a breathing behavior. These
oscillatory dynamics are a priori not visible if one con-
siders observables mixing different modes, such as the
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FIG. 1. Squeezing of each collective mode after an interaction
strength quench. The Gaussian space distributions before the
quench (green circle), just after the quench (solid ellipse) and
after an evolution time π/ (2ωq) (dashed ellipse) are repre-
sented in (b), where lines correspond to a given probability
density. The subsequent breathing is seen in (c), where the
time evolution of the phase distribution is shown.

one-body correlation function. The dephasing between
modes then leads to an apparent thermalization, occur-
ring on a relatively short time. We show in this paper
that individual collective modes may be monitored using
an analysis of the density ripples appearing after short
time of flight. Experimentally, we observe the breath-
ing of squeezed modes, revealing the mechanism at play
after an interaction quench. In the first part of the pa-
per, we present the theoretical framework predicting the
expected squeezing and subsequent dynamics of each col-
lective mode. We then expose why density ripples give
access to the dynamics of individual modes. Finally, we
present our experimental results and compare them to
the derived theoretical predictions.

The relevant physics can be understood by consider-
ing a 1D homogeneous Bose gas, of length L and den-
sity n0, with particles of mass m interacting with re-
pulsive contact interactions gδ(zi − zj) at a tempera-
ture T . At t = 0, g is suddenly changed from gi
to gf = (1 + κ)gi, where κ is the quench strength.
Within the quasi-condensate regime, density fluctuations
are strongly reduced (|δn(z)| � n0) and phase fluc-
tuations occur on large length scales, such that the
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Hamiltonian of the system can be diagonalized using
the phase-density representation of the field operator
Ψ(z) =

√
n0 + δn(z) exp(iθ(z)) and the Bogoliubov pro-

cedure [11]. The obtained linearized modes correspond
to Fourier modes. For each wave-vector q, the dynamics
is governed by the harmonic oscillator Hamiltonian [12]

Hq = Aqn
2
q +Bqθ

2
q = ~ωq

(
ñ2
q

2
+
θ̃2
q

2

)
(1)

where the canonically conjugated hermitian operators
nq and θq are the Fourier components [13] of δn
and θ and where the reduced variables are defined by
ñq = nq(Bq/(4Aq))

1/4 and θ̃q = θq(Aq/(4Bq))
1/4. For

wavevectors q much smaller than the inverse healing
length ξ−1 =

√
mgn0/~, the excitations are of hydrody-

namic nature [14]. Their frequency is ωq = cq, where the

speed of sound is c =
√
n0∂nµ/m, and the Hamiltonian’s

coefficients are Bq = ~2q2n0/(2m) and Aq = c2/(2n0).
Here µ(n) is the equation of state of the gas relating the
chemical potential µ to the linear density, which reduces
to µ = gn for pure 1D quasi-condensate. For a given
q, the dynamics of the quenched harmonic oscillator is
represented Fig. (1). Before the quench the phase space
distribution is the one of a thermal state: an isotropic
Gaussian in the (θ̃q, ñq)-plane. The quench affects Aq
while θq and nq do not have time to change. The vari-

ances thus become 〈θ̃2
q〉t=0+ = (1 + κ)1/4〈θ̃2

q〉t=0− and

〈 ˜δnq
2〉t=0+ = 〈 ˜δnq

2〉t=0−/(1 + κ)1/4[15]. The subsequent
evolution is a rotation in phase space at a frequency ωq
leading to a breathing of each quadrature. In particular

〈θ2
q〉 = 〈θ2

q〉i(1 + κ sin2(cqt)), (2)

where the initial value 〈θ2
q〉i is the thermal prediction

〈θ2
q〉 = mkBT/(~2n0q

2) [16].
Probing the non equilibrium dynamics following a

quench is not straightforward, especially concerning the
choice of observable. Since density fluctuations are very
small within the quasi-condensate regime, it is more ad-
vantageous to probe the phase fluctuations. For this
purpose, one way is to investigate the one-body corre-
lation function g1(z) = 〈Ψ̂(z)†Ψ̂(0)〉, which can for in-
stance be measured via its Fourier transform, the mo-
mentum distribution [17]. For distances much larger than
ξ, density fluctuations give a negligible contribution and,
for Gaussian distributions of θ, the Wick theorem gives
g1(z) ' n0e

−〈(θ(z)−θ(0))2〉/2. However since phase fluc-
tuations are large in a quasi-condensate, the exponen-
tial cannot be linearized and g1(z) mixes contributions
from all Bogoliubov modes[18], preventing the observa-
tion of the squeezed dynamics. In fact, the linearized
model above predicts the light-cone effect on the g1 func-
tion: g1(z) changes from its initial exponential decay
exp(−|z|/lic), where lic = 2~2n0/(mkBT ), to an exponen-
tial decay with a new correlation length lfc = 2lic/(κ+ 2)

for z < 2ct. The breathing of each squeezed Bogoliubov
mode is not transparent here. Moreover, for times larger
than a few tg1th = lfc /c, the g(1) function essentially reaches
the form expected for a thermal state at a temperature
Tf = T (κ + 2)/2, and the ongoing dynamics is hidden.
In this paper we use the density ripples analysis to reveal
the non equilibrium dynamics of the gas by probing the
breathing of each mode.

Density ripples appear after switching the interactions
off and waiting for a free evolution time tf (time-of-
flight), during which phase fluctuations transform into
density fluctuations [19]. The analysis of these den-
sity ripples has been used as thermometry [20, 21], and
to investigate the cooling mecanism [22]. Consider the
power spectrum of density ripples 〈|ρ(q)|2〉, where ρ(q) =
(1/
√
L)
∫
dz(〈n(z, tf ) − n0)eiqz. Propagating the field

operator during the time of flight and assuming trans-
lational invariance we obtain [23]

〈|ρn0
(q)|2〉 =

∫
dxe−iqx(f(q, x)− n2

0), (3)

where

f(q, x) = 〈ψ+(0)ψ(−~qtf/m)ψ+(x− ~qtf/m)ψ(x)〉
' n2

0〈ei[θ(0)−θ(−~qt/m)+θ(x−~qt/m)−θ(x)]〉,
(4)

averages in Eq. (4) being taken before the time of flight.
The function f involves only pairs of points separated
by ~qtf/m. For small wave vectors q~tf/m � lc, the
phase difference between those points is small and one
can expand the exponential. To lowest order, assuming
uncorrelated distributions for each mode q and vanishing
mean values, we then find

〈|ρn0
(q)|2〉 = 4n2

0〈θ2
q〉 sin2

(
~q2tf
2m

)
, (5)

showing that, for low lying q, the density ripples spec-
trum directly resolves the phase quadrature 〈θ2

q〉 of in-
dividual Bogoliubov modes[24]. The proportionality be-
tween 〈|ρn0(q)|2〉 and 〈θ2

q〉 implies that 〈|ρn0(q)|2〉 oscil-
lates according to Eq. (2) when varying the time t after
the quench. Density ripples are thus an ideal tool to
investigate the quench dynamics.

In typical experiments, atoms are confined by a smooth
potential V (z), generally harmonic, which complicates
the picture. However, if the confinement is weak enough
and for wavelengths much smaller than the system’s
size, one can use the above results for homogeneous sys-
tems within a local density approximation (LDA). More
precisely, ρ̃(q) =

∫
dzδn(z, tf )eiqz fulfills 〈|ρ̃(q)|2〉 =∫

dz〈|ρn0(z)(q)|2〉 where n0(z) is the density profile. The
latter can itself be evaluated within the LDA using the
gas equation of state and the local chemical potential
µ(z) = µ0 − V (z). Injecting Eq. (2) and Eq. (5) into the
LDA integral above, we find

〈|ρ̃(q)|2〉/〈|ρ̃(q)|2〉i = 1 + κF(cqt), (6)
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where c is the speed of sound after the quench evaluated
at the trap center and F only depends on the shape of
V (z). The explicit expression of F in the case of a har-
monic potential is given in [25]. Since the central part of
the cloud gives the dominant contribution, 〈|ρ̃(q)|2〉 still
presents an oscillatory behavior as a function of t, F(τ)
being close to sin2(τ). The spread in frequencies originat-
ing from the inhomogeneity in n0 is however responsible
for a damping, which is a pure dephasing effect.
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FIG. 2. Density ripples analysis. (a) Typical absorp-
tion image (optical density shown) taken after a time-of-flight
tf = 8 ms. (b) Power spectrum of density ripples, obtained
by averaging over about 50 images, for a cloud at thermal
equilibrium containing 16000 atoms confined in a trap with
frequencies ωz/(2π) = 8.5 Hz and ω⊥/(2π) = 1.5 kHz, yield-
ing a Thomas-Fermi radius RTF = 75 µm. The green line is
a theoretical fit (see text), yielding a temperature T = 55 nK
and an optical resolution σ = 2.9 µm. (c) Power spectra af-
ter a quench of strength κ = 2, at times t = 2.1ms (green),
t = 2.6ms (blue) and t = 4.6ms(black), the thick red curve
being the initial power spectrum.

The experiment uses an atom-chip set up [26] where
atoms are magnetically confined using current-carrying
micro-wires. The transverse confinement is provided by
three parallel wires carrying AC-current modulated at
400 kHz, which renders the magnetic potential insensitive
to wire imperfections and, allows for independent con-
trol of the transverse and longitudinal confinements. We
perform radio frequency (RF) forced evaporative cool-
ing until we reach the desired temperature. We then
increase the frequency of the RF by 60 kHz, providing
a shield for energetic three-body collision residues and
wait for 150 ms relaxation time [27]. The clouds con-
tain a few thousands atoms, in a trap with a trans-
verse frequency ω⊥/2π = 1.5 - 3.1 kHz and the longitu-
dinal frequency ω‖/2π = 8.5 Hz. The samples are quasi-
1D, the temperature and chemical potential satisfying
µ, kBT < ~ω⊥. The temperature is low enough so that
the gas typically lies well within the quasi-condensate
regime [28]. The equation of state is well described by
µ = ~ω⊥(

√
1 + 4na − 1), where a = 5.3 nm is the 3D

scattering length [29]. While, for na � 1, one recov-
ers the pure 1D expression µ = gn, where g = 2~ω⊥a,
this equation of state takes into account the broaden-
ing of the transverse size at larger na. The longitudinal

density profile, well described by the LDA, extends over
twice the Thomas-Fermi radius RTF =

√
2µ0/m/ωz.

The speed of sound derived from the equation of state
is c = c1D/(1 + 4na)1/4 where c1D =

√
2~ω⊥na/m is

the pure 1D expression. For data presented in this pa-
per, c/c1D is close to 0.7. Since the effective interaction
strength is proportional to c2, it is proportional to ω⊥.

The interaction strength quench therefore amounts to
ramping the transverse trapping frequency ω⊥ from its
initial value ω⊥,i to its final value ω⊥,f = (1 + κ)ω⊥,i
within a time tr, typically of the order of 1 ms. This time
is long enough for the transverse motion of the atoms to
follow adiabatically but short enough so that the quench
can be considered as almost instantaneous with respect to
the probed longitudinal excitations [25]. In order to avoid
dynamics of the mean profile and modification of the Bo-
goliubov wavefunctions [25], we simultaneously adapt the
longitudinal trapping frequency, such that the Thomas-
Fermi radius stays constant.

In order to probe density ripples, we release the atoms
from the trap and let them fall under gravity for a time
tf = 8 ms before taking an absorption image. The trans-
verse expansion, occurring on a time scale of 1/ω⊥, en-
sures the effective instantaneous switching off of the in-
teractions with respect to the probed longitudinal exci-
tations. The density ripples produced by the phase fluc-
tuations present before the free fall are visible in each
individual image, as seen in Fig. (2)(a). From the im-
age, we record the longitudinal density profile ρ(z, tf )
and its discrete Fourier transform[30] ρ̃(q). We acquire
about 40 images taken in the same conditions with atom
number fluctuations smaller than 10%. From this data
set, we then extract the power spectrum 〈|ρ̃(q)|2〉. We
note 〈|ρ̃(q)|2〉i the power spectrum obtained before the
quench and a typical spectrum is shown in Fig. (2)(b).
We chose to normalize the momenta by R−1

TF: since
the Fourier distribution of the ith Bogoliubov mode of
a 1D quasi-condensate is peaked at ki ' i/RTF [25],
the x-axis roughly corresponds to the mode index. The
predicted power spectrum 〈|ρ̃(q)|2〉th is computed using
the LDA and analytical solution of Eq. (3) for thermal
equilibrium [25][31]. This expression is peaked around
kRTF '

√
πm/(~tf )RTF ' 50. For comparison with

experimental data, we take the imaging resolution into
account by multiplying 〈|ρ̃(q)|2〉th with e−k

2σ2/2 where σ
is the rms width of the impulse imaging response func-
tion, assumed to be Gaussian. The experimental data ul-
timately compared well with the theoretical predictions,
as shown in Fig. (2)(b), where T and σ are obtained by
fitting the data [32].

We then investigate the dynamics following the quench
of the interaction strength by acquiring power spectra
of density ripples at different evolution times t after the
quench. We typically acquire power spectra every 0.5 ms,
over a total time of 5 ms. A few raw spectra are shown in
Fig. (2)(b), for a quench strength κ = 2.0. At first sight
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the power spectra seem erratic. In order to reveal the ex-
pected oscillatory behavior of each Fourier component we
introduce, for each wavevector q of the discrete Fourier
transform, and each measurement time t, the reduced
time τ = cqt, where c is evaluated for the central den-
sity, and compute J(q, τ) = 〈|ρ̃(q)|2〉(t)/〈|ρ̃(q)|2〉i. We
restrict the range of q values to 10 < qRTF < 40, to
ensure both the condition q~tv/m � lc and the validity
of the LDA. On the resulting set of spare data, shown
in the inset of Fig. (3), an oscillatory behavior appears,
despite noise on the data. To combine all the data in a
single graph, we perform a “smooth” binning in τ , i.e.
we compute, for any given reduced time τ , the weighted
averaged of the data with a Gaussian weight function
in τ of width ∆ = 0.31 : namely we compute J̄(τ) =∑
α J(qα, τα)e−(τα−τ)2/(2∆2)/

∑
α e
−(τα−τ)2/(2∆2), where

the sum is done on the data set. The function J̄(τ),
shown in Fig. (3) shows a clear oscillatory behavior.
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FIG. 3. Time evolution of squeezed collective modes produced
by an interaction strength. The normalized density ripples
power spectrum is plotted versus the reduced time τ = cqt,
where the speed of sound c is calculated for the central density.
Inset shows the data corresponding to each measurement time
and discrete q values, for a data set corresponding to κ = 2
and ω⊥,i = 2π×1.5 kHz, together with the resulting averaged
quantity J̄ (see text) and the theoretical prediction for κ =
1 (dashed). Points in blue correspond to t < tg1th and red
to t < tg1th . The main graph shows the evolution of J̄ for
different data sets. The initial transverse oscillation frequency
is 1.5 kHz, except for the green curve for which it is 3 kHz.
Quench strengths are κ = 4 (red data), κ = 2 (blue and green)
data and κ = −0.7 (purple data). Dashed lines are theoretical
predictions for quench strengths κ = 2 (red), 1 (blue/red) and
-0.35 (purple).

We repeat the experiment for different quench
strengths κ = (ω⊥,f/ω⊥,i − 1) = {0.3, 3, 5}, and initial
trapping oscillation frequencies ω⊥ = {3, 1.5} kHz. The
oscillatory behavior is present in all cases as shown in
Fig. (3). We compared the observed oscillations with the
theoretical predictions from the linearized model, Eq. (6).

The temporal behavior of the data is in good agreement
with the predicted one: both the frequency and the ob-
served damping are in agreement with the predictions.
The amplitude of the experimental oscillations on the
other hand are significantly smaller than the predictions,
and in Fig. (3) we plot the theoretical predictions for
quench strengths twice as small as the experimental ones.
Moreover, for a given quench strength, the observed am-
plitude depend on the initial transverse frequency, in
contradiction with the theoretical model. Several effects
leading to a decrease of the oscillation amplitude are dis-
cussed in the [25]. However, they account only partially
to the observed amplitude reduction.

In conclusion, analyzing density ripples, we revealed
the physics at play after a sudden quench of the interac-
tion strength in a quasi-1D Bose gas, namely the breath-
ing associated to the squeezing of each collective mode.
The observed out-of-equilibrium dynamics continues for
times larger than tg1th, for which the g1 function essen-
tially reached its asymptotic thermal behavior [33] This
can be seen in the inset of Fig. (3) where data correspond-
ing to t > tg1th, shown in red, still present an oscillatory
behavior. This clearly underlines the power of density
ripple analysis to unveil out-of-equilibrium physics. The
observed damping is compatible with the sole dephas-
ing effect due to the longitudinal harmonic confinement.
At later times, the discreteness of the spectrum and its
almost constant level spacing is expected to produce a
revival phenomenon. Its observation might however be
hindered by a damping of each collective mode due to
non-linear couplings. Such a damping occurs, despite the
integrability of the 1D Bose gas with contact repulsive
interactions, because the Bogoliubov collective modes do
not correspond to the conserved quantities. A long-lived
non-thermal nature of the state produced by the inter-
action strength might be revealed either by observing
excitations in both the phononic regime and the parti-
cle regime of the Bogoliubov spectrum [34], or, ideally,
in finding a way to access the distribution of the Bethe-
Ansatz rapidities.
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